File size: 2,016 Bytes
a2b7cfd
81ff557
 
 
f2527c6
a2b7cfd
81ff557
 
 
 
 
8641305
81ff557
a2b7cfd
 
81ff557
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8641305
81ff557
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
from typing import Dict, List, Any
import soundfile as sf
from transformers import Qwen3OmniMoeForConditionalGeneration, Qwen3OmniMoeProcessor
from qwen_omni_utils import process_mm_info

class EndpointHandler():
    def __init__(self, path="./"):
        self.model = Qwen3OmniMoeForConditionalGeneration.from_pretrained(
            path,
            dtype="auto",
            device_map="auto",
        )
        self.processor = Qwen3OmniMoeProcessor.from_pretrained(path)

    def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
        messages = data.get("messages", [])
        use_audio_in_video = data.get("use_audio_in_video", True)
        speaker = data.get("speaker", "Ethan")  

        text = self.processor.apply_chat_template(
            messages,
            tokenize=False,
            add_generation_prompt=True,
        )
        audios, images, videos = process_mm_info(messages, use_audio_in_video=use_audio_in_video)
        inputs = self.processor(
            text=text,
            audio=audios,
            images=images,
            videos=videos,
            return_tensors="pt",
            padding=True,
            use_audio_in_video=use_audio_in_video
        )
        inputs = inputs.to(self.model.device).to(self.model.dtype)

        text_ids, audio = self.model.generate(
            **inputs,
            speaker=speaker,
            thinker_return_dict_in_generate=True,
            use_audio_in_video=use_audio_in_video
        )
        text_output = self.processor.batch_decode(
            text_ids.sequences[:, inputs["input_ids"].shape[1]:],
            skip_special_tokens=True,
            clean_up_tokenization_spaces=False
        )
        result = {"generated_text": text_output}
        if audio is not None:
            # Guarda el audio en un archivo temporal y retorna la ruta
            sf.write("output.wav", audio.reshape(-1).detach().cpu().numpy(), samplerate=24000)
            result["audio_path"] = "output.wav"
        return [result]