Trouter-Library commited on
Commit
5cff177
·
verified ·
1 Parent(s): e6336f3

Create model-card.md

Browse files
Files changed (1) hide show
  1. model-card.md +114 -0
model-card.md ADDED
@@ -0,0 +1,114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - en
5
+ pipeline_tag: text-generation
6
+ tags:
7
+ - transformers
8
+ - pytorch
9
+ - causal-lm
10
+ - trouter
11
+ ---
12
+
13
+ # Model Card for Trouter-20B
14
+
15
+ ## Model Details
16
+
17
+ **Model Name:** Trouter-20B
18
+ **Model Version:** 1.0
19
+ **Release Date:** 2025
20
+ **License:** Apache 2.0
21
+ **Model Type:** Autoregressive Language Model
22
+ **Parameters:** 20 billion
23
+
24
+ ## Model Description
25
+
26
+ Trouter-20B is a large language model with 20 billion parameters, designed for general-purpose natural language understanding and generation tasks.
27
+
28
+ ## Developers
29
+
30
+ [Your organization/name]
31
+
32
+ ## Model Sources
33
+
34
+ - **Repository:** [Link to model repository]
35
+ - **Paper:** [Link to technical report if available]
36
+ - **Demo:** [Link to demo if available]
37
+
38
+ ## Uses
39
+
40
+ ### Direct Use
41
+
42
+ The model is intended for research and commercial applications in natural language processing, including but not limited to text generation, question answering, and dialogue systems.
43
+
44
+ ### Downstream Use
45
+
46
+ Can be fine-tuned for specific tasks and domains.
47
+
48
+ ### Misuse and Out-of-Scope Use
49
+
50
+ The model should not be used to:
51
+ - Generate harmful, hateful, or illegal content
52
+ - Impersonate individuals
53
+ - Make automated decisions in high-stakes scenarios without human oversight
54
+ - Spread misinformation
55
+
56
+ ## Bias, Risks, and Limitations
57
+
58
+ Like all large language models, Trouter-20B may exhibit biases present in its training data. Users should implement appropriate safeguards and conduct thorough testing before deployment.
59
+
60
+ ## Training Details
61
+
62
+ ### Training Data
63
+
64
+ [Describe your training corpus]
65
+
66
+ ### Training Procedure
67
+
68
+ [Describe training methodology, hardware, duration]
69
+
70
+ ### Training Hyperparameters
71
+
72
+ - Learning Rate: [value]
73
+ - Batch Size: [value]
74
+ - Sequence Length: [value]
75
+ - Optimizer: [e.g., AdamW]
76
+
77
+ ## Evaluation
78
+
79
+ ### Testing Data
80
+
81
+ [Describe evaluation datasets]
82
+
83
+ ### Metrics
84
+
85
+ [Include performance metrics on standard benchmarks]
86
+
87
+ ## Environmental Impact
88
+
89
+ [Optional: Include carbon footprint and compute resources used]
90
+
91
+ ## Technical Specifications
92
+
93
+ ### Model Architecture and Objective
94
+
95
+ Decoder-only transformer architecture trained with causal language modeling objective.
96
+
97
+ ### Compute Infrastructure
98
+
99
+ [Describe hardware used for training]
100
+
101
+ ## Citation
102
+
103
+ ```bibtex
104
+ @software{trouter20b2025,
105
+ title={Trouter-20B: A 20 Billion Parameter Language Model},
106
+ author={Your Name},
107
+ year={2025},
108
+ url={https://huggingface.co/your-username/Trouter-20B}
109
+ }
110
+ ```
111
+
112
+ ## Contact
113
+
114
+ [Your contact information or discussion forum link]