arpandeepk commited on
Commit
ed0aea5
·
verified ·
1 Parent(s): 9d3cb70

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +4 -0
  2. README.md +62 -0
  3. adapter_config.json +42 -0
  4. adapter_model.safetensors +3 -0
  5. added_tokens.json +24 -0
  6. chat_template.jinja +54 -0
  7. checkpoint-500/README.md +209 -0
  8. checkpoint-500/adapter_config.json +42 -0
  9. checkpoint-500/adapter_model.safetensors +3 -0
  10. checkpoint-500/added_tokens.json +24 -0
  11. checkpoint-500/chat_template.jinja +54 -0
  12. checkpoint-500/merges.txt +0 -0
  13. checkpoint-500/optimizer.pt +3 -0
  14. checkpoint-500/rng_state.pth +3 -0
  15. checkpoint-500/scheduler.pt +3 -0
  16. checkpoint-500/special_tokens_map.json +25 -0
  17. checkpoint-500/tokenizer.json +3 -0
  18. checkpoint-500/tokenizer_config.json +207 -0
  19. checkpoint-500/trainer_state.json +644 -0
  20. checkpoint-500/training_args.bin +3 -0
  21. checkpoint-500/vocab.json +0 -0
  22. checkpoint-550/README.md +209 -0
  23. checkpoint-550/adapter_config.json +42 -0
  24. checkpoint-550/adapter_model.safetensors +3 -0
  25. checkpoint-550/added_tokens.json +24 -0
  26. checkpoint-550/chat_template.jinja +54 -0
  27. checkpoint-550/merges.txt +0 -0
  28. checkpoint-550/optimizer.pt +3 -0
  29. checkpoint-550/rng_state.pth +3 -0
  30. checkpoint-550/scheduler.pt +3 -0
  31. checkpoint-550/special_tokens_map.json +25 -0
  32. checkpoint-550/tokenizer.json +3 -0
  33. checkpoint-550/tokenizer_config.json +207 -0
  34. checkpoint-550/trainer_state.json +705 -0
  35. checkpoint-550/training_args.bin +3 -0
  36. checkpoint-550/vocab.json +0 -0
  37. checkpoint-585/README.md +209 -0
  38. checkpoint-585/adapter_config.json +42 -0
  39. checkpoint-585/adapter_model.safetensors +3 -0
  40. checkpoint-585/added_tokens.json +24 -0
  41. checkpoint-585/chat_template.jinja +54 -0
  42. checkpoint-585/merges.txt +0 -0
  43. checkpoint-585/optimizer.pt +3 -0
  44. checkpoint-585/rng_state.pth +3 -0
  45. checkpoint-585/scheduler.pt +3 -0
  46. checkpoint-585/special_tokens_map.json +25 -0
  47. checkpoint-585/tokenizer.json +3 -0
  48. checkpoint-585/tokenizer_config.json +207 -0
  49. checkpoint-585/trainer_state.json +735 -0
  50. checkpoint-585/training_args.bin +3 -0
.gitattributes CHANGED
@@ -33,3 +33,7 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ checkpoint-500/tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ checkpoint-550/tokenizer.json filter=lfs diff=lfs merge=lfs -text
38
+ checkpoint-585/tokenizer.json filter=lfs diff=lfs merge=lfs -text
39
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Qwen/Qwen2.5-Coder-0.5B-Instruct
3
+ library_name: peft
4
+ model_name: finetuned_model
5
+ tags:
6
+ - base_model:adapter:Qwen/Qwen2.5-Coder-0.5B-Instruct
7
+ - lora
8
+ - sft
9
+ - transformers
10
+ - trl
11
+ licence: license
12
+ pipeline_tag: text-generation
13
+ ---
14
+
15
+ # Model Card for finetuned_model
16
+
17
+ This model is a fine-tuned version of [Qwen/Qwen2.5-Coder-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-0.5B-Instruct).
18
+ It has been trained using [TRL](https://github.com/huggingface/trl).
19
+
20
+ ## Quick start
21
+
22
+ ```python
23
+ from transformers import pipeline
24
+
25
+ question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
26
+ generator = pipeline("text-generation", model="None", device="cuda")
27
+ output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
28
+ print(output["generated_text"])
29
+ ```
30
+
31
+ ## Training procedure
32
+
33
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/codeconflict/huggingface/runs/7yeai7j2)
34
+
35
+
36
+ This model was trained with SFT.
37
+
38
+ ### Framework versions
39
+
40
+ - PEFT 0.17.1
41
+ - TRL: 0.23.1
42
+ - Transformers: 4.57.0
43
+ - Pytorch: 2.8.0
44
+ - Datasets: 4.1.1
45
+ - Tokenizers: 0.22.1
46
+
47
+ ## Citations
48
+
49
+
50
+
51
+ Cite TRL as:
52
+
53
+ ```bibtex
54
+ @misc{vonwerra2022trl,
55
+ title = {{TRL: Transformer Reinforcement Learning}},
56
+ author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
57
+ year = 2020,
58
+ journal = {GitHub repository},
59
+ publisher = {GitHub},
60
+ howpublished = {\url{https://github.com/huggingface/trl}}
61
+ }
62
+ ```
adapter_config.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Qwen/Qwen2.5-Coder-0.5B-Instruct",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 32,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0.1,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": null,
22
+ "peft_type": "LORA",
23
+ "qalora_group_size": 16,
24
+ "r": 16,
25
+ "rank_pattern": {},
26
+ "revision": null,
27
+ "target_modules": [
28
+ "up_proj",
29
+ "gate_proj",
30
+ "down_proj",
31
+ "o_proj",
32
+ "v_proj",
33
+ "k_proj",
34
+ "q_proj"
35
+ ],
36
+ "target_parameters": null,
37
+ "task_type": "CAUSAL_LM",
38
+ "trainable_token_indices": null,
39
+ "use_dora": false,
40
+ "use_qalora": false,
41
+ "use_rslora": false
42
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37b99a006b8603a0c1eda6d72993de4b56c245d93bc05a5fe29c70503d8d0b5b
3
+ size 35237104
added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
chat_template.jinja ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {%- if tools %}
2
+ {{- '<|im_start|>system\n' }}
3
+ {%- if messages[0]['role'] == 'system' %}
4
+ {{- messages[0]['content'] }}
5
+ {%- else %}
6
+ {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}
7
+ {%- endif %}
8
+ {{- "\n\n# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
9
+ {%- for tool in tools %}
10
+ {{- "\n" }}
11
+ {{- tool | tojson }}
12
+ {%- endfor %}
13
+ {{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
14
+ {%- else %}
15
+ {%- if messages[0]['role'] == 'system' %}
16
+ {{- '<|im_start|>system\n' + messages[0]['content'] + '<|im_end|>\n' }}
17
+ {%- else %}
18
+ {{- '<|im_start|>system\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\n' }}
19
+ {%- endif %}
20
+ {%- endif %}
21
+ {%- for message in messages %}
22
+ {%- if (message.role == "user") or (message.role == "system" and not loop.first) or (message.role == "assistant" and not message.tool_calls) %}
23
+ {{- '<|im_start|>' + message.role + '\n' + message.content + '<|im_end|>' + '\n' }}
24
+ {%- elif message.role == "assistant" %}
25
+ {{- '<|im_start|>' + message.role }}
26
+ {%- if message.content %}
27
+ {{- '\n' + message.content }}
28
+ {%- endif %}
29
+ {%- for tool_call in message.tool_calls %}
30
+ {%- if tool_call.function is defined %}
31
+ {%- set tool_call = tool_call.function %}
32
+ {%- endif %}
33
+ {{- '\n<tool_call>\n{"name": "' }}
34
+ {{- tool_call.name }}
35
+ {{- '", "arguments": ' }}
36
+ {{- tool_call.arguments | tojson }}
37
+ {{- '}\n</tool_call>' }}
38
+ {%- endfor %}
39
+ {{- '<|im_end|>\n' }}
40
+ {%- elif message.role == "tool" %}
41
+ {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != "tool") %}
42
+ {{- '<|im_start|>user' }}
43
+ {%- endif %}
44
+ {{- '\n<tool_response>\n' }}
45
+ {{- message.content }}
46
+ {{- '\n</tool_response>' }}
47
+ {%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
48
+ {{- '<|im_end|>\n' }}
49
+ {%- endif %}
50
+ {%- endif %}
51
+ {%- endfor %}
52
+ {%- if add_generation_prompt %}
53
+ {{- '<|im_start|>assistant\n' }}
54
+ {%- endif %}
checkpoint-500/README.md ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Qwen/Qwen2.5-Coder-0.5B-Instruct
3
+ library_name: peft
4
+ pipeline_tag: text-generation
5
+ tags:
6
+ - base_model:adapter:Qwen/Qwen2.5-Coder-0.5B-Instruct
7
+ - lora
8
+ - sft
9
+ - transformers
10
+ - trl
11
+ ---
12
+
13
+ # Model Card for Model ID
14
+
15
+ <!-- Provide a quick summary of what the model is/does. -->
16
+
17
+
18
+
19
+ ## Model Details
20
+
21
+ ### Model Description
22
+
23
+ <!-- Provide a longer summary of what this model is. -->
24
+
25
+
26
+
27
+ - **Developed by:** [More Information Needed]
28
+ - **Funded by [optional]:** [More Information Needed]
29
+ - **Shared by [optional]:** [More Information Needed]
30
+ - **Model type:** [More Information Needed]
31
+ - **Language(s) (NLP):** [More Information Needed]
32
+ - **License:** [More Information Needed]
33
+ - **Finetuned from model [optional]:** [More Information Needed]
34
+
35
+ ### Model Sources [optional]
36
+
37
+ <!-- Provide the basic links for the model. -->
38
+
39
+ - **Repository:** [More Information Needed]
40
+ - **Paper [optional]:** [More Information Needed]
41
+ - **Demo [optional]:** [More Information Needed]
42
+
43
+ ## Uses
44
+
45
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
46
+
47
+ ### Direct Use
48
+
49
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
50
+
51
+ [More Information Needed]
52
+
53
+ ### Downstream Use [optional]
54
+
55
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
56
+
57
+ [More Information Needed]
58
+
59
+ ### Out-of-Scope Use
60
+
61
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
62
+
63
+ [More Information Needed]
64
+
65
+ ## Bias, Risks, and Limitations
66
+
67
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
68
+
69
+ [More Information Needed]
70
+
71
+ ### Recommendations
72
+
73
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
74
+
75
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
76
+
77
+ ## How to Get Started with the Model
78
+
79
+ Use the code below to get started with the model.
80
+
81
+ [More Information Needed]
82
+
83
+ ## Training Details
84
+
85
+ ### Training Data
86
+
87
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
88
+
89
+ [More Information Needed]
90
+
91
+ ### Training Procedure
92
+
93
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
94
+
95
+ #### Preprocessing [optional]
96
+
97
+ [More Information Needed]
98
+
99
+
100
+ #### Training Hyperparameters
101
+
102
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
103
+
104
+ #### Speeds, Sizes, Times [optional]
105
+
106
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
107
+
108
+ [More Information Needed]
109
+
110
+ ## Evaluation
111
+
112
+ <!-- This section describes the evaluation protocols and provides the results. -->
113
+
114
+ ### Testing Data, Factors & Metrics
115
+
116
+ #### Testing Data
117
+
118
+ <!-- This should link to a Dataset Card if possible. -->
119
+
120
+ [More Information Needed]
121
+
122
+ #### Factors
123
+
124
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
125
+
126
+ [More Information Needed]
127
+
128
+ #### Metrics
129
+
130
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
131
+
132
+ [More Information Needed]
133
+
134
+ ### Results
135
+
136
+ [More Information Needed]
137
+
138
+ #### Summary
139
+
140
+
141
+
142
+ ## Model Examination [optional]
143
+
144
+ <!-- Relevant interpretability work for the model goes here -->
145
+
146
+ [More Information Needed]
147
+
148
+ ## Environmental Impact
149
+
150
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
151
+
152
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
153
+
154
+ - **Hardware Type:** [More Information Needed]
155
+ - **Hours used:** [More Information Needed]
156
+ - **Cloud Provider:** [More Information Needed]
157
+ - **Compute Region:** [More Information Needed]
158
+ - **Carbon Emitted:** [More Information Needed]
159
+
160
+ ## Technical Specifications [optional]
161
+
162
+ ### Model Architecture and Objective
163
+
164
+ [More Information Needed]
165
+
166
+ ### Compute Infrastructure
167
+
168
+ [More Information Needed]
169
+
170
+ #### Hardware
171
+
172
+ [More Information Needed]
173
+
174
+ #### Software
175
+
176
+ [More Information Needed]
177
+
178
+ ## Citation [optional]
179
+
180
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
181
+
182
+ **BibTeX:**
183
+
184
+ [More Information Needed]
185
+
186
+ **APA:**
187
+
188
+ [More Information Needed]
189
+
190
+ ## Glossary [optional]
191
+
192
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
193
+
194
+ [More Information Needed]
195
+
196
+ ## More Information [optional]
197
+
198
+ [More Information Needed]
199
+
200
+ ## Model Card Authors [optional]
201
+
202
+ [More Information Needed]
203
+
204
+ ## Model Card Contact
205
+
206
+ [More Information Needed]
207
+ ### Framework versions
208
+
209
+ - PEFT 0.17.1
checkpoint-500/adapter_config.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Qwen/Qwen2.5-Coder-0.5B-Instruct",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 32,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0.1,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": null,
22
+ "peft_type": "LORA",
23
+ "qalora_group_size": 16,
24
+ "r": 16,
25
+ "rank_pattern": {},
26
+ "revision": null,
27
+ "target_modules": [
28
+ "up_proj",
29
+ "gate_proj",
30
+ "down_proj",
31
+ "o_proj",
32
+ "v_proj",
33
+ "k_proj",
34
+ "q_proj"
35
+ ],
36
+ "target_parameters": null,
37
+ "task_type": "CAUSAL_LM",
38
+ "trainable_token_indices": null,
39
+ "use_dora": false,
40
+ "use_qalora": false,
41
+ "use_rslora": false
42
+ }
checkpoint-500/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5441e47571afbf04c38e535b6a38289da8a34a405465666d3b9561376c6afc70
3
+ size 35237104
checkpoint-500/added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
checkpoint-500/chat_template.jinja ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {%- if tools %}
2
+ {{- '<|im_start|>system\n' }}
3
+ {%- if messages[0]['role'] == 'system' %}
4
+ {{- messages[0]['content'] }}
5
+ {%- else %}
6
+ {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}
7
+ {%- endif %}
8
+ {{- "\n\n# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
9
+ {%- for tool in tools %}
10
+ {{- "\n" }}
11
+ {{- tool | tojson }}
12
+ {%- endfor %}
13
+ {{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
14
+ {%- else %}
15
+ {%- if messages[0]['role'] == 'system' %}
16
+ {{- '<|im_start|>system\n' + messages[0]['content'] + '<|im_end|>\n' }}
17
+ {%- else %}
18
+ {{- '<|im_start|>system\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\n' }}
19
+ {%- endif %}
20
+ {%- endif %}
21
+ {%- for message in messages %}
22
+ {%- if (message.role == "user") or (message.role == "system" and not loop.first) or (message.role == "assistant" and not message.tool_calls) %}
23
+ {{- '<|im_start|>' + message.role + '\n' + message.content + '<|im_end|>' + '\n' }}
24
+ {%- elif message.role == "assistant" %}
25
+ {{- '<|im_start|>' + message.role }}
26
+ {%- if message.content %}
27
+ {{- '\n' + message.content }}
28
+ {%- endif %}
29
+ {%- for tool_call in message.tool_calls %}
30
+ {%- if tool_call.function is defined %}
31
+ {%- set tool_call = tool_call.function %}
32
+ {%- endif %}
33
+ {{- '\n<tool_call>\n{"name": "' }}
34
+ {{- tool_call.name }}
35
+ {{- '", "arguments": ' }}
36
+ {{- tool_call.arguments | tojson }}
37
+ {{- '}\n</tool_call>' }}
38
+ {%- endfor %}
39
+ {{- '<|im_end|>\n' }}
40
+ {%- elif message.role == "tool" %}
41
+ {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != "tool") %}
42
+ {{- '<|im_start|>user' }}
43
+ {%- endif %}
44
+ {{- '\n<tool_response>\n' }}
45
+ {{- message.content }}
46
+ {{- '\n</tool_response>' }}
47
+ {%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
48
+ {{- '<|im_end|>\n' }}
49
+ {%- endif %}
50
+ {%- endif %}
51
+ {%- endfor %}
52
+ {%- if add_generation_prompt %}
53
+ {{- '<|im_start|>assistant\n' }}
54
+ {%- endif %}
checkpoint-500/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-500/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d6a11f597ccbcfef86ce87f13f30d3ddc73fa8c1a09f92cbb138b704086302a3
3
+ size 70672915
checkpoint-500/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:90c98a1d348918a8082a379c1f0bb58f3545ae2ddc71bb1d608c56931d563835
3
+ size 14645
checkpoint-500/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:696f7f3f40e5a525b1219f568563f7190e0a97433355fb9afc9cce9e5d8fdd7d
3
+ size 1465
checkpoint-500/special_tokens_map.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": "<|im_end|>"
25
+ }
checkpoint-500/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
checkpoint-500/tokenizer_config.json ADDED
@@ -0,0 +1,207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "clean_up_tokenization_spaces": false,
199
+ "eos_token": "<|im_end|>",
200
+ "errors": "replace",
201
+ "extra_special_tokens": {},
202
+ "model_max_length": 32768,
203
+ "pad_token": "<|im_end|>",
204
+ "split_special_tokens": false,
205
+ "tokenizer_class": "Qwen2Tokenizer",
206
+ "unk_token": null
207
+ }
checkpoint-500/trainer_state.json ADDED
@@ -0,0 +1,644 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": 500,
3
+ "best_metric": 0.2209562063217163,
4
+ "best_model_checkpoint": "/dfs/project/kgrlm/akhatua/CodeConflictBenchmark/finetuned_model/checkpoint-500",
5
+ "epoch": 2.564102564102564,
6
+ "eval_steps": 50,
7
+ "global_step": 500,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "entropy": 1.0350996673107147,
14
+ "epoch": 0.05128205128205128,
15
+ "grad_norm": 1.3478177785873413,
16
+ "learning_rate": 1.8e-05,
17
+ "loss": 1.5545,
18
+ "mean_token_accuracy": 0.6928696542978287,
19
+ "num_tokens": 45381.0,
20
+ "step": 10
21
+ },
22
+ {
23
+ "entropy": 1.0789292216300965,
24
+ "epoch": 0.10256410256410256,
25
+ "grad_norm": 1.0828419923782349,
26
+ "learning_rate": 3.8e-05,
27
+ "loss": 1.3792,
28
+ "mean_token_accuracy": 0.70970538854599,
29
+ "num_tokens": 90953.0,
30
+ "step": 20
31
+ },
32
+ {
33
+ "entropy": 0.9691586464643478,
34
+ "epoch": 0.15384615384615385,
35
+ "grad_norm": 1.148255467414856,
36
+ "learning_rate": 5.8e-05,
37
+ "loss": 0.9285,
38
+ "mean_token_accuracy": 0.7836786180734634,
39
+ "num_tokens": 140176.0,
40
+ "step": 30
41
+ },
42
+ {
43
+ "entropy": 0.6125603139400482,
44
+ "epoch": 0.20512820512820512,
45
+ "grad_norm": 0.7212587594985962,
46
+ "learning_rate": 7.800000000000001e-05,
47
+ "loss": 0.5539,
48
+ "mean_token_accuracy": 0.8730687618255615,
49
+ "num_tokens": 188322.0,
50
+ "step": 40
51
+ },
52
+ {
53
+ "entropy": 0.37974261194467546,
54
+ "epoch": 0.2564102564102564,
55
+ "grad_norm": 0.555002748966217,
56
+ "learning_rate": 9.8e-05,
57
+ "loss": 0.3664,
58
+ "mean_token_accuracy": 0.9067715287208558,
59
+ "num_tokens": 234634.0,
60
+ "step": 50
61
+ },
62
+ {
63
+ "epoch": 0.2564102564102564,
64
+ "eval_entropy": 0.33798640830950305,
65
+ "eval_loss": 0.33060547709465027,
66
+ "eval_mean_token_accuracy": 0.9126620414582166,
67
+ "eval_num_tokens": 234634.0,
68
+ "eval_runtime": 3.3954,
69
+ "eval_samples_per_second": 51.246,
70
+ "eval_steps_per_second": 12.959,
71
+ "step": 50
72
+ },
73
+ {
74
+ "entropy": 0.3335741743445396,
75
+ "epoch": 0.3076923076923077,
76
+ "grad_norm": 0.40053829550743103,
77
+ "learning_rate": 0.000118,
78
+ "loss": 0.3268,
79
+ "mean_token_accuracy": 0.9144781798124313,
80
+ "num_tokens": 282032.0,
81
+ "step": 60
82
+ },
83
+ {
84
+ "entropy": 0.3074036821722984,
85
+ "epoch": 0.358974358974359,
86
+ "grad_norm": 0.429716557264328,
87
+ "learning_rate": 0.000138,
88
+ "loss": 0.3003,
89
+ "mean_token_accuracy": 0.9197664111852646,
90
+ "num_tokens": 330105.0,
91
+ "step": 70
92
+ },
93
+ {
94
+ "entropy": 0.28681637942790983,
95
+ "epoch": 0.41025641025641024,
96
+ "grad_norm": 0.39301180839538574,
97
+ "learning_rate": 0.00015800000000000002,
98
+ "loss": 0.2728,
99
+ "mean_token_accuracy": 0.9240950107574463,
100
+ "num_tokens": 376760.0,
101
+ "step": 80
102
+ },
103
+ {
104
+ "entropy": 0.2691986866295338,
105
+ "epoch": 0.46153846153846156,
106
+ "grad_norm": 0.4236898124217987,
107
+ "learning_rate": 0.00017800000000000002,
108
+ "loss": 0.2648,
109
+ "mean_token_accuracy": 0.9252654194831849,
110
+ "num_tokens": 423748.0,
111
+ "step": 90
112
+ },
113
+ {
114
+ "entropy": 0.253852054476738,
115
+ "epoch": 0.5128205128205128,
116
+ "grad_norm": 0.39244791865348816,
117
+ "learning_rate": 0.00019800000000000002,
118
+ "loss": 0.2489,
119
+ "mean_token_accuracy": 0.9291503459215165,
120
+ "num_tokens": 470327.0,
121
+ "step": 100
122
+ },
123
+ {
124
+ "epoch": 0.5128205128205128,
125
+ "eval_entropy": 0.249941445548426,
126
+ "eval_loss": 0.2573370337486267,
127
+ "eval_mean_token_accuracy": 0.926737438548695,
128
+ "eval_num_tokens": 470327.0,
129
+ "eval_runtime": 3.3989,
130
+ "eval_samples_per_second": 51.192,
131
+ "eval_steps_per_second": 12.945,
132
+ "step": 100
133
+ },
134
+ {
135
+ "entropy": 0.24774221405386926,
136
+ "epoch": 0.5641025641025641,
137
+ "grad_norm": 0.3382515013217926,
138
+ "learning_rate": 0.00019628865979381442,
139
+ "loss": 0.2523,
140
+ "mean_token_accuracy": 0.9275001347064972,
141
+ "num_tokens": 517684.0,
142
+ "step": 110
143
+ },
144
+ {
145
+ "entropy": 0.26822882816195487,
146
+ "epoch": 0.6153846153846154,
147
+ "grad_norm": 0.3561689555644989,
148
+ "learning_rate": 0.00019216494845360825,
149
+ "loss": 0.2609,
150
+ "mean_token_accuracy": 0.925196173787117,
151
+ "num_tokens": 563536.0,
152
+ "step": 120
153
+ },
154
+ {
155
+ "entropy": 0.2486445650458336,
156
+ "epoch": 0.6666666666666666,
157
+ "grad_norm": 0.40442419052124023,
158
+ "learning_rate": 0.00018804123711340206,
159
+ "loss": 0.2474,
160
+ "mean_token_accuracy": 0.9291001617908478,
161
+ "num_tokens": 608035.0,
162
+ "step": 130
163
+ },
164
+ {
165
+ "entropy": 0.25348711013793945,
166
+ "epoch": 0.717948717948718,
167
+ "grad_norm": 0.33539682626724243,
168
+ "learning_rate": 0.00018391752577319586,
169
+ "loss": 0.2456,
170
+ "mean_token_accuracy": 0.9287373900413514,
171
+ "num_tokens": 655355.0,
172
+ "step": 140
173
+ },
174
+ {
175
+ "entropy": 0.2404498890042305,
176
+ "epoch": 0.7692307692307693,
177
+ "grad_norm": 0.3772445619106293,
178
+ "learning_rate": 0.0001797938144329897,
179
+ "loss": 0.2416,
180
+ "mean_token_accuracy": 0.9304307967424392,
181
+ "num_tokens": 700330.0,
182
+ "step": 150
183
+ },
184
+ {
185
+ "epoch": 0.7692307692307693,
186
+ "eval_entropy": 0.2422055324370211,
187
+ "eval_loss": 0.24134406447410583,
188
+ "eval_mean_token_accuracy": 0.9292049421505495,
189
+ "eval_num_tokens": 700330.0,
190
+ "eval_runtime": 3.3903,
191
+ "eval_samples_per_second": 51.323,
192
+ "eval_steps_per_second": 12.978,
193
+ "step": 150
194
+ },
195
+ {
196
+ "entropy": 0.23829926177859306,
197
+ "epoch": 0.8205128205128205,
198
+ "grad_norm": 0.3463786542415619,
199
+ "learning_rate": 0.0001756701030927835,
200
+ "loss": 0.2405,
201
+ "mean_token_accuracy": 0.9308693438768387,
202
+ "num_tokens": 745583.0,
203
+ "step": 160
204
+ },
205
+ {
206
+ "entropy": 0.23628849536180496,
207
+ "epoch": 0.8717948717948718,
208
+ "grad_norm": 0.3511769771575928,
209
+ "learning_rate": 0.0001715463917525773,
210
+ "loss": 0.2337,
211
+ "mean_token_accuracy": 0.9328561395406723,
212
+ "num_tokens": 793508.0,
213
+ "step": 170
214
+ },
215
+ {
216
+ "entropy": 0.2514991283416748,
217
+ "epoch": 0.9230769230769231,
218
+ "grad_norm": 0.3281315565109253,
219
+ "learning_rate": 0.00016742268041237114,
220
+ "loss": 0.245,
221
+ "mean_token_accuracy": 0.9293459743261338,
222
+ "num_tokens": 838666.0,
223
+ "step": 180
224
+ },
225
+ {
226
+ "entropy": 0.23273598849773408,
227
+ "epoch": 0.9743589743589743,
228
+ "grad_norm": 0.3585456311702728,
229
+ "learning_rate": 0.00016329896907216494,
230
+ "loss": 0.2396,
231
+ "mean_token_accuracy": 0.9312855184078217,
232
+ "num_tokens": 884925.0,
233
+ "step": 190
234
+ },
235
+ {
236
+ "entropy": 0.23954743817448615,
237
+ "epoch": 1.0256410256410255,
238
+ "grad_norm": 0.30551019310951233,
239
+ "learning_rate": 0.00015917525773195875,
240
+ "loss": 0.2266,
241
+ "mean_token_accuracy": 0.9325341433286667,
242
+ "num_tokens": 929033.0,
243
+ "step": 200
244
+ },
245
+ {
246
+ "epoch": 1.0256410256410255,
247
+ "eval_entropy": 0.2335269803350622,
248
+ "eval_loss": 0.2343294471502304,
249
+ "eval_mean_token_accuracy": 0.9310184608806263,
250
+ "eval_num_tokens": 929033.0,
251
+ "eval_runtime": 3.3954,
252
+ "eval_samples_per_second": 51.246,
253
+ "eval_steps_per_second": 12.959,
254
+ "step": 200
255
+ },
256
+ {
257
+ "entropy": 0.2196498766541481,
258
+ "epoch": 1.0769230769230769,
259
+ "grad_norm": 0.3471911549568176,
260
+ "learning_rate": 0.00015505154639175258,
261
+ "loss": 0.2184,
262
+ "mean_token_accuracy": 0.9367556869983673,
263
+ "num_tokens": 975806.0,
264
+ "step": 210
265
+ },
266
+ {
267
+ "entropy": 0.21442087069153787,
268
+ "epoch": 1.1282051282051282,
269
+ "grad_norm": 0.3200732469558716,
270
+ "learning_rate": 0.00015092783505154638,
271
+ "loss": 0.2072,
272
+ "mean_token_accuracy": 0.937502408027649,
273
+ "num_tokens": 1022737.0,
274
+ "step": 220
275
+ },
276
+ {
277
+ "entropy": 0.21722501143813133,
278
+ "epoch": 1.1794871794871795,
279
+ "grad_norm": 0.3441697657108307,
280
+ "learning_rate": 0.0001468041237113402,
281
+ "loss": 0.2179,
282
+ "mean_token_accuracy": 0.9341749101877213,
283
+ "num_tokens": 1069470.0,
284
+ "step": 230
285
+ },
286
+ {
287
+ "entropy": 0.21757920682430268,
288
+ "epoch": 1.2307692307692308,
289
+ "grad_norm": 0.33167675137519836,
290
+ "learning_rate": 0.00014268041237113402,
291
+ "loss": 0.2151,
292
+ "mean_token_accuracy": 0.9353529185056686,
293
+ "num_tokens": 1115922.0,
294
+ "step": 240
295
+ },
296
+ {
297
+ "entropy": 0.2290858395397663,
298
+ "epoch": 1.282051282051282,
299
+ "grad_norm": 0.3299613893032074,
300
+ "learning_rate": 0.00013855670103092783,
301
+ "loss": 0.2257,
302
+ "mean_token_accuracy": 0.9326711863279342,
303
+ "num_tokens": 1163335.0,
304
+ "step": 250
305
+ },
306
+ {
307
+ "epoch": 1.282051282051282,
308
+ "eval_entropy": 0.22082097286527808,
309
+ "eval_loss": 0.2295188456773758,
310
+ "eval_mean_token_accuracy": 0.9324770271778107,
311
+ "eval_num_tokens": 1163335.0,
312
+ "eval_runtime": 3.3967,
313
+ "eval_samples_per_second": 51.227,
314
+ "eval_steps_per_second": 12.954,
315
+ "step": 250
316
+ },
317
+ {
318
+ "entropy": 0.20567527562379836,
319
+ "epoch": 1.3333333333333333,
320
+ "grad_norm": 0.34776246547698975,
321
+ "learning_rate": 0.00013443298969072166,
322
+ "loss": 0.2102,
323
+ "mean_token_accuracy": 0.9354015827178955,
324
+ "num_tokens": 1210637.0,
325
+ "step": 260
326
+ },
327
+ {
328
+ "entropy": 0.2168171338737011,
329
+ "epoch": 1.3846153846153846,
330
+ "grad_norm": 0.34032920002937317,
331
+ "learning_rate": 0.00013030927835051546,
332
+ "loss": 0.2114,
333
+ "mean_token_accuracy": 0.9366940945386887,
334
+ "num_tokens": 1258602.0,
335
+ "step": 270
336
+ },
337
+ {
338
+ "entropy": 0.2166948698461056,
339
+ "epoch": 1.435897435897436,
340
+ "grad_norm": 0.34751859307289124,
341
+ "learning_rate": 0.00012618556701030927,
342
+ "loss": 0.213,
343
+ "mean_token_accuracy": 0.9365024119615555,
344
+ "num_tokens": 1305357.0,
345
+ "step": 280
346
+ },
347
+ {
348
+ "entropy": 0.2134072668850422,
349
+ "epoch": 1.4871794871794872,
350
+ "grad_norm": 0.33452409505844116,
351
+ "learning_rate": 0.00012206185567010311,
352
+ "loss": 0.2114,
353
+ "mean_token_accuracy": 0.9365908294916153,
354
+ "num_tokens": 1351788.0,
355
+ "step": 290
356
+ },
357
+ {
358
+ "entropy": 0.2126854807138443,
359
+ "epoch": 1.5384615384615383,
360
+ "grad_norm": 0.3085568845272064,
361
+ "learning_rate": 0.00011793814432989692,
362
+ "loss": 0.2114,
363
+ "mean_token_accuracy": 0.9375448822975159,
364
+ "num_tokens": 1397353.0,
365
+ "step": 300
366
+ },
367
+ {
368
+ "epoch": 1.5384615384615383,
369
+ "eval_entropy": 0.21527046744119038,
370
+ "eval_loss": 0.22627197206020355,
371
+ "eval_mean_token_accuracy": 0.9322315928610888,
372
+ "eval_num_tokens": 1397353.0,
373
+ "eval_runtime": 3.3989,
374
+ "eval_samples_per_second": 51.193,
375
+ "eval_steps_per_second": 12.945,
376
+ "step": 300
377
+ },
378
+ {
379
+ "entropy": 0.21225061118602753,
380
+ "epoch": 1.5897435897435899,
381
+ "grad_norm": 0.32770541310310364,
382
+ "learning_rate": 0.00011381443298969072,
383
+ "loss": 0.2127,
384
+ "mean_token_accuracy": 0.935514223575592,
385
+ "num_tokens": 1444470.0,
386
+ "step": 310
387
+ },
388
+ {
389
+ "entropy": 0.2156527377665043,
390
+ "epoch": 1.641025641025641,
391
+ "grad_norm": 0.3466593623161316,
392
+ "learning_rate": 0.00010969072164948456,
393
+ "loss": 0.2178,
394
+ "mean_token_accuracy": 0.9328227639198303,
395
+ "num_tokens": 1488716.0,
396
+ "step": 320
397
+ },
398
+ {
399
+ "entropy": 0.2182770349085331,
400
+ "epoch": 1.6923076923076923,
401
+ "grad_norm": 0.31441858410835266,
402
+ "learning_rate": 0.00010556701030927836,
403
+ "loss": 0.2141,
404
+ "mean_token_accuracy": 0.9356919556856156,
405
+ "num_tokens": 1535315.0,
406
+ "step": 330
407
+ },
408
+ {
409
+ "entropy": 0.20888199508190156,
410
+ "epoch": 1.7435897435897436,
411
+ "grad_norm": 0.35723230242729187,
412
+ "learning_rate": 0.00010144329896907217,
413
+ "loss": 0.2059,
414
+ "mean_token_accuracy": 0.9381601482629776,
415
+ "num_tokens": 1580453.0,
416
+ "step": 340
417
+ },
418
+ {
419
+ "entropy": 0.19662269279360772,
420
+ "epoch": 1.7948717948717947,
421
+ "grad_norm": 0.32357287406921387,
422
+ "learning_rate": 9.731958762886598e-05,
423
+ "loss": 0.1946,
424
+ "mean_token_accuracy": 0.9412949442863464,
425
+ "num_tokens": 1626061.0,
426
+ "step": 350
427
+ },
428
+ {
429
+ "epoch": 1.7948717948717947,
430
+ "eval_entropy": 0.20560899884863335,
431
+ "eval_loss": 0.22450383007526398,
432
+ "eval_mean_token_accuracy": 0.9330938959663565,
433
+ "eval_num_tokens": 1626061.0,
434
+ "eval_runtime": 3.3963,
435
+ "eval_samples_per_second": 51.232,
436
+ "eval_steps_per_second": 12.955,
437
+ "step": 350
438
+ },
439
+ {
440
+ "entropy": 0.21225450485944747,
441
+ "epoch": 1.8461538461538463,
442
+ "grad_norm": 0.32507598400115967,
443
+ "learning_rate": 9.31958762886598e-05,
444
+ "loss": 0.2125,
445
+ "mean_token_accuracy": 0.9344300121068955,
446
+ "num_tokens": 1672735.0,
447
+ "step": 360
448
+ },
449
+ {
450
+ "entropy": 0.2201077848672867,
451
+ "epoch": 1.8974358974358974,
452
+ "grad_norm": 0.3187689483165741,
453
+ "learning_rate": 8.907216494845362e-05,
454
+ "loss": 0.2125,
455
+ "mean_token_accuracy": 0.9343109726905823,
456
+ "num_tokens": 1721643.0,
457
+ "step": 370
458
+ },
459
+ {
460
+ "entropy": 0.19808203503489494,
461
+ "epoch": 1.9487179487179487,
462
+ "grad_norm": 0.31342393159866333,
463
+ "learning_rate": 8.494845360824743e-05,
464
+ "loss": 0.2018,
465
+ "mean_token_accuracy": 0.9375469982624054,
466
+ "num_tokens": 1767639.0,
467
+ "step": 380
468
+ },
469
+ {
470
+ "entropy": 0.21093383952975273,
471
+ "epoch": 2.0,
472
+ "grad_norm": 0.3826819062232971,
473
+ "learning_rate": 8.082474226804125e-05,
474
+ "loss": 0.2096,
475
+ "mean_token_accuracy": 0.9374133050441742,
476
+ "num_tokens": 1813280.0,
477
+ "step": 390
478
+ },
479
+ {
480
+ "entropy": 0.2017211489379406,
481
+ "epoch": 2.051282051282051,
482
+ "grad_norm": 0.33081358671188354,
483
+ "learning_rate": 7.670103092783506e-05,
484
+ "loss": 0.1857,
485
+ "mean_token_accuracy": 0.9430070728063583,
486
+ "num_tokens": 1860011.0,
487
+ "step": 400
488
+ },
489
+ {
490
+ "epoch": 2.051282051282051,
491
+ "eval_entropy": 0.19915587759830736,
492
+ "eval_loss": 0.2229449599981308,
493
+ "eval_mean_token_accuracy": 0.9337983199141242,
494
+ "eval_num_tokens": 1860011.0,
495
+ "eval_runtime": 3.3893,
496
+ "eval_samples_per_second": 51.339,
497
+ "eval_steps_per_second": 12.982,
498
+ "step": 400
499
+ },
500
+ {
501
+ "entropy": 0.1856864832341671,
502
+ "epoch": 2.1025641025641026,
503
+ "grad_norm": 0.33279746770858765,
504
+ "learning_rate": 7.257731958762887e-05,
505
+ "loss": 0.1794,
506
+ "mean_token_accuracy": 0.9443148285150528,
507
+ "num_tokens": 1905712.0,
508
+ "step": 410
509
+ },
510
+ {
511
+ "entropy": 0.18336084187030793,
512
+ "epoch": 2.1538461538461537,
513
+ "grad_norm": 0.3445015549659729,
514
+ "learning_rate": 6.845360824742269e-05,
515
+ "loss": 0.1867,
516
+ "mean_token_accuracy": 0.9425998359918595,
517
+ "num_tokens": 1953094.0,
518
+ "step": 420
519
+ },
520
+ {
521
+ "entropy": 0.18557853624224663,
522
+ "epoch": 2.2051282051282053,
523
+ "grad_norm": 0.3739573061466217,
524
+ "learning_rate": 6.43298969072165e-05,
525
+ "loss": 0.1793,
526
+ "mean_token_accuracy": 0.9447199493646622,
527
+ "num_tokens": 1998254.0,
528
+ "step": 430
529
+ },
530
+ {
531
+ "entropy": 0.18786199390888214,
532
+ "epoch": 2.2564102564102564,
533
+ "grad_norm": 0.38025277853012085,
534
+ "learning_rate": 6.020618556701031e-05,
535
+ "loss": 0.1858,
536
+ "mean_token_accuracy": 0.9422474384307862,
537
+ "num_tokens": 2044070.0,
538
+ "step": 440
539
+ },
540
+ {
541
+ "entropy": 0.19071117043495178,
542
+ "epoch": 2.3076923076923075,
543
+ "grad_norm": 0.32729047536849976,
544
+ "learning_rate": 5.608247422680413e-05,
545
+ "loss": 0.1909,
546
+ "mean_token_accuracy": 0.9416741698980331,
547
+ "num_tokens": 2092654.0,
548
+ "step": 450
549
+ },
550
+ {
551
+ "epoch": 2.3076923076923075,
552
+ "eval_entropy": 0.1941434680060907,
553
+ "eval_loss": 0.22272132337093353,
554
+ "eval_mean_token_accuracy": 0.9333756877617403,
555
+ "eval_num_tokens": 2092654.0,
556
+ "eval_runtime": 3.3838,
557
+ "eval_samples_per_second": 51.421,
558
+ "eval_steps_per_second": 13.003,
559
+ "step": 450
560
+ },
561
+ {
562
+ "entropy": 0.1821839489042759,
563
+ "epoch": 2.358974358974359,
564
+ "grad_norm": 0.3813530504703522,
565
+ "learning_rate": 5.195876288659794e-05,
566
+ "loss": 0.1771,
567
+ "mean_token_accuracy": 0.9454336315393448,
568
+ "num_tokens": 2141205.0,
569
+ "step": 460
570
+ },
571
+ {
572
+ "entropy": 0.1962843805551529,
573
+ "epoch": 2.41025641025641,
574
+ "grad_norm": 0.36779674887657166,
575
+ "learning_rate": 4.783505154639176e-05,
576
+ "loss": 0.1957,
577
+ "mean_token_accuracy": 0.938510924577713,
578
+ "num_tokens": 2189080.0,
579
+ "step": 470
580
+ },
581
+ {
582
+ "entropy": 0.19173899814486503,
583
+ "epoch": 2.4615384615384617,
584
+ "grad_norm": 0.3630339503288269,
585
+ "learning_rate": 4.371134020618557e-05,
586
+ "loss": 0.1924,
587
+ "mean_token_accuracy": 0.939791002869606,
588
+ "num_tokens": 2235899.0,
589
+ "step": 480
590
+ },
591
+ {
592
+ "entropy": 0.1869501829147339,
593
+ "epoch": 2.5128205128205128,
594
+ "grad_norm": 0.3583838939666748,
595
+ "learning_rate": 3.9587628865979384e-05,
596
+ "loss": 0.1806,
597
+ "mean_token_accuracy": 0.943246477842331,
598
+ "num_tokens": 2281375.0,
599
+ "step": 490
600
+ },
601
+ {
602
+ "entropy": 0.1777109794318676,
603
+ "epoch": 2.564102564102564,
604
+ "grad_norm": 0.3346199691295624,
605
+ "learning_rate": 3.54639175257732e-05,
606
+ "loss": 0.1728,
607
+ "mean_token_accuracy": 0.9454073548316956,
608
+ "num_tokens": 2327070.0,
609
+ "step": 500
610
+ },
611
+ {
612
+ "epoch": 2.564102564102564,
613
+ "eval_entropy": 0.18993931737813083,
614
+ "eval_loss": 0.2209562063217163,
615
+ "eval_mean_token_accuracy": 0.9337840676307678,
616
+ "eval_num_tokens": 2327070.0,
617
+ "eval_runtime": 3.3769,
618
+ "eval_samples_per_second": 51.527,
619
+ "eval_steps_per_second": 13.03,
620
+ "step": 500
621
+ }
622
+ ],
623
+ "logging_steps": 10,
624
+ "max_steps": 585,
625
+ "num_input_tokens_seen": 0,
626
+ "num_train_epochs": 3,
627
+ "save_steps": 50,
628
+ "stateful_callbacks": {
629
+ "TrainerControl": {
630
+ "args": {
631
+ "should_epoch_stop": false,
632
+ "should_evaluate": false,
633
+ "should_log": false,
634
+ "should_save": true,
635
+ "should_training_stop": false
636
+ },
637
+ "attributes": {}
638
+ }
639
+ },
640
+ "total_flos": 6286031527403520.0,
641
+ "train_batch_size": 4,
642
+ "trial_name": null,
643
+ "trial_params": null
644
+ }
checkpoint-500/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fb5c73590986390f55072756f8cabde6f2a94413ce00b33e22201826261e6460
3
+ size 6353
checkpoint-500/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-550/README.md ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Qwen/Qwen2.5-Coder-0.5B-Instruct
3
+ library_name: peft
4
+ pipeline_tag: text-generation
5
+ tags:
6
+ - base_model:adapter:Qwen/Qwen2.5-Coder-0.5B-Instruct
7
+ - lora
8
+ - sft
9
+ - transformers
10
+ - trl
11
+ ---
12
+
13
+ # Model Card for Model ID
14
+
15
+ <!-- Provide a quick summary of what the model is/does. -->
16
+
17
+
18
+
19
+ ## Model Details
20
+
21
+ ### Model Description
22
+
23
+ <!-- Provide a longer summary of what this model is. -->
24
+
25
+
26
+
27
+ - **Developed by:** [More Information Needed]
28
+ - **Funded by [optional]:** [More Information Needed]
29
+ - **Shared by [optional]:** [More Information Needed]
30
+ - **Model type:** [More Information Needed]
31
+ - **Language(s) (NLP):** [More Information Needed]
32
+ - **License:** [More Information Needed]
33
+ - **Finetuned from model [optional]:** [More Information Needed]
34
+
35
+ ### Model Sources [optional]
36
+
37
+ <!-- Provide the basic links for the model. -->
38
+
39
+ - **Repository:** [More Information Needed]
40
+ - **Paper [optional]:** [More Information Needed]
41
+ - **Demo [optional]:** [More Information Needed]
42
+
43
+ ## Uses
44
+
45
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
46
+
47
+ ### Direct Use
48
+
49
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
50
+
51
+ [More Information Needed]
52
+
53
+ ### Downstream Use [optional]
54
+
55
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
56
+
57
+ [More Information Needed]
58
+
59
+ ### Out-of-Scope Use
60
+
61
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
62
+
63
+ [More Information Needed]
64
+
65
+ ## Bias, Risks, and Limitations
66
+
67
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
68
+
69
+ [More Information Needed]
70
+
71
+ ### Recommendations
72
+
73
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
74
+
75
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
76
+
77
+ ## How to Get Started with the Model
78
+
79
+ Use the code below to get started with the model.
80
+
81
+ [More Information Needed]
82
+
83
+ ## Training Details
84
+
85
+ ### Training Data
86
+
87
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
88
+
89
+ [More Information Needed]
90
+
91
+ ### Training Procedure
92
+
93
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
94
+
95
+ #### Preprocessing [optional]
96
+
97
+ [More Information Needed]
98
+
99
+
100
+ #### Training Hyperparameters
101
+
102
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
103
+
104
+ #### Speeds, Sizes, Times [optional]
105
+
106
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
107
+
108
+ [More Information Needed]
109
+
110
+ ## Evaluation
111
+
112
+ <!-- This section describes the evaluation protocols and provides the results. -->
113
+
114
+ ### Testing Data, Factors & Metrics
115
+
116
+ #### Testing Data
117
+
118
+ <!-- This should link to a Dataset Card if possible. -->
119
+
120
+ [More Information Needed]
121
+
122
+ #### Factors
123
+
124
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
125
+
126
+ [More Information Needed]
127
+
128
+ #### Metrics
129
+
130
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
131
+
132
+ [More Information Needed]
133
+
134
+ ### Results
135
+
136
+ [More Information Needed]
137
+
138
+ #### Summary
139
+
140
+
141
+
142
+ ## Model Examination [optional]
143
+
144
+ <!-- Relevant interpretability work for the model goes here -->
145
+
146
+ [More Information Needed]
147
+
148
+ ## Environmental Impact
149
+
150
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
151
+
152
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
153
+
154
+ - **Hardware Type:** [More Information Needed]
155
+ - **Hours used:** [More Information Needed]
156
+ - **Cloud Provider:** [More Information Needed]
157
+ - **Compute Region:** [More Information Needed]
158
+ - **Carbon Emitted:** [More Information Needed]
159
+
160
+ ## Technical Specifications [optional]
161
+
162
+ ### Model Architecture and Objective
163
+
164
+ [More Information Needed]
165
+
166
+ ### Compute Infrastructure
167
+
168
+ [More Information Needed]
169
+
170
+ #### Hardware
171
+
172
+ [More Information Needed]
173
+
174
+ #### Software
175
+
176
+ [More Information Needed]
177
+
178
+ ## Citation [optional]
179
+
180
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
181
+
182
+ **BibTeX:**
183
+
184
+ [More Information Needed]
185
+
186
+ **APA:**
187
+
188
+ [More Information Needed]
189
+
190
+ ## Glossary [optional]
191
+
192
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
193
+
194
+ [More Information Needed]
195
+
196
+ ## More Information [optional]
197
+
198
+ [More Information Needed]
199
+
200
+ ## Model Card Authors [optional]
201
+
202
+ [More Information Needed]
203
+
204
+ ## Model Card Contact
205
+
206
+ [More Information Needed]
207
+ ### Framework versions
208
+
209
+ - PEFT 0.17.1
checkpoint-550/adapter_config.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Qwen/Qwen2.5-Coder-0.5B-Instruct",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 32,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0.1,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": null,
22
+ "peft_type": "LORA",
23
+ "qalora_group_size": 16,
24
+ "r": 16,
25
+ "rank_pattern": {},
26
+ "revision": null,
27
+ "target_modules": [
28
+ "up_proj",
29
+ "gate_proj",
30
+ "down_proj",
31
+ "o_proj",
32
+ "v_proj",
33
+ "k_proj",
34
+ "q_proj"
35
+ ],
36
+ "target_parameters": null,
37
+ "task_type": "CAUSAL_LM",
38
+ "trainable_token_indices": null,
39
+ "use_dora": false,
40
+ "use_qalora": false,
41
+ "use_rslora": false
42
+ }
checkpoint-550/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37b99a006b8603a0c1eda6d72993de4b56c245d93bc05a5fe29c70503d8d0b5b
3
+ size 35237104
checkpoint-550/added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
checkpoint-550/chat_template.jinja ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {%- if tools %}
2
+ {{- '<|im_start|>system\n' }}
3
+ {%- if messages[0]['role'] == 'system' %}
4
+ {{- messages[0]['content'] }}
5
+ {%- else %}
6
+ {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}
7
+ {%- endif %}
8
+ {{- "\n\n# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
9
+ {%- for tool in tools %}
10
+ {{- "\n" }}
11
+ {{- tool | tojson }}
12
+ {%- endfor %}
13
+ {{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
14
+ {%- else %}
15
+ {%- if messages[0]['role'] == 'system' %}
16
+ {{- '<|im_start|>system\n' + messages[0]['content'] + '<|im_end|>\n' }}
17
+ {%- else %}
18
+ {{- '<|im_start|>system\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\n' }}
19
+ {%- endif %}
20
+ {%- endif %}
21
+ {%- for message in messages %}
22
+ {%- if (message.role == "user") or (message.role == "system" and not loop.first) or (message.role == "assistant" and not message.tool_calls) %}
23
+ {{- '<|im_start|>' + message.role + '\n' + message.content + '<|im_end|>' + '\n' }}
24
+ {%- elif message.role == "assistant" %}
25
+ {{- '<|im_start|>' + message.role }}
26
+ {%- if message.content %}
27
+ {{- '\n' + message.content }}
28
+ {%- endif %}
29
+ {%- for tool_call in message.tool_calls %}
30
+ {%- if tool_call.function is defined %}
31
+ {%- set tool_call = tool_call.function %}
32
+ {%- endif %}
33
+ {{- '\n<tool_call>\n{"name": "' }}
34
+ {{- tool_call.name }}
35
+ {{- '", "arguments": ' }}
36
+ {{- tool_call.arguments | tojson }}
37
+ {{- '}\n</tool_call>' }}
38
+ {%- endfor %}
39
+ {{- '<|im_end|>\n' }}
40
+ {%- elif message.role == "tool" %}
41
+ {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != "tool") %}
42
+ {{- '<|im_start|>user' }}
43
+ {%- endif %}
44
+ {{- '\n<tool_response>\n' }}
45
+ {{- message.content }}
46
+ {{- '\n</tool_response>' }}
47
+ {%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
48
+ {{- '<|im_end|>\n' }}
49
+ {%- endif %}
50
+ {%- endif %}
51
+ {%- endfor %}
52
+ {%- if add_generation_prompt %}
53
+ {{- '<|im_start|>assistant\n' }}
54
+ {%- endif %}
checkpoint-550/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-550/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e7bc4fc0c1e3a4b100704a41b5e1fd060b2f551315116d7ccd960581e9ac2b20
3
+ size 70672915
checkpoint-550/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e11f9831b959c46d501e9e43499ede62ba09c9179157766805a996cff484300f
3
+ size 14645
checkpoint-550/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5891f7b271538efd0059c4d2bfa115f52f2d944688e944838774564924fe3ed0
3
+ size 1465
checkpoint-550/special_tokens_map.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": "<|im_end|>"
25
+ }
checkpoint-550/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
checkpoint-550/tokenizer_config.json ADDED
@@ -0,0 +1,207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "clean_up_tokenization_spaces": false,
199
+ "eos_token": "<|im_end|>",
200
+ "errors": "replace",
201
+ "extra_special_tokens": {},
202
+ "model_max_length": 32768,
203
+ "pad_token": "<|im_end|>",
204
+ "split_special_tokens": false,
205
+ "tokenizer_class": "Qwen2Tokenizer",
206
+ "unk_token": null
207
+ }
checkpoint-550/trainer_state.json ADDED
@@ -0,0 +1,705 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": 550,
3
+ "best_metric": 0.22057653963565826,
4
+ "best_model_checkpoint": "/dfs/project/kgrlm/akhatua/CodeConflictBenchmark/finetuned_model/checkpoint-550",
5
+ "epoch": 2.8205128205128203,
6
+ "eval_steps": 50,
7
+ "global_step": 550,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "entropy": 1.0350996673107147,
14
+ "epoch": 0.05128205128205128,
15
+ "grad_norm": 1.3478177785873413,
16
+ "learning_rate": 1.8e-05,
17
+ "loss": 1.5545,
18
+ "mean_token_accuracy": 0.6928696542978287,
19
+ "num_tokens": 45381.0,
20
+ "step": 10
21
+ },
22
+ {
23
+ "entropy": 1.0789292216300965,
24
+ "epoch": 0.10256410256410256,
25
+ "grad_norm": 1.0828419923782349,
26
+ "learning_rate": 3.8e-05,
27
+ "loss": 1.3792,
28
+ "mean_token_accuracy": 0.70970538854599,
29
+ "num_tokens": 90953.0,
30
+ "step": 20
31
+ },
32
+ {
33
+ "entropy": 0.9691586464643478,
34
+ "epoch": 0.15384615384615385,
35
+ "grad_norm": 1.148255467414856,
36
+ "learning_rate": 5.8e-05,
37
+ "loss": 0.9285,
38
+ "mean_token_accuracy": 0.7836786180734634,
39
+ "num_tokens": 140176.0,
40
+ "step": 30
41
+ },
42
+ {
43
+ "entropy": 0.6125603139400482,
44
+ "epoch": 0.20512820512820512,
45
+ "grad_norm": 0.7212587594985962,
46
+ "learning_rate": 7.800000000000001e-05,
47
+ "loss": 0.5539,
48
+ "mean_token_accuracy": 0.8730687618255615,
49
+ "num_tokens": 188322.0,
50
+ "step": 40
51
+ },
52
+ {
53
+ "entropy": 0.37974261194467546,
54
+ "epoch": 0.2564102564102564,
55
+ "grad_norm": 0.555002748966217,
56
+ "learning_rate": 9.8e-05,
57
+ "loss": 0.3664,
58
+ "mean_token_accuracy": 0.9067715287208558,
59
+ "num_tokens": 234634.0,
60
+ "step": 50
61
+ },
62
+ {
63
+ "epoch": 0.2564102564102564,
64
+ "eval_entropy": 0.33798640830950305,
65
+ "eval_loss": 0.33060547709465027,
66
+ "eval_mean_token_accuracy": 0.9126620414582166,
67
+ "eval_num_tokens": 234634.0,
68
+ "eval_runtime": 3.3954,
69
+ "eval_samples_per_second": 51.246,
70
+ "eval_steps_per_second": 12.959,
71
+ "step": 50
72
+ },
73
+ {
74
+ "entropy": 0.3335741743445396,
75
+ "epoch": 0.3076923076923077,
76
+ "grad_norm": 0.40053829550743103,
77
+ "learning_rate": 0.000118,
78
+ "loss": 0.3268,
79
+ "mean_token_accuracy": 0.9144781798124313,
80
+ "num_tokens": 282032.0,
81
+ "step": 60
82
+ },
83
+ {
84
+ "entropy": 0.3074036821722984,
85
+ "epoch": 0.358974358974359,
86
+ "grad_norm": 0.429716557264328,
87
+ "learning_rate": 0.000138,
88
+ "loss": 0.3003,
89
+ "mean_token_accuracy": 0.9197664111852646,
90
+ "num_tokens": 330105.0,
91
+ "step": 70
92
+ },
93
+ {
94
+ "entropy": 0.28681637942790983,
95
+ "epoch": 0.41025641025641024,
96
+ "grad_norm": 0.39301180839538574,
97
+ "learning_rate": 0.00015800000000000002,
98
+ "loss": 0.2728,
99
+ "mean_token_accuracy": 0.9240950107574463,
100
+ "num_tokens": 376760.0,
101
+ "step": 80
102
+ },
103
+ {
104
+ "entropy": 0.2691986866295338,
105
+ "epoch": 0.46153846153846156,
106
+ "grad_norm": 0.4236898124217987,
107
+ "learning_rate": 0.00017800000000000002,
108
+ "loss": 0.2648,
109
+ "mean_token_accuracy": 0.9252654194831849,
110
+ "num_tokens": 423748.0,
111
+ "step": 90
112
+ },
113
+ {
114
+ "entropy": 0.253852054476738,
115
+ "epoch": 0.5128205128205128,
116
+ "grad_norm": 0.39244791865348816,
117
+ "learning_rate": 0.00019800000000000002,
118
+ "loss": 0.2489,
119
+ "mean_token_accuracy": 0.9291503459215165,
120
+ "num_tokens": 470327.0,
121
+ "step": 100
122
+ },
123
+ {
124
+ "epoch": 0.5128205128205128,
125
+ "eval_entropy": 0.249941445548426,
126
+ "eval_loss": 0.2573370337486267,
127
+ "eval_mean_token_accuracy": 0.926737438548695,
128
+ "eval_num_tokens": 470327.0,
129
+ "eval_runtime": 3.3989,
130
+ "eval_samples_per_second": 51.192,
131
+ "eval_steps_per_second": 12.945,
132
+ "step": 100
133
+ },
134
+ {
135
+ "entropy": 0.24774221405386926,
136
+ "epoch": 0.5641025641025641,
137
+ "grad_norm": 0.3382515013217926,
138
+ "learning_rate": 0.00019628865979381442,
139
+ "loss": 0.2523,
140
+ "mean_token_accuracy": 0.9275001347064972,
141
+ "num_tokens": 517684.0,
142
+ "step": 110
143
+ },
144
+ {
145
+ "entropy": 0.26822882816195487,
146
+ "epoch": 0.6153846153846154,
147
+ "grad_norm": 0.3561689555644989,
148
+ "learning_rate": 0.00019216494845360825,
149
+ "loss": 0.2609,
150
+ "mean_token_accuracy": 0.925196173787117,
151
+ "num_tokens": 563536.0,
152
+ "step": 120
153
+ },
154
+ {
155
+ "entropy": 0.2486445650458336,
156
+ "epoch": 0.6666666666666666,
157
+ "grad_norm": 0.40442419052124023,
158
+ "learning_rate": 0.00018804123711340206,
159
+ "loss": 0.2474,
160
+ "mean_token_accuracy": 0.9291001617908478,
161
+ "num_tokens": 608035.0,
162
+ "step": 130
163
+ },
164
+ {
165
+ "entropy": 0.25348711013793945,
166
+ "epoch": 0.717948717948718,
167
+ "grad_norm": 0.33539682626724243,
168
+ "learning_rate": 0.00018391752577319586,
169
+ "loss": 0.2456,
170
+ "mean_token_accuracy": 0.9287373900413514,
171
+ "num_tokens": 655355.0,
172
+ "step": 140
173
+ },
174
+ {
175
+ "entropy": 0.2404498890042305,
176
+ "epoch": 0.7692307692307693,
177
+ "grad_norm": 0.3772445619106293,
178
+ "learning_rate": 0.0001797938144329897,
179
+ "loss": 0.2416,
180
+ "mean_token_accuracy": 0.9304307967424392,
181
+ "num_tokens": 700330.0,
182
+ "step": 150
183
+ },
184
+ {
185
+ "epoch": 0.7692307692307693,
186
+ "eval_entropy": 0.2422055324370211,
187
+ "eval_loss": 0.24134406447410583,
188
+ "eval_mean_token_accuracy": 0.9292049421505495,
189
+ "eval_num_tokens": 700330.0,
190
+ "eval_runtime": 3.3903,
191
+ "eval_samples_per_second": 51.323,
192
+ "eval_steps_per_second": 12.978,
193
+ "step": 150
194
+ },
195
+ {
196
+ "entropy": 0.23829926177859306,
197
+ "epoch": 0.8205128205128205,
198
+ "grad_norm": 0.3463786542415619,
199
+ "learning_rate": 0.0001756701030927835,
200
+ "loss": 0.2405,
201
+ "mean_token_accuracy": 0.9308693438768387,
202
+ "num_tokens": 745583.0,
203
+ "step": 160
204
+ },
205
+ {
206
+ "entropy": 0.23628849536180496,
207
+ "epoch": 0.8717948717948718,
208
+ "grad_norm": 0.3511769771575928,
209
+ "learning_rate": 0.0001715463917525773,
210
+ "loss": 0.2337,
211
+ "mean_token_accuracy": 0.9328561395406723,
212
+ "num_tokens": 793508.0,
213
+ "step": 170
214
+ },
215
+ {
216
+ "entropy": 0.2514991283416748,
217
+ "epoch": 0.9230769230769231,
218
+ "grad_norm": 0.3281315565109253,
219
+ "learning_rate": 0.00016742268041237114,
220
+ "loss": 0.245,
221
+ "mean_token_accuracy": 0.9293459743261338,
222
+ "num_tokens": 838666.0,
223
+ "step": 180
224
+ },
225
+ {
226
+ "entropy": 0.23273598849773408,
227
+ "epoch": 0.9743589743589743,
228
+ "grad_norm": 0.3585456311702728,
229
+ "learning_rate": 0.00016329896907216494,
230
+ "loss": 0.2396,
231
+ "mean_token_accuracy": 0.9312855184078217,
232
+ "num_tokens": 884925.0,
233
+ "step": 190
234
+ },
235
+ {
236
+ "entropy": 0.23954743817448615,
237
+ "epoch": 1.0256410256410255,
238
+ "grad_norm": 0.30551019310951233,
239
+ "learning_rate": 0.00015917525773195875,
240
+ "loss": 0.2266,
241
+ "mean_token_accuracy": 0.9325341433286667,
242
+ "num_tokens": 929033.0,
243
+ "step": 200
244
+ },
245
+ {
246
+ "epoch": 1.0256410256410255,
247
+ "eval_entropy": 0.2335269803350622,
248
+ "eval_loss": 0.2343294471502304,
249
+ "eval_mean_token_accuracy": 0.9310184608806263,
250
+ "eval_num_tokens": 929033.0,
251
+ "eval_runtime": 3.3954,
252
+ "eval_samples_per_second": 51.246,
253
+ "eval_steps_per_second": 12.959,
254
+ "step": 200
255
+ },
256
+ {
257
+ "entropy": 0.2196498766541481,
258
+ "epoch": 1.0769230769230769,
259
+ "grad_norm": 0.3471911549568176,
260
+ "learning_rate": 0.00015505154639175258,
261
+ "loss": 0.2184,
262
+ "mean_token_accuracy": 0.9367556869983673,
263
+ "num_tokens": 975806.0,
264
+ "step": 210
265
+ },
266
+ {
267
+ "entropy": 0.21442087069153787,
268
+ "epoch": 1.1282051282051282,
269
+ "grad_norm": 0.3200732469558716,
270
+ "learning_rate": 0.00015092783505154638,
271
+ "loss": 0.2072,
272
+ "mean_token_accuracy": 0.937502408027649,
273
+ "num_tokens": 1022737.0,
274
+ "step": 220
275
+ },
276
+ {
277
+ "entropy": 0.21722501143813133,
278
+ "epoch": 1.1794871794871795,
279
+ "grad_norm": 0.3441697657108307,
280
+ "learning_rate": 0.0001468041237113402,
281
+ "loss": 0.2179,
282
+ "mean_token_accuracy": 0.9341749101877213,
283
+ "num_tokens": 1069470.0,
284
+ "step": 230
285
+ },
286
+ {
287
+ "entropy": 0.21757920682430268,
288
+ "epoch": 1.2307692307692308,
289
+ "grad_norm": 0.33167675137519836,
290
+ "learning_rate": 0.00014268041237113402,
291
+ "loss": 0.2151,
292
+ "mean_token_accuracy": 0.9353529185056686,
293
+ "num_tokens": 1115922.0,
294
+ "step": 240
295
+ },
296
+ {
297
+ "entropy": 0.2290858395397663,
298
+ "epoch": 1.282051282051282,
299
+ "grad_norm": 0.3299613893032074,
300
+ "learning_rate": 0.00013855670103092783,
301
+ "loss": 0.2257,
302
+ "mean_token_accuracy": 0.9326711863279342,
303
+ "num_tokens": 1163335.0,
304
+ "step": 250
305
+ },
306
+ {
307
+ "epoch": 1.282051282051282,
308
+ "eval_entropy": 0.22082097286527808,
309
+ "eval_loss": 0.2295188456773758,
310
+ "eval_mean_token_accuracy": 0.9324770271778107,
311
+ "eval_num_tokens": 1163335.0,
312
+ "eval_runtime": 3.3967,
313
+ "eval_samples_per_second": 51.227,
314
+ "eval_steps_per_second": 12.954,
315
+ "step": 250
316
+ },
317
+ {
318
+ "entropy": 0.20567527562379836,
319
+ "epoch": 1.3333333333333333,
320
+ "grad_norm": 0.34776246547698975,
321
+ "learning_rate": 0.00013443298969072166,
322
+ "loss": 0.2102,
323
+ "mean_token_accuracy": 0.9354015827178955,
324
+ "num_tokens": 1210637.0,
325
+ "step": 260
326
+ },
327
+ {
328
+ "entropy": 0.2168171338737011,
329
+ "epoch": 1.3846153846153846,
330
+ "grad_norm": 0.34032920002937317,
331
+ "learning_rate": 0.00013030927835051546,
332
+ "loss": 0.2114,
333
+ "mean_token_accuracy": 0.9366940945386887,
334
+ "num_tokens": 1258602.0,
335
+ "step": 270
336
+ },
337
+ {
338
+ "entropy": 0.2166948698461056,
339
+ "epoch": 1.435897435897436,
340
+ "grad_norm": 0.34751859307289124,
341
+ "learning_rate": 0.00012618556701030927,
342
+ "loss": 0.213,
343
+ "mean_token_accuracy": 0.9365024119615555,
344
+ "num_tokens": 1305357.0,
345
+ "step": 280
346
+ },
347
+ {
348
+ "entropy": 0.2134072668850422,
349
+ "epoch": 1.4871794871794872,
350
+ "grad_norm": 0.33452409505844116,
351
+ "learning_rate": 0.00012206185567010311,
352
+ "loss": 0.2114,
353
+ "mean_token_accuracy": 0.9365908294916153,
354
+ "num_tokens": 1351788.0,
355
+ "step": 290
356
+ },
357
+ {
358
+ "entropy": 0.2126854807138443,
359
+ "epoch": 1.5384615384615383,
360
+ "grad_norm": 0.3085568845272064,
361
+ "learning_rate": 0.00011793814432989692,
362
+ "loss": 0.2114,
363
+ "mean_token_accuracy": 0.9375448822975159,
364
+ "num_tokens": 1397353.0,
365
+ "step": 300
366
+ },
367
+ {
368
+ "epoch": 1.5384615384615383,
369
+ "eval_entropy": 0.21527046744119038,
370
+ "eval_loss": 0.22627197206020355,
371
+ "eval_mean_token_accuracy": 0.9322315928610888,
372
+ "eval_num_tokens": 1397353.0,
373
+ "eval_runtime": 3.3989,
374
+ "eval_samples_per_second": 51.193,
375
+ "eval_steps_per_second": 12.945,
376
+ "step": 300
377
+ },
378
+ {
379
+ "entropy": 0.21225061118602753,
380
+ "epoch": 1.5897435897435899,
381
+ "grad_norm": 0.32770541310310364,
382
+ "learning_rate": 0.00011381443298969072,
383
+ "loss": 0.2127,
384
+ "mean_token_accuracy": 0.935514223575592,
385
+ "num_tokens": 1444470.0,
386
+ "step": 310
387
+ },
388
+ {
389
+ "entropy": 0.2156527377665043,
390
+ "epoch": 1.641025641025641,
391
+ "grad_norm": 0.3466593623161316,
392
+ "learning_rate": 0.00010969072164948456,
393
+ "loss": 0.2178,
394
+ "mean_token_accuracy": 0.9328227639198303,
395
+ "num_tokens": 1488716.0,
396
+ "step": 320
397
+ },
398
+ {
399
+ "entropy": 0.2182770349085331,
400
+ "epoch": 1.6923076923076923,
401
+ "grad_norm": 0.31441858410835266,
402
+ "learning_rate": 0.00010556701030927836,
403
+ "loss": 0.2141,
404
+ "mean_token_accuracy": 0.9356919556856156,
405
+ "num_tokens": 1535315.0,
406
+ "step": 330
407
+ },
408
+ {
409
+ "entropy": 0.20888199508190156,
410
+ "epoch": 1.7435897435897436,
411
+ "grad_norm": 0.35723230242729187,
412
+ "learning_rate": 0.00010144329896907217,
413
+ "loss": 0.2059,
414
+ "mean_token_accuracy": 0.9381601482629776,
415
+ "num_tokens": 1580453.0,
416
+ "step": 340
417
+ },
418
+ {
419
+ "entropy": 0.19662269279360772,
420
+ "epoch": 1.7948717948717947,
421
+ "grad_norm": 0.32357287406921387,
422
+ "learning_rate": 9.731958762886598e-05,
423
+ "loss": 0.1946,
424
+ "mean_token_accuracy": 0.9412949442863464,
425
+ "num_tokens": 1626061.0,
426
+ "step": 350
427
+ },
428
+ {
429
+ "epoch": 1.7948717948717947,
430
+ "eval_entropy": 0.20560899884863335,
431
+ "eval_loss": 0.22450383007526398,
432
+ "eval_mean_token_accuracy": 0.9330938959663565,
433
+ "eval_num_tokens": 1626061.0,
434
+ "eval_runtime": 3.3963,
435
+ "eval_samples_per_second": 51.232,
436
+ "eval_steps_per_second": 12.955,
437
+ "step": 350
438
+ },
439
+ {
440
+ "entropy": 0.21225450485944747,
441
+ "epoch": 1.8461538461538463,
442
+ "grad_norm": 0.32507598400115967,
443
+ "learning_rate": 9.31958762886598e-05,
444
+ "loss": 0.2125,
445
+ "mean_token_accuracy": 0.9344300121068955,
446
+ "num_tokens": 1672735.0,
447
+ "step": 360
448
+ },
449
+ {
450
+ "entropy": 0.2201077848672867,
451
+ "epoch": 1.8974358974358974,
452
+ "grad_norm": 0.3187689483165741,
453
+ "learning_rate": 8.907216494845362e-05,
454
+ "loss": 0.2125,
455
+ "mean_token_accuracy": 0.9343109726905823,
456
+ "num_tokens": 1721643.0,
457
+ "step": 370
458
+ },
459
+ {
460
+ "entropy": 0.19808203503489494,
461
+ "epoch": 1.9487179487179487,
462
+ "grad_norm": 0.31342393159866333,
463
+ "learning_rate": 8.494845360824743e-05,
464
+ "loss": 0.2018,
465
+ "mean_token_accuracy": 0.9375469982624054,
466
+ "num_tokens": 1767639.0,
467
+ "step": 380
468
+ },
469
+ {
470
+ "entropy": 0.21093383952975273,
471
+ "epoch": 2.0,
472
+ "grad_norm": 0.3826819062232971,
473
+ "learning_rate": 8.082474226804125e-05,
474
+ "loss": 0.2096,
475
+ "mean_token_accuracy": 0.9374133050441742,
476
+ "num_tokens": 1813280.0,
477
+ "step": 390
478
+ },
479
+ {
480
+ "entropy": 0.2017211489379406,
481
+ "epoch": 2.051282051282051,
482
+ "grad_norm": 0.33081358671188354,
483
+ "learning_rate": 7.670103092783506e-05,
484
+ "loss": 0.1857,
485
+ "mean_token_accuracy": 0.9430070728063583,
486
+ "num_tokens": 1860011.0,
487
+ "step": 400
488
+ },
489
+ {
490
+ "epoch": 2.051282051282051,
491
+ "eval_entropy": 0.19915587759830736,
492
+ "eval_loss": 0.2229449599981308,
493
+ "eval_mean_token_accuracy": 0.9337983199141242,
494
+ "eval_num_tokens": 1860011.0,
495
+ "eval_runtime": 3.3893,
496
+ "eval_samples_per_second": 51.339,
497
+ "eval_steps_per_second": 12.982,
498
+ "step": 400
499
+ },
500
+ {
501
+ "entropy": 0.1856864832341671,
502
+ "epoch": 2.1025641025641026,
503
+ "grad_norm": 0.33279746770858765,
504
+ "learning_rate": 7.257731958762887e-05,
505
+ "loss": 0.1794,
506
+ "mean_token_accuracy": 0.9443148285150528,
507
+ "num_tokens": 1905712.0,
508
+ "step": 410
509
+ },
510
+ {
511
+ "entropy": 0.18336084187030793,
512
+ "epoch": 2.1538461538461537,
513
+ "grad_norm": 0.3445015549659729,
514
+ "learning_rate": 6.845360824742269e-05,
515
+ "loss": 0.1867,
516
+ "mean_token_accuracy": 0.9425998359918595,
517
+ "num_tokens": 1953094.0,
518
+ "step": 420
519
+ },
520
+ {
521
+ "entropy": 0.18557853624224663,
522
+ "epoch": 2.2051282051282053,
523
+ "grad_norm": 0.3739573061466217,
524
+ "learning_rate": 6.43298969072165e-05,
525
+ "loss": 0.1793,
526
+ "mean_token_accuracy": 0.9447199493646622,
527
+ "num_tokens": 1998254.0,
528
+ "step": 430
529
+ },
530
+ {
531
+ "entropy": 0.18786199390888214,
532
+ "epoch": 2.2564102564102564,
533
+ "grad_norm": 0.38025277853012085,
534
+ "learning_rate": 6.020618556701031e-05,
535
+ "loss": 0.1858,
536
+ "mean_token_accuracy": 0.9422474384307862,
537
+ "num_tokens": 2044070.0,
538
+ "step": 440
539
+ },
540
+ {
541
+ "entropy": 0.19071117043495178,
542
+ "epoch": 2.3076923076923075,
543
+ "grad_norm": 0.32729047536849976,
544
+ "learning_rate": 5.608247422680413e-05,
545
+ "loss": 0.1909,
546
+ "mean_token_accuracy": 0.9416741698980331,
547
+ "num_tokens": 2092654.0,
548
+ "step": 450
549
+ },
550
+ {
551
+ "epoch": 2.3076923076923075,
552
+ "eval_entropy": 0.1941434680060907,
553
+ "eval_loss": 0.22272132337093353,
554
+ "eval_mean_token_accuracy": 0.9333756877617403,
555
+ "eval_num_tokens": 2092654.0,
556
+ "eval_runtime": 3.3838,
557
+ "eval_samples_per_second": 51.421,
558
+ "eval_steps_per_second": 13.003,
559
+ "step": 450
560
+ },
561
+ {
562
+ "entropy": 0.1821839489042759,
563
+ "epoch": 2.358974358974359,
564
+ "grad_norm": 0.3813530504703522,
565
+ "learning_rate": 5.195876288659794e-05,
566
+ "loss": 0.1771,
567
+ "mean_token_accuracy": 0.9454336315393448,
568
+ "num_tokens": 2141205.0,
569
+ "step": 460
570
+ },
571
+ {
572
+ "entropy": 0.1962843805551529,
573
+ "epoch": 2.41025641025641,
574
+ "grad_norm": 0.36779674887657166,
575
+ "learning_rate": 4.783505154639176e-05,
576
+ "loss": 0.1957,
577
+ "mean_token_accuracy": 0.938510924577713,
578
+ "num_tokens": 2189080.0,
579
+ "step": 470
580
+ },
581
+ {
582
+ "entropy": 0.19173899814486503,
583
+ "epoch": 2.4615384615384617,
584
+ "grad_norm": 0.3630339503288269,
585
+ "learning_rate": 4.371134020618557e-05,
586
+ "loss": 0.1924,
587
+ "mean_token_accuracy": 0.939791002869606,
588
+ "num_tokens": 2235899.0,
589
+ "step": 480
590
+ },
591
+ {
592
+ "entropy": 0.1869501829147339,
593
+ "epoch": 2.5128205128205128,
594
+ "grad_norm": 0.3583838939666748,
595
+ "learning_rate": 3.9587628865979384e-05,
596
+ "loss": 0.1806,
597
+ "mean_token_accuracy": 0.943246477842331,
598
+ "num_tokens": 2281375.0,
599
+ "step": 490
600
+ },
601
+ {
602
+ "entropy": 0.1777109794318676,
603
+ "epoch": 2.564102564102564,
604
+ "grad_norm": 0.3346199691295624,
605
+ "learning_rate": 3.54639175257732e-05,
606
+ "loss": 0.1728,
607
+ "mean_token_accuracy": 0.9454073548316956,
608
+ "num_tokens": 2327070.0,
609
+ "step": 500
610
+ },
611
+ {
612
+ "epoch": 2.564102564102564,
613
+ "eval_entropy": 0.18993931737813083,
614
+ "eval_loss": 0.2209562063217163,
615
+ "eval_mean_token_accuracy": 0.9337840676307678,
616
+ "eval_num_tokens": 2327070.0,
617
+ "eval_runtime": 3.3769,
618
+ "eval_samples_per_second": 51.527,
619
+ "eval_steps_per_second": 13.03,
620
+ "step": 500
621
+ },
622
+ {
623
+ "entropy": 0.19625013917684556,
624
+ "epoch": 2.6153846153846154,
625
+ "grad_norm": 0.3348040282726288,
626
+ "learning_rate": 3.1340206185567014e-05,
627
+ "loss": 0.193,
628
+ "mean_token_accuracy": 0.9405398607254029,
629
+ "num_tokens": 2373946.0,
630
+ "step": 510
631
+ },
632
+ {
633
+ "entropy": 0.17741600945591926,
634
+ "epoch": 2.6666666666666665,
635
+ "grad_norm": 0.36208125948905945,
636
+ "learning_rate": 2.7216494845360823e-05,
637
+ "loss": 0.1758,
638
+ "mean_token_accuracy": 0.9449918389320373,
639
+ "num_tokens": 2421458.0,
640
+ "step": 520
641
+ },
642
+ {
643
+ "entropy": 0.18782210871577262,
644
+ "epoch": 2.717948717948718,
645
+ "grad_norm": 0.3223588168621063,
646
+ "learning_rate": 2.309278350515464e-05,
647
+ "loss": 0.1807,
648
+ "mean_token_accuracy": 0.9432836711406708,
649
+ "num_tokens": 2469065.0,
650
+ "step": 530
651
+ },
652
+ {
653
+ "entropy": 0.1759628787636757,
654
+ "epoch": 2.769230769230769,
655
+ "grad_norm": 0.3225736916065216,
656
+ "learning_rate": 1.8969072164948453e-05,
657
+ "loss": 0.1701,
658
+ "mean_token_accuracy": 0.9470984220504761,
659
+ "num_tokens": 2513535.0,
660
+ "step": 540
661
+ },
662
+ {
663
+ "entropy": 0.17715953066945075,
664
+ "epoch": 2.8205128205128203,
665
+ "grad_norm": 0.3483024835586548,
666
+ "learning_rate": 1.4845360824742268e-05,
667
+ "loss": 0.1779,
668
+ "mean_token_accuracy": 0.9444936513900757,
669
+ "num_tokens": 2560376.0,
670
+ "step": 550
671
+ },
672
+ {
673
+ "epoch": 2.8205128205128203,
674
+ "eval_entropy": 0.1863353834910826,
675
+ "eval_loss": 0.22057653963565826,
676
+ "eval_mean_token_accuracy": 0.9337019771337509,
677
+ "eval_num_tokens": 2560376.0,
678
+ "eval_runtime": 3.3931,
679
+ "eval_samples_per_second": 51.281,
680
+ "eval_steps_per_second": 12.968,
681
+ "step": 550
682
+ }
683
+ ],
684
+ "logging_steps": 10,
685
+ "max_steps": 585,
686
+ "num_input_tokens_seen": 0,
687
+ "num_train_epochs": 3,
688
+ "save_steps": 50,
689
+ "stateful_callbacks": {
690
+ "TrainerControl": {
691
+ "args": {
692
+ "should_epoch_stop": false,
693
+ "should_evaluate": false,
694
+ "should_log": false,
695
+ "should_save": true,
696
+ "should_training_stop": false
697
+ },
698
+ "attributes": {}
699
+ }
700
+ },
701
+ "total_flos": 6913759889402880.0,
702
+ "train_batch_size": 4,
703
+ "trial_name": null,
704
+ "trial_params": null
705
+ }
checkpoint-550/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fb5c73590986390f55072756f8cabde6f2a94413ce00b33e22201826261e6460
3
+ size 6353
checkpoint-550/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-585/README.md ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Qwen/Qwen2.5-Coder-0.5B-Instruct
3
+ library_name: peft
4
+ pipeline_tag: text-generation
5
+ tags:
6
+ - base_model:adapter:Qwen/Qwen2.5-Coder-0.5B-Instruct
7
+ - lora
8
+ - sft
9
+ - transformers
10
+ - trl
11
+ ---
12
+
13
+ # Model Card for Model ID
14
+
15
+ <!-- Provide a quick summary of what the model is/does. -->
16
+
17
+
18
+
19
+ ## Model Details
20
+
21
+ ### Model Description
22
+
23
+ <!-- Provide a longer summary of what this model is. -->
24
+
25
+
26
+
27
+ - **Developed by:** [More Information Needed]
28
+ - **Funded by [optional]:** [More Information Needed]
29
+ - **Shared by [optional]:** [More Information Needed]
30
+ - **Model type:** [More Information Needed]
31
+ - **Language(s) (NLP):** [More Information Needed]
32
+ - **License:** [More Information Needed]
33
+ - **Finetuned from model [optional]:** [More Information Needed]
34
+
35
+ ### Model Sources [optional]
36
+
37
+ <!-- Provide the basic links for the model. -->
38
+
39
+ - **Repository:** [More Information Needed]
40
+ - **Paper [optional]:** [More Information Needed]
41
+ - **Demo [optional]:** [More Information Needed]
42
+
43
+ ## Uses
44
+
45
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
46
+
47
+ ### Direct Use
48
+
49
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
50
+
51
+ [More Information Needed]
52
+
53
+ ### Downstream Use [optional]
54
+
55
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
56
+
57
+ [More Information Needed]
58
+
59
+ ### Out-of-Scope Use
60
+
61
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
62
+
63
+ [More Information Needed]
64
+
65
+ ## Bias, Risks, and Limitations
66
+
67
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
68
+
69
+ [More Information Needed]
70
+
71
+ ### Recommendations
72
+
73
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
74
+
75
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
76
+
77
+ ## How to Get Started with the Model
78
+
79
+ Use the code below to get started with the model.
80
+
81
+ [More Information Needed]
82
+
83
+ ## Training Details
84
+
85
+ ### Training Data
86
+
87
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
88
+
89
+ [More Information Needed]
90
+
91
+ ### Training Procedure
92
+
93
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
94
+
95
+ #### Preprocessing [optional]
96
+
97
+ [More Information Needed]
98
+
99
+
100
+ #### Training Hyperparameters
101
+
102
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
103
+
104
+ #### Speeds, Sizes, Times [optional]
105
+
106
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
107
+
108
+ [More Information Needed]
109
+
110
+ ## Evaluation
111
+
112
+ <!-- This section describes the evaluation protocols and provides the results. -->
113
+
114
+ ### Testing Data, Factors & Metrics
115
+
116
+ #### Testing Data
117
+
118
+ <!-- This should link to a Dataset Card if possible. -->
119
+
120
+ [More Information Needed]
121
+
122
+ #### Factors
123
+
124
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
125
+
126
+ [More Information Needed]
127
+
128
+ #### Metrics
129
+
130
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
131
+
132
+ [More Information Needed]
133
+
134
+ ### Results
135
+
136
+ [More Information Needed]
137
+
138
+ #### Summary
139
+
140
+
141
+
142
+ ## Model Examination [optional]
143
+
144
+ <!-- Relevant interpretability work for the model goes here -->
145
+
146
+ [More Information Needed]
147
+
148
+ ## Environmental Impact
149
+
150
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
151
+
152
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
153
+
154
+ - **Hardware Type:** [More Information Needed]
155
+ - **Hours used:** [More Information Needed]
156
+ - **Cloud Provider:** [More Information Needed]
157
+ - **Compute Region:** [More Information Needed]
158
+ - **Carbon Emitted:** [More Information Needed]
159
+
160
+ ## Technical Specifications [optional]
161
+
162
+ ### Model Architecture and Objective
163
+
164
+ [More Information Needed]
165
+
166
+ ### Compute Infrastructure
167
+
168
+ [More Information Needed]
169
+
170
+ #### Hardware
171
+
172
+ [More Information Needed]
173
+
174
+ #### Software
175
+
176
+ [More Information Needed]
177
+
178
+ ## Citation [optional]
179
+
180
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
181
+
182
+ **BibTeX:**
183
+
184
+ [More Information Needed]
185
+
186
+ **APA:**
187
+
188
+ [More Information Needed]
189
+
190
+ ## Glossary [optional]
191
+
192
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
193
+
194
+ [More Information Needed]
195
+
196
+ ## More Information [optional]
197
+
198
+ [More Information Needed]
199
+
200
+ ## Model Card Authors [optional]
201
+
202
+ [More Information Needed]
203
+
204
+ ## Model Card Contact
205
+
206
+ [More Information Needed]
207
+ ### Framework versions
208
+
209
+ - PEFT 0.17.1
checkpoint-585/adapter_config.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Qwen/Qwen2.5-Coder-0.5B-Instruct",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 32,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0.1,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": null,
22
+ "peft_type": "LORA",
23
+ "qalora_group_size": 16,
24
+ "r": 16,
25
+ "rank_pattern": {},
26
+ "revision": null,
27
+ "target_modules": [
28
+ "up_proj",
29
+ "gate_proj",
30
+ "down_proj",
31
+ "o_proj",
32
+ "v_proj",
33
+ "k_proj",
34
+ "q_proj"
35
+ ],
36
+ "target_parameters": null,
37
+ "task_type": "CAUSAL_LM",
38
+ "trainable_token_indices": null,
39
+ "use_dora": false,
40
+ "use_qalora": false,
41
+ "use_rslora": false
42
+ }
checkpoint-585/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1f311c1aa9127782a4480959a3783c0127794773c80b329e2f350cfe96718873
3
+ size 35237104
checkpoint-585/added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
checkpoint-585/chat_template.jinja ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {%- if tools %}
2
+ {{- '<|im_start|>system\n' }}
3
+ {%- if messages[0]['role'] == 'system' %}
4
+ {{- messages[0]['content'] }}
5
+ {%- else %}
6
+ {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}
7
+ {%- endif %}
8
+ {{- "\n\n# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
9
+ {%- for tool in tools %}
10
+ {{- "\n" }}
11
+ {{- tool | tojson }}
12
+ {%- endfor %}
13
+ {{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
14
+ {%- else %}
15
+ {%- if messages[0]['role'] == 'system' %}
16
+ {{- '<|im_start|>system\n' + messages[0]['content'] + '<|im_end|>\n' }}
17
+ {%- else %}
18
+ {{- '<|im_start|>system\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\n' }}
19
+ {%- endif %}
20
+ {%- endif %}
21
+ {%- for message in messages %}
22
+ {%- if (message.role == "user") or (message.role == "system" and not loop.first) or (message.role == "assistant" and not message.tool_calls) %}
23
+ {{- '<|im_start|>' + message.role + '\n' + message.content + '<|im_end|>' + '\n' }}
24
+ {%- elif message.role == "assistant" %}
25
+ {{- '<|im_start|>' + message.role }}
26
+ {%- if message.content %}
27
+ {{- '\n' + message.content }}
28
+ {%- endif %}
29
+ {%- for tool_call in message.tool_calls %}
30
+ {%- if tool_call.function is defined %}
31
+ {%- set tool_call = tool_call.function %}
32
+ {%- endif %}
33
+ {{- '\n<tool_call>\n{"name": "' }}
34
+ {{- tool_call.name }}
35
+ {{- '", "arguments": ' }}
36
+ {{- tool_call.arguments | tojson }}
37
+ {{- '}\n</tool_call>' }}
38
+ {%- endfor %}
39
+ {{- '<|im_end|>\n' }}
40
+ {%- elif message.role == "tool" %}
41
+ {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != "tool") %}
42
+ {{- '<|im_start|>user' }}
43
+ {%- endif %}
44
+ {{- '\n<tool_response>\n' }}
45
+ {{- message.content }}
46
+ {{- '\n</tool_response>' }}
47
+ {%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
48
+ {{- '<|im_end|>\n' }}
49
+ {%- endif %}
50
+ {%- endif %}
51
+ {%- endfor %}
52
+ {%- if add_generation_prompt %}
53
+ {{- '<|im_start|>assistant\n' }}
54
+ {%- endif %}
checkpoint-585/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-585/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f83e28053a1080ffec25de4d5b5db8fc55cfc2849886aeebb3b17355b5517a2d
3
+ size 70672915
checkpoint-585/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b51323d781fc774b6e0794872728738714fa18e94637bdc47fd8bd73d573ad9f
3
+ size 14645
checkpoint-585/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:db69fff7b9820bbfa2c1e9014a0099a54a3c8bf168b71d0ecb12ef8f96bf8116
3
+ size 1465
checkpoint-585/special_tokens_map.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": "<|im_end|>"
25
+ }
checkpoint-585/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
checkpoint-585/tokenizer_config.json ADDED
@@ -0,0 +1,207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "clean_up_tokenization_spaces": false,
199
+ "eos_token": "<|im_end|>",
200
+ "errors": "replace",
201
+ "extra_special_tokens": {},
202
+ "model_max_length": 32768,
203
+ "pad_token": "<|im_end|>",
204
+ "split_special_tokens": false,
205
+ "tokenizer_class": "Qwen2Tokenizer",
206
+ "unk_token": null
207
+ }
checkpoint-585/trainer_state.json ADDED
@@ -0,0 +1,735 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": 550,
3
+ "best_metric": 0.22057653963565826,
4
+ "best_model_checkpoint": "/dfs/project/kgrlm/akhatua/CodeConflictBenchmark/finetuned_model/checkpoint-550",
5
+ "epoch": 3.0,
6
+ "eval_steps": 50,
7
+ "global_step": 585,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "entropy": 1.0350996673107147,
14
+ "epoch": 0.05128205128205128,
15
+ "grad_norm": 1.3478177785873413,
16
+ "learning_rate": 1.8e-05,
17
+ "loss": 1.5545,
18
+ "mean_token_accuracy": 0.6928696542978287,
19
+ "num_tokens": 45381.0,
20
+ "step": 10
21
+ },
22
+ {
23
+ "entropy": 1.0789292216300965,
24
+ "epoch": 0.10256410256410256,
25
+ "grad_norm": 1.0828419923782349,
26
+ "learning_rate": 3.8e-05,
27
+ "loss": 1.3792,
28
+ "mean_token_accuracy": 0.70970538854599,
29
+ "num_tokens": 90953.0,
30
+ "step": 20
31
+ },
32
+ {
33
+ "entropy": 0.9691586464643478,
34
+ "epoch": 0.15384615384615385,
35
+ "grad_norm": 1.148255467414856,
36
+ "learning_rate": 5.8e-05,
37
+ "loss": 0.9285,
38
+ "mean_token_accuracy": 0.7836786180734634,
39
+ "num_tokens": 140176.0,
40
+ "step": 30
41
+ },
42
+ {
43
+ "entropy": 0.6125603139400482,
44
+ "epoch": 0.20512820512820512,
45
+ "grad_norm": 0.7212587594985962,
46
+ "learning_rate": 7.800000000000001e-05,
47
+ "loss": 0.5539,
48
+ "mean_token_accuracy": 0.8730687618255615,
49
+ "num_tokens": 188322.0,
50
+ "step": 40
51
+ },
52
+ {
53
+ "entropy": 0.37974261194467546,
54
+ "epoch": 0.2564102564102564,
55
+ "grad_norm": 0.555002748966217,
56
+ "learning_rate": 9.8e-05,
57
+ "loss": 0.3664,
58
+ "mean_token_accuracy": 0.9067715287208558,
59
+ "num_tokens": 234634.0,
60
+ "step": 50
61
+ },
62
+ {
63
+ "epoch": 0.2564102564102564,
64
+ "eval_entropy": 0.33798640830950305,
65
+ "eval_loss": 0.33060547709465027,
66
+ "eval_mean_token_accuracy": 0.9126620414582166,
67
+ "eval_num_tokens": 234634.0,
68
+ "eval_runtime": 3.3954,
69
+ "eval_samples_per_second": 51.246,
70
+ "eval_steps_per_second": 12.959,
71
+ "step": 50
72
+ },
73
+ {
74
+ "entropy": 0.3335741743445396,
75
+ "epoch": 0.3076923076923077,
76
+ "grad_norm": 0.40053829550743103,
77
+ "learning_rate": 0.000118,
78
+ "loss": 0.3268,
79
+ "mean_token_accuracy": 0.9144781798124313,
80
+ "num_tokens": 282032.0,
81
+ "step": 60
82
+ },
83
+ {
84
+ "entropy": 0.3074036821722984,
85
+ "epoch": 0.358974358974359,
86
+ "grad_norm": 0.429716557264328,
87
+ "learning_rate": 0.000138,
88
+ "loss": 0.3003,
89
+ "mean_token_accuracy": 0.9197664111852646,
90
+ "num_tokens": 330105.0,
91
+ "step": 70
92
+ },
93
+ {
94
+ "entropy": 0.28681637942790983,
95
+ "epoch": 0.41025641025641024,
96
+ "grad_norm": 0.39301180839538574,
97
+ "learning_rate": 0.00015800000000000002,
98
+ "loss": 0.2728,
99
+ "mean_token_accuracy": 0.9240950107574463,
100
+ "num_tokens": 376760.0,
101
+ "step": 80
102
+ },
103
+ {
104
+ "entropy": 0.2691986866295338,
105
+ "epoch": 0.46153846153846156,
106
+ "grad_norm": 0.4236898124217987,
107
+ "learning_rate": 0.00017800000000000002,
108
+ "loss": 0.2648,
109
+ "mean_token_accuracy": 0.9252654194831849,
110
+ "num_tokens": 423748.0,
111
+ "step": 90
112
+ },
113
+ {
114
+ "entropy": 0.253852054476738,
115
+ "epoch": 0.5128205128205128,
116
+ "grad_norm": 0.39244791865348816,
117
+ "learning_rate": 0.00019800000000000002,
118
+ "loss": 0.2489,
119
+ "mean_token_accuracy": 0.9291503459215165,
120
+ "num_tokens": 470327.0,
121
+ "step": 100
122
+ },
123
+ {
124
+ "epoch": 0.5128205128205128,
125
+ "eval_entropy": 0.249941445548426,
126
+ "eval_loss": 0.2573370337486267,
127
+ "eval_mean_token_accuracy": 0.926737438548695,
128
+ "eval_num_tokens": 470327.0,
129
+ "eval_runtime": 3.3989,
130
+ "eval_samples_per_second": 51.192,
131
+ "eval_steps_per_second": 12.945,
132
+ "step": 100
133
+ },
134
+ {
135
+ "entropy": 0.24774221405386926,
136
+ "epoch": 0.5641025641025641,
137
+ "grad_norm": 0.3382515013217926,
138
+ "learning_rate": 0.00019628865979381442,
139
+ "loss": 0.2523,
140
+ "mean_token_accuracy": 0.9275001347064972,
141
+ "num_tokens": 517684.0,
142
+ "step": 110
143
+ },
144
+ {
145
+ "entropy": 0.26822882816195487,
146
+ "epoch": 0.6153846153846154,
147
+ "grad_norm": 0.3561689555644989,
148
+ "learning_rate": 0.00019216494845360825,
149
+ "loss": 0.2609,
150
+ "mean_token_accuracy": 0.925196173787117,
151
+ "num_tokens": 563536.0,
152
+ "step": 120
153
+ },
154
+ {
155
+ "entropy": 0.2486445650458336,
156
+ "epoch": 0.6666666666666666,
157
+ "grad_norm": 0.40442419052124023,
158
+ "learning_rate": 0.00018804123711340206,
159
+ "loss": 0.2474,
160
+ "mean_token_accuracy": 0.9291001617908478,
161
+ "num_tokens": 608035.0,
162
+ "step": 130
163
+ },
164
+ {
165
+ "entropy": 0.25348711013793945,
166
+ "epoch": 0.717948717948718,
167
+ "grad_norm": 0.33539682626724243,
168
+ "learning_rate": 0.00018391752577319586,
169
+ "loss": 0.2456,
170
+ "mean_token_accuracy": 0.9287373900413514,
171
+ "num_tokens": 655355.0,
172
+ "step": 140
173
+ },
174
+ {
175
+ "entropy": 0.2404498890042305,
176
+ "epoch": 0.7692307692307693,
177
+ "grad_norm": 0.3772445619106293,
178
+ "learning_rate": 0.0001797938144329897,
179
+ "loss": 0.2416,
180
+ "mean_token_accuracy": 0.9304307967424392,
181
+ "num_tokens": 700330.0,
182
+ "step": 150
183
+ },
184
+ {
185
+ "epoch": 0.7692307692307693,
186
+ "eval_entropy": 0.2422055324370211,
187
+ "eval_loss": 0.24134406447410583,
188
+ "eval_mean_token_accuracy": 0.9292049421505495,
189
+ "eval_num_tokens": 700330.0,
190
+ "eval_runtime": 3.3903,
191
+ "eval_samples_per_second": 51.323,
192
+ "eval_steps_per_second": 12.978,
193
+ "step": 150
194
+ },
195
+ {
196
+ "entropy": 0.23829926177859306,
197
+ "epoch": 0.8205128205128205,
198
+ "grad_norm": 0.3463786542415619,
199
+ "learning_rate": 0.0001756701030927835,
200
+ "loss": 0.2405,
201
+ "mean_token_accuracy": 0.9308693438768387,
202
+ "num_tokens": 745583.0,
203
+ "step": 160
204
+ },
205
+ {
206
+ "entropy": 0.23628849536180496,
207
+ "epoch": 0.8717948717948718,
208
+ "grad_norm": 0.3511769771575928,
209
+ "learning_rate": 0.0001715463917525773,
210
+ "loss": 0.2337,
211
+ "mean_token_accuracy": 0.9328561395406723,
212
+ "num_tokens": 793508.0,
213
+ "step": 170
214
+ },
215
+ {
216
+ "entropy": 0.2514991283416748,
217
+ "epoch": 0.9230769230769231,
218
+ "grad_norm": 0.3281315565109253,
219
+ "learning_rate": 0.00016742268041237114,
220
+ "loss": 0.245,
221
+ "mean_token_accuracy": 0.9293459743261338,
222
+ "num_tokens": 838666.0,
223
+ "step": 180
224
+ },
225
+ {
226
+ "entropy": 0.23273598849773408,
227
+ "epoch": 0.9743589743589743,
228
+ "grad_norm": 0.3585456311702728,
229
+ "learning_rate": 0.00016329896907216494,
230
+ "loss": 0.2396,
231
+ "mean_token_accuracy": 0.9312855184078217,
232
+ "num_tokens": 884925.0,
233
+ "step": 190
234
+ },
235
+ {
236
+ "entropy": 0.23954743817448615,
237
+ "epoch": 1.0256410256410255,
238
+ "grad_norm": 0.30551019310951233,
239
+ "learning_rate": 0.00015917525773195875,
240
+ "loss": 0.2266,
241
+ "mean_token_accuracy": 0.9325341433286667,
242
+ "num_tokens": 929033.0,
243
+ "step": 200
244
+ },
245
+ {
246
+ "epoch": 1.0256410256410255,
247
+ "eval_entropy": 0.2335269803350622,
248
+ "eval_loss": 0.2343294471502304,
249
+ "eval_mean_token_accuracy": 0.9310184608806263,
250
+ "eval_num_tokens": 929033.0,
251
+ "eval_runtime": 3.3954,
252
+ "eval_samples_per_second": 51.246,
253
+ "eval_steps_per_second": 12.959,
254
+ "step": 200
255
+ },
256
+ {
257
+ "entropy": 0.2196498766541481,
258
+ "epoch": 1.0769230769230769,
259
+ "grad_norm": 0.3471911549568176,
260
+ "learning_rate": 0.00015505154639175258,
261
+ "loss": 0.2184,
262
+ "mean_token_accuracy": 0.9367556869983673,
263
+ "num_tokens": 975806.0,
264
+ "step": 210
265
+ },
266
+ {
267
+ "entropy": 0.21442087069153787,
268
+ "epoch": 1.1282051282051282,
269
+ "grad_norm": 0.3200732469558716,
270
+ "learning_rate": 0.00015092783505154638,
271
+ "loss": 0.2072,
272
+ "mean_token_accuracy": 0.937502408027649,
273
+ "num_tokens": 1022737.0,
274
+ "step": 220
275
+ },
276
+ {
277
+ "entropy": 0.21722501143813133,
278
+ "epoch": 1.1794871794871795,
279
+ "grad_norm": 0.3441697657108307,
280
+ "learning_rate": 0.0001468041237113402,
281
+ "loss": 0.2179,
282
+ "mean_token_accuracy": 0.9341749101877213,
283
+ "num_tokens": 1069470.0,
284
+ "step": 230
285
+ },
286
+ {
287
+ "entropy": 0.21757920682430268,
288
+ "epoch": 1.2307692307692308,
289
+ "grad_norm": 0.33167675137519836,
290
+ "learning_rate": 0.00014268041237113402,
291
+ "loss": 0.2151,
292
+ "mean_token_accuracy": 0.9353529185056686,
293
+ "num_tokens": 1115922.0,
294
+ "step": 240
295
+ },
296
+ {
297
+ "entropy": 0.2290858395397663,
298
+ "epoch": 1.282051282051282,
299
+ "grad_norm": 0.3299613893032074,
300
+ "learning_rate": 0.00013855670103092783,
301
+ "loss": 0.2257,
302
+ "mean_token_accuracy": 0.9326711863279342,
303
+ "num_tokens": 1163335.0,
304
+ "step": 250
305
+ },
306
+ {
307
+ "epoch": 1.282051282051282,
308
+ "eval_entropy": 0.22082097286527808,
309
+ "eval_loss": 0.2295188456773758,
310
+ "eval_mean_token_accuracy": 0.9324770271778107,
311
+ "eval_num_tokens": 1163335.0,
312
+ "eval_runtime": 3.3967,
313
+ "eval_samples_per_second": 51.227,
314
+ "eval_steps_per_second": 12.954,
315
+ "step": 250
316
+ },
317
+ {
318
+ "entropy": 0.20567527562379836,
319
+ "epoch": 1.3333333333333333,
320
+ "grad_norm": 0.34776246547698975,
321
+ "learning_rate": 0.00013443298969072166,
322
+ "loss": 0.2102,
323
+ "mean_token_accuracy": 0.9354015827178955,
324
+ "num_tokens": 1210637.0,
325
+ "step": 260
326
+ },
327
+ {
328
+ "entropy": 0.2168171338737011,
329
+ "epoch": 1.3846153846153846,
330
+ "grad_norm": 0.34032920002937317,
331
+ "learning_rate": 0.00013030927835051546,
332
+ "loss": 0.2114,
333
+ "mean_token_accuracy": 0.9366940945386887,
334
+ "num_tokens": 1258602.0,
335
+ "step": 270
336
+ },
337
+ {
338
+ "entropy": 0.2166948698461056,
339
+ "epoch": 1.435897435897436,
340
+ "grad_norm": 0.34751859307289124,
341
+ "learning_rate": 0.00012618556701030927,
342
+ "loss": 0.213,
343
+ "mean_token_accuracy": 0.9365024119615555,
344
+ "num_tokens": 1305357.0,
345
+ "step": 280
346
+ },
347
+ {
348
+ "entropy": 0.2134072668850422,
349
+ "epoch": 1.4871794871794872,
350
+ "grad_norm": 0.33452409505844116,
351
+ "learning_rate": 0.00012206185567010311,
352
+ "loss": 0.2114,
353
+ "mean_token_accuracy": 0.9365908294916153,
354
+ "num_tokens": 1351788.0,
355
+ "step": 290
356
+ },
357
+ {
358
+ "entropy": 0.2126854807138443,
359
+ "epoch": 1.5384615384615383,
360
+ "grad_norm": 0.3085568845272064,
361
+ "learning_rate": 0.00011793814432989692,
362
+ "loss": 0.2114,
363
+ "mean_token_accuracy": 0.9375448822975159,
364
+ "num_tokens": 1397353.0,
365
+ "step": 300
366
+ },
367
+ {
368
+ "epoch": 1.5384615384615383,
369
+ "eval_entropy": 0.21527046744119038,
370
+ "eval_loss": 0.22627197206020355,
371
+ "eval_mean_token_accuracy": 0.9322315928610888,
372
+ "eval_num_tokens": 1397353.0,
373
+ "eval_runtime": 3.3989,
374
+ "eval_samples_per_second": 51.193,
375
+ "eval_steps_per_second": 12.945,
376
+ "step": 300
377
+ },
378
+ {
379
+ "entropy": 0.21225061118602753,
380
+ "epoch": 1.5897435897435899,
381
+ "grad_norm": 0.32770541310310364,
382
+ "learning_rate": 0.00011381443298969072,
383
+ "loss": 0.2127,
384
+ "mean_token_accuracy": 0.935514223575592,
385
+ "num_tokens": 1444470.0,
386
+ "step": 310
387
+ },
388
+ {
389
+ "entropy": 0.2156527377665043,
390
+ "epoch": 1.641025641025641,
391
+ "grad_norm": 0.3466593623161316,
392
+ "learning_rate": 0.00010969072164948456,
393
+ "loss": 0.2178,
394
+ "mean_token_accuracy": 0.9328227639198303,
395
+ "num_tokens": 1488716.0,
396
+ "step": 320
397
+ },
398
+ {
399
+ "entropy": 0.2182770349085331,
400
+ "epoch": 1.6923076923076923,
401
+ "grad_norm": 0.31441858410835266,
402
+ "learning_rate": 0.00010556701030927836,
403
+ "loss": 0.2141,
404
+ "mean_token_accuracy": 0.9356919556856156,
405
+ "num_tokens": 1535315.0,
406
+ "step": 330
407
+ },
408
+ {
409
+ "entropy": 0.20888199508190156,
410
+ "epoch": 1.7435897435897436,
411
+ "grad_norm": 0.35723230242729187,
412
+ "learning_rate": 0.00010144329896907217,
413
+ "loss": 0.2059,
414
+ "mean_token_accuracy": 0.9381601482629776,
415
+ "num_tokens": 1580453.0,
416
+ "step": 340
417
+ },
418
+ {
419
+ "entropy": 0.19662269279360772,
420
+ "epoch": 1.7948717948717947,
421
+ "grad_norm": 0.32357287406921387,
422
+ "learning_rate": 9.731958762886598e-05,
423
+ "loss": 0.1946,
424
+ "mean_token_accuracy": 0.9412949442863464,
425
+ "num_tokens": 1626061.0,
426
+ "step": 350
427
+ },
428
+ {
429
+ "epoch": 1.7948717948717947,
430
+ "eval_entropy": 0.20560899884863335,
431
+ "eval_loss": 0.22450383007526398,
432
+ "eval_mean_token_accuracy": 0.9330938959663565,
433
+ "eval_num_tokens": 1626061.0,
434
+ "eval_runtime": 3.3963,
435
+ "eval_samples_per_second": 51.232,
436
+ "eval_steps_per_second": 12.955,
437
+ "step": 350
438
+ },
439
+ {
440
+ "entropy": 0.21225450485944747,
441
+ "epoch": 1.8461538461538463,
442
+ "grad_norm": 0.32507598400115967,
443
+ "learning_rate": 9.31958762886598e-05,
444
+ "loss": 0.2125,
445
+ "mean_token_accuracy": 0.9344300121068955,
446
+ "num_tokens": 1672735.0,
447
+ "step": 360
448
+ },
449
+ {
450
+ "entropy": 0.2201077848672867,
451
+ "epoch": 1.8974358974358974,
452
+ "grad_norm": 0.3187689483165741,
453
+ "learning_rate": 8.907216494845362e-05,
454
+ "loss": 0.2125,
455
+ "mean_token_accuracy": 0.9343109726905823,
456
+ "num_tokens": 1721643.0,
457
+ "step": 370
458
+ },
459
+ {
460
+ "entropy": 0.19808203503489494,
461
+ "epoch": 1.9487179487179487,
462
+ "grad_norm": 0.31342393159866333,
463
+ "learning_rate": 8.494845360824743e-05,
464
+ "loss": 0.2018,
465
+ "mean_token_accuracy": 0.9375469982624054,
466
+ "num_tokens": 1767639.0,
467
+ "step": 380
468
+ },
469
+ {
470
+ "entropy": 0.21093383952975273,
471
+ "epoch": 2.0,
472
+ "grad_norm": 0.3826819062232971,
473
+ "learning_rate": 8.082474226804125e-05,
474
+ "loss": 0.2096,
475
+ "mean_token_accuracy": 0.9374133050441742,
476
+ "num_tokens": 1813280.0,
477
+ "step": 390
478
+ },
479
+ {
480
+ "entropy": 0.2017211489379406,
481
+ "epoch": 2.051282051282051,
482
+ "grad_norm": 0.33081358671188354,
483
+ "learning_rate": 7.670103092783506e-05,
484
+ "loss": 0.1857,
485
+ "mean_token_accuracy": 0.9430070728063583,
486
+ "num_tokens": 1860011.0,
487
+ "step": 400
488
+ },
489
+ {
490
+ "epoch": 2.051282051282051,
491
+ "eval_entropy": 0.19915587759830736,
492
+ "eval_loss": 0.2229449599981308,
493
+ "eval_mean_token_accuracy": 0.9337983199141242,
494
+ "eval_num_tokens": 1860011.0,
495
+ "eval_runtime": 3.3893,
496
+ "eval_samples_per_second": 51.339,
497
+ "eval_steps_per_second": 12.982,
498
+ "step": 400
499
+ },
500
+ {
501
+ "entropy": 0.1856864832341671,
502
+ "epoch": 2.1025641025641026,
503
+ "grad_norm": 0.33279746770858765,
504
+ "learning_rate": 7.257731958762887e-05,
505
+ "loss": 0.1794,
506
+ "mean_token_accuracy": 0.9443148285150528,
507
+ "num_tokens": 1905712.0,
508
+ "step": 410
509
+ },
510
+ {
511
+ "entropy": 0.18336084187030793,
512
+ "epoch": 2.1538461538461537,
513
+ "grad_norm": 0.3445015549659729,
514
+ "learning_rate": 6.845360824742269e-05,
515
+ "loss": 0.1867,
516
+ "mean_token_accuracy": 0.9425998359918595,
517
+ "num_tokens": 1953094.0,
518
+ "step": 420
519
+ },
520
+ {
521
+ "entropy": 0.18557853624224663,
522
+ "epoch": 2.2051282051282053,
523
+ "grad_norm": 0.3739573061466217,
524
+ "learning_rate": 6.43298969072165e-05,
525
+ "loss": 0.1793,
526
+ "mean_token_accuracy": 0.9447199493646622,
527
+ "num_tokens": 1998254.0,
528
+ "step": 430
529
+ },
530
+ {
531
+ "entropy": 0.18786199390888214,
532
+ "epoch": 2.2564102564102564,
533
+ "grad_norm": 0.38025277853012085,
534
+ "learning_rate": 6.020618556701031e-05,
535
+ "loss": 0.1858,
536
+ "mean_token_accuracy": 0.9422474384307862,
537
+ "num_tokens": 2044070.0,
538
+ "step": 440
539
+ },
540
+ {
541
+ "entropy": 0.19071117043495178,
542
+ "epoch": 2.3076923076923075,
543
+ "grad_norm": 0.32729047536849976,
544
+ "learning_rate": 5.608247422680413e-05,
545
+ "loss": 0.1909,
546
+ "mean_token_accuracy": 0.9416741698980331,
547
+ "num_tokens": 2092654.0,
548
+ "step": 450
549
+ },
550
+ {
551
+ "epoch": 2.3076923076923075,
552
+ "eval_entropy": 0.1941434680060907,
553
+ "eval_loss": 0.22272132337093353,
554
+ "eval_mean_token_accuracy": 0.9333756877617403,
555
+ "eval_num_tokens": 2092654.0,
556
+ "eval_runtime": 3.3838,
557
+ "eval_samples_per_second": 51.421,
558
+ "eval_steps_per_second": 13.003,
559
+ "step": 450
560
+ },
561
+ {
562
+ "entropy": 0.1821839489042759,
563
+ "epoch": 2.358974358974359,
564
+ "grad_norm": 0.3813530504703522,
565
+ "learning_rate": 5.195876288659794e-05,
566
+ "loss": 0.1771,
567
+ "mean_token_accuracy": 0.9454336315393448,
568
+ "num_tokens": 2141205.0,
569
+ "step": 460
570
+ },
571
+ {
572
+ "entropy": 0.1962843805551529,
573
+ "epoch": 2.41025641025641,
574
+ "grad_norm": 0.36779674887657166,
575
+ "learning_rate": 4.783505154639176e-05,
576
+ "loss": 0.1957,
577
+ "mean_token_accuracy": 0.938510924577713,
578
+ "num_tokens": 2189080.0,
579
+ "step": 470
580
+ },
581
+ {
582
+ "entropy": 0.19173899814486503,
583
+ "epoch": 2.4615384615384617,
584
+ "grad_norm": 0.3630339503288269,
585
+ "learning_rate": 4.371134020618557e-05,
586
+ "loss": 0.1924,
587
+ "mean_token_accuracy": 0.939791002869606,
588
+ "num_tokens": 2235899.0,
589
+ "step": 480
590
+ },
591
+ {
592
+ "entropy": 0.1869501829147339,
593
+ "epoch": 2.5128205128205128,
594
+ "grad_norm": 0.3583838939666748,
595
+ "learning_rate": 3.9587628865979384e-05,
596
+ "loss": 0.1806,
597
+ "mean_token_accuracy": 0.943246477842331,
598
+ "num_tokens": 2281375.0,
599
+ "step": 490
600
+ },
601
+ {
602
+ "entropy": 0.1777109794318676,
603
+ "epoch": 2.564102564102564,
604
+ "grad_norm": 0.3346199691295624,
605
+ "learning_rate": 3.54639175257732e-05,
606
+ "loss": 0.1728,
607
+ "mean_token_accuracy": 0.9454073548316956,
608
+ "num_tokens": 2327070.0,
609
+ "step": 500
610
+ },
611
+ {
612
+ "epoch": 2.564102564102564,
613
+ "eval_entropy": 0.18993931737813083,
614
+ "eval_loss": 0.2209562063217163,
615
+ "eval_mean_token_accuracy": 0.9337840676307678,
616
+ "eval_num_tokens": 2327070.0,
617
+ "eval_runtime": 3.3769,
618
+ "eval_samples_per_second": 51.527,
619
+ "eval_steps_per_second": 13.03,
620
+ "step": 500
621
+ },
622
+ {
623
+ "entropy": 0.19625013917684556,
624
+ "epoch": 2.6153846153846154,
625
+ "grad_norm": 0.3348040282726288,
626
+ "learning_rate": 3.1340206185567014e-05,
627
+ "loss": 0.193,
628
+ "mean_token_accuracy": 0.9405398607254029,
629
+ "num_tokens": 2373946.0,
630
+ "step": 510
631
+ },
632
+ {
633
+ "entropy": 0.17741600945591926,
634
+ "epoch": 2.6666666666666665,
635
+ "grad_norm": 0.36208125948905945,
636
+ "learning_rate": 2.7216494845360823e-05,
637
+ "loss": 0.1758,
638
+ "mean_token_accuracy": 0.9449918389320373,
639
+ "num_tokens": 2421458.0,
640
+ "step": 520
641
+ },
642
+ {
643
+ "entropy": 0.18782210871577262,
644
+ "epoch": 2.717948717948718,
645
+ "grad_norm": 0.3223588168621063,
646
+ "learning_rate": 2.309278350515464e-05,
647
+ "loss": 0.1807,
648
+ "mean_token_accuracy": 0.9432836711406708,
649
+ "num_tokens": 2469065.0,
650
+ "step": 530
651
+ },
652
+ {
653
+ "entropy": 0.1759628787636757,
654
+ "epoch": 2.769230769230769,
655
+ "grad_norm": 0.3225736916065216,
656
+ "learning_rate": 1.8969072164948453e-05,
657
+ "loss": 0.1701,
658
+ "mean_token_accuracy": 0.9470984220504761,
659
+ "num_tokens": 2513535.0,
660
+ "step": 540
661
+ },
662
+ {
663
+ "entropy": 0.17715953066945075,
664
+ "epoch": 2.8205128205128203,
665
+ "grad_norm": 0.3483024835586548,
666
+ "learning_rate": 1.4845360824742268e-05,
667
+ "loss": 0.1779,
668
+ "mean_token_accuracy": 0.9444936513900757,
669
+ "num_tokens": 2560376.0,
670
+ "step": 550
671
+ },
672
+ {
673
+ "epoch": 2.8205128205128203,
674
+ "eval_entropy": 0.1863353834910826,
675
+ "eval_loss": 0.22057653963565826,
676
+ "eval_mean_token_accuracy": 0.9337019771337509,
677
+ "eval_num_tokens": 2560376.0,
678
+ "eval_runtime": 3.3931,
679
+ "eval_samples_per_second": 51.281,
680
+ "eval_steps_per_second": 12.968,
681
+ "step": 550
682
+ },
683
+ {
684
+ "entropy": 0.18333061411976814,
685
+ "epoch": 2.871794871794872,
686
+ "grad_norm": 0.352792888879776,
687
+ "learning_rate": 1.0721649484536082e-05,
688
+ "loss": 0.1828,
689
+ "mean_token_accuracy": 0.9434126734733581,
690
+ "num_tokens": 2607190.0,
691
+ "step": 560
692
+ },
693
+ {
694
+ "entropy": 0.17627805471420288,
695
+ "epoch": 2.9230769230769234,
696
+ "grad_norm": 0.36556485295295715,
697
+ "learning_rate": 6.597938144329898e-06,
698
+ "loss": 0.1722,
699
+ "mean_token_accuracy": 0.9453490912914276,
700
+ "num_tokens": 2652613.0,
701
+ "step": 570
702
+ },
703
+ {
704
+ "entropy": 0.184709133207798,
705
+ "epoch": 2.9743589743589745,
706
+ "grad_norm": 0.33959856629371643,
707
+ "learning_rate": 2.4742268041237115e-06,
708
+ "loss": 0.1809,
709
+ "mean_token_accuracy": 0.943416690826416,
710
+ "num_tokens": 2698802.0,
711
+ "step": 580
712
+ }
713
+ ],
714
+ "logging_steps": 10,
715
+ "max_steps": 585,
716
+ "num_input_tokens_seen": 0,
717
+ "num_train_epochs": 3,
718
+ "save_steps": 50,
719
+ "stateful_callbacks": {
720
+ "TrainerControl": {
721
+ "args": {
722
+ "should_epoch_stop": false,
723
+ "should_evaluate": false,
724
+ "should_log": false,
725
+ "should_save": true,
726
+ "should_training_stop": true
727
+ },
728
+ "attributes": {}
729
+ }
730
+ },
731
+ "total_flos": 7347511765263360.0,
732
+ "train_batch_size": 4,
733
+ "trial_name": null,
734
+ "trial_params": null
735
+ }
checkpoint-585/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fb5c73590986390f55072756f8cabde6f2a94413ce00b33e22201826261e6460
3
+ size 6353