|
|
"""
|
|
|
Logger copied from OpenAI baselines to avoid extra RL-based dependencies:
|
|
|
https://github.com/openai/baselines/blob/ea25b9e8b234e6ee1bca43083f8f3cf974143998/baselines/logger.py
|
|
|
"""
|
|
|
|
|
|
import os
|
|
|
import sys
|
|
|
import shutil
|
|
|
import os.path as osp
|
|
|
import json
|
|
|
import time
|
|
|
import datetime
|
|
|
import tempfile
|
|
|
import warnings
|
|
|
from collections import defaultdict
|
|
|
from contextlib import contextmanager
|
|
|
|
|
|
DEBUG = 10
|
|
|
INFO = 20
|
|
|
WARN = 30
|
|
|
ERROR = 40
|
|
|
|
|
|
DISABLED = 50
|
|
|
|
|
|
|
|
|
class KVWriter(object):
|
|
|
def writekvs(self, kvs):
|
|
|
raise NotImplementedError
|
|
|
|
|
|
|
|
|
class SeqWriter(object):
|
|
|
def writeseq(self, seq):
|
|
|
raise NotImplementedError
|
|
|
|
|
|
|
|
|
class HumanOutputFormat(KVWriter, SeqWriter):
|
|
|
def __init__(self, filename_or_file):
|
|
|
if isinstance(filename_or_file, str):
|
|
|
self.file = open(filename_or_file, "wt")
|
|
|
self.own_file = True
|
|
|
else:
|
|
|
assert hasattr(filename_or_file, "read"), (
|
|
|
"expected file or str, got %s" % filename_or_file
|
|
|
)
|
|
|
self.file = filename_or_file
|
|
|
self.own_file = False
|
|
|
|
|
|
def writekvs(self, kvs):
|
|
|
|
|
|
key2str = {}
|
|
|
for (key, val) in sorted(kvs.items()):
|
|
|
if hasattr(val, "__float__"):
|
|
|
valstr = "%-8.3g" % val
|
|
|
else:
|
|
|
valstr = str(val)
|
|
|
key2str[self._truncate(key)] = self._truncate(valstr)
|
|
|
|
|
|
|
|
|
if len(key2str) == 0:
|
|
|
print("WARNING: tried to write empty key-value dict")
|
|
|
return
|
|
|
else:
|
|
|
keywidth = max(map(len, key2str.keys()))
|
|
|
valwidth = max(map(len, key2str.values()))
|
|
|
|
|
|
|
|
|
dashes = "-" * (keywidth + valwidth + 7)
|
|
|
lines = [dashes]
|
|
|
for (key, val) in sorted(key2str.items(), key=lambda kv: kv[0].lower()):
|
|
|
lines.append(
|
|
|
"| %s%s | %s%s |"
|
|
|
% (key, " " * (keywidth - len(key)), val, " " * (valwidth - len(val)))
|
|
|
)
|
|
|
lines.append(dashes)
|
|
|
self.file.write("\n".join(lines) + "\n")
|
|
|
|
|
|
|
|
|
self.file.flush()
|
|
|
|
|
|
def _truncate(self, s):
|
|
|
maxlen = 30
|
|
|
return s[: maxlen - 3] + "..." if len(s) > maxlen else s
|
|
|
|
|
|
def writeseq(self, seq):
|
|
|
seq = list(seq)
|
|
|
for (i, elem) in enumerate(seq):
|
|
|
self.file.write(elem)
|
|
|
if i < len(seq) - 1:
|
|
|
self.file.write(" ")
|
|
|
self.file.write("\n")
|
|
|
self.file.flush()
|
|
|
|
|
|
def close(self):
|
|
|
if self.own_file:
|
|
|
self.file.close()
|
|
|
|
|
|
|
|
|
class JSONOutputFormat(KVWriter):
|
|
|
def __init__(self, filename):
|
|
|
self.file = open(filename, "wt")
|
|
|
|
|
|
def writekvs(self, kvs):
|
|
|
for k, v in sorted(kvs.items()):
|
|
|
if hasattr(v, "dtype"):
|
|
|
kvs[k] = float(v)
|
|
|
self.file.write(json.dumps(kvs) + "\n")
|
|
|
self.file.flush()
|
|
|
|
|
|
def close(self):
|
|
|
self.file.close()
|
|
|
|
|
|
|
|
|
class CSVOutputFormat(KVWriter):
|
|
|
def __init__(self, filename):
|
|
|
self.file = open(filename, "w+t")
|
|
|
self.keys = []
|
|
|
self.sep = ","
|
|
|
|
|
|
def writekvs(self, kvs):
|
|
|
|
|
|
extra_keys = list(kvs.keys() - self.keys)
|
|
|
extra_keys.sort()
|
|
|
if extra_keys:
|
|
|
self.keys.extend(extra_keys)
|
|
|
self.file.seek(0)
|
|
|
lines = self.file.readlines()
|
|
|
self.file.seek(0)
|
|
|
for (i, k) in enumerate(self.keys):
|
|
|
if i > 0:
|
|
|
self.file.write(",")
|
|
|
self.file.write(k)
|
|
|
self.file.write("\n")
|
|
|
for line in lines[1:]:
|
|
|
self.file.write(line[:-1])
|
|
|
self.file.write(self.sep * len(extra_keys))
|
|
|
self.file.write("\n")
|
|
|
for (i, k) in enumerate(self.keys):
|
|
|
if i > 0:
|
|
|
self.file.write(",")
|
|
|
v = kvs.get(k)
|
|
|
if v is not None:
|
|
|
self.file.write(str(v))
|
|
|
self.file.write("\n")
|
|
|
self.file.flush()
|
|
|
|
|
|
def close(self):
|
|
|
self.file.close()
|
|
|
|
|
|
|
|
|
class TensorBoardOutputFormat(KVWriter):
|
|
|
"""
|
|
|
Dumps key/value pairs into TensorBoard's numeric format.
|
|
|
"""
|
|
|
|
|
|
def __init__(self, dir):
|
|
|
os.makedirs(dir, exist_ok=True)
|
|
|
self.dir = dir
|
|
|
self.step = 1
|
|
|
prefix = "events"
|
|
|
path = osp.join(osp.abspath(dir), prefix)
|
|
|
import tensorflow as tf
|
|
|
from tensorflow.python import pywrap_tensorflow
|
|
|
from tensorflow.core.util import event_pb2
|
|
|
from tensorflow.python.util import compat
|
|
|
|
|
|
self.tf = tf
|
|
|
self.event_pb2 = event_pb2
|
|
|
self.pywrap_tensorflow = pywrap_tensorflow
|
|
|
self.writer = pywrap_tensorflow.EventsWriter(compat.as_bytes(path))
|
|
|
|
|
|
def writekvs(self, kvs):
|
|
|
def summary_val(k, v):
|
|
|
kwargs = {"tag": k, "simple_value": float(v)}
|
|
|
return self.tf.Summary.Value(**kwargs)
|
|
|
|
|
|
summary = self.tf.Summary(value=[summary_val(k, v) for k, v in kvs.items()])
|
|
|
event = self.event_pb2.Event(wall_time=time.time(), summary=summary)
|
|
|
event.step = (
|
|
|
self.step
|
|
|
)
|
|
|
self.writer.WriteEvent(event)
|
|
|
self.writer.Flush()
|
|
|
self.step += 1
|
|
|
|
|
|
def close(self):
|
|
|
if self.writer:
|
|
|
self.writer.Close()
|
|
|
self.writer = None
|
|
|
|
|
|
|
|
|
def make_output_format(format, ev_dir, log_suffix=""):
|
|
|
os.makedirs(ev_dir, exist_ok=True)
|
|
|
if format == "stdout":
|
|
|
return HumanOutputFormat(sys.stdout)
|
|
|
elif format == "log":
|
|
|
return HumanOutputFormat(osp.join(ev_dir, "log%s.txt" % log_suffix))
|
|
|
elif format == "json":
|
|
|
return JSONOutputFormat(osp.join(ev_dir, "progress%s.json" % log_suffix))
|
|
|
elif format == "csv":
|
|
|
return CSVOutputFormat(osp.join(ev_dir, "progress%s.csv" % log_suffix))
|
|
|
elif format == "tensorboard":
|
|
|
return TensorBoardOutputFormat(osp.join(ev_dir, "tb%s" % log_suffix))
|
|
|
else:
|
|
|
raise ValueError("Unknown format specified: %s" % (format,))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def logkv(key, val):
|
|
|
"""
|
|
|
Log a value of some diagnostic
|
|
|
Call this once for each diagnostic quantity, each iteration
|
|
|
If called many times, last value will be used.
|
|
|
"""
|
|
|
get_current().logkv(key, val)
|
|
|
|
|
|
|
|
|
def logkv_mean(key, val):
|
|
|
"""
|
|
|
The same as logkv(), but if called many times, values averaged.
|
|
|
"""
|
|
|
get_current().logkv_mean(key, val)
|
|
|
|
|
|
|
|
|
def logkvs(d):
|
|
|
"""
|
|
|
Log a dictionary of key-value pairs
|
|
|
"""
|
|
|
for (k, v) in d.items():
|
|
|
logkv(k, v)
|
|
|
|
|
|
|
|
|
def dumpkvs():
|
|
|
"""
|
|
|
Write all of the diagnostics from the current iteration
|
|
|
"""
|
|
|
return get_current().dumpkvs()
|
|
|
|
|
|
|
|
|
def getkvs():
|
|
|
return get_current().name2val
|
|
|
|
|
|
|
|
|
def log(*args, level=INFO):
|
|
|
"""
|
|
|
Write the sequence of args, with no separators, to the console and output files (if you've configured an output file).
|
|
|
"""
|
|
|
get_current().log(*args, level=level)
|
|
|
|
|
|
|
|
|
def debug(*args):
|
|
|
log(*args, level=DEBUG)
|
|
|
|
|
|
|
|
|
def info(*args):
|
|
|
log(*args, level=INFO)
|
|
|
|
|
|
|
|
|
def warn(*args):
|
|
|
log(*args, level=WARN)
|
|
|
|
|
|
|
|
|
def error(*args):
|
|
|
log(*args, level=ERROR)
|
|
|
|
|
|
|
|
|
def set_level(level):
|
|
|
"""
|
|
|
Set logging threshold on current logger.
|
|
|
"""
|
|
|
get_current().set_level(level)
|
|
|
|
|
|
|
|
|
def set_comm(comm):
|
|
|
get_current().set_comm(comm)
|
|
|
|
|
|
|
|
|
def get_dir():
|
|
|
"""
|
|
|
Get directory that log files are being written to.
|
|
|
will be None if there is no output directory (i.e., if you didn't call start)
|
|
|
"""
|
|
|
return get_current().get_dir()
|
|
|
|
|
|
|
|
|
record_tabular = logkv
|
|
|
dump_tabular = dumpkvs
|
|
|
|
|
|
|
|
|
@contextmanager
|
|
|
def profile_kv(scopename):
|
|
|
logkey = "wait_" + scopename
|
|
|
tstart = time.time()
|
|
|
try:
|
|
|
yield
|
|
|
finally:
|
|
|
get_current().name2val[logkey] += time.time() - tstart
|
|
|
|
|
|
|
|
|
def profile(n):
|
|
|
"""
|
|
|
Usage:
|
|
|
@profile("my_func")
|
|
|
def my_func(): code
|
|
|
"""
|
|
|
|
|
|
def decorator_with_name(func):
|
|
|
def func_wrapper(*args, **kwargs):
|
|
|
with profile_kv(n):
|
|
|
return func(*args, **kwargs)
|
|
|
|
|
|
return func_wrapper
|
|
|
|
|
|
return decorator_with_name
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_current():
|
|
|
if Logger.CURRENT is None:
|
|
|
_configure_default_logger()
|
|
|
|
|
|
return Logger.CURRENT
|
|
|
|
|
|
|
|
|
class Logger(object):
|
|
|
DEFAULT = None
|
|
|
|
|
|
CURRENT = None
|
|
|
|
|
|
def __init__(self, dir, output_formats, comm=None):
|
|
|
self.name2val = defaultdict(float)
|
|
|
self.name2cnt = defaultdict(int)
|
|
|
self.level = INFO
|
|
|
self.dir = dir
|
|
|
self.output_formats = output_formats
|
|
|
self.comm = comm
|
|
|
|
|
|
|
|
|
|
|
|
def logkv(self, key, val):
|
|
|
self.name2val[key] = val
|
|
|
|
|
|
def logkv_mean(self, key, val):
|
|
|
oldval, cnt = self.name2val[key], self.name2cnt[key]
|
|
|
self.name2val[key] = oldval * cnt / (cnt + 1) + val / (cnt + 1)
|
|
|
self.name2cnt[key] = cnt + 1
|
|
|
|
|
|
def dumpkvs(self):
|
|
|
if self.comm is None:
|
|
|
d = self.name2val
|
|
|
else:
|
|
|
d = mpi_weighted_mean(
|
|
|
self.comm,
|
|
|
{
|
|
|
name: (val, self.name2cnt.get(name, 1))
|
|
|
for (name, val) in self.name2val.items()
|
|
|
},
|
|
|
)
|
|
|
if self.comm.rank != 0:
|
|
|
d["dummy"] = 1
|
|
|
out = d.copy()
|
|
|
for fmt in self.output_formats:
|
|
|
if isinstance(fmt, KVWriter):
|
|
|
fmt.writekvs(d)
|
|
|
self.name2val.clear()
|
|
|
self.name2cnt.clear()
|
|
|
return out
|
|
|
|
|
|
def log(self, *args, level=INFO):
|
|
|
if self.level <= level:
|
|
|
self._do_log(args)
|
|
|
|
|
|
|
|
|
|
|
|
def set_level(self, level):
|
|
|
self.level = level
|
|
|
|
|
|
def set_comm(self, comm):
|
|
|
self.comm = comm
|
|
|
|
|
|
def get_dir(self):
|
|
|
return self.dir
|
|
|
|
|
|
def close(self):
|
|
|
for fmt in self.output_formats:
|
|
|
fmt.close()
|
|
|
|
|
|
|
|
|
|
|
|
def _do_log(self, args):
|
|
|
for fmt in self.output_formats:
|
|
|
if isinstance(fmt, SeqWriter):
|
|
|
fmt.writeseq(map(str, args))
|
|
|
|
|
|
|
|
|
def get_rank_without_mpi_import():
|
|
|
|
|
|
|
|
|
for varname in ["PMI_RANK", "OMPI_COMM_WORLD_RANK"]:
|
|
|
if varname in os.environ:
|
|
|
return int(os.environ[varname])
|
|
|
return 0
|
|
|
|
|
|
|
|
|
def mpi_weighted_mean(comm, local_name2valcount):
|
|
|
"""
|
|
|
Copied from: https://github.com/openai/baselines/blob/ea25b9e8b234e6ee1bca43083f8f3cf974143998/baselines/common/mpi_util.py#L110
|
|
|
Perform a weighted average over dicts that are each on a different node
|
|
|
Input: local_name2valcount: dict mapping key -> (value, count)
|
|
|
Returns: key -> mean
|
|
|
"""
|
|
|
all_name2valcount = comm.gather(local_name2valcount)
|
|
|
if comm.rank == 0:
|
|
|
name2sum = defaultdict(float)
|
|
|
name2count = defaultdict(float)
|
|
|
for n2vc in all_name2valcount:
|
|
|
for (name, (val, count)) in n2vc.items():
|
|
|
try:
|
|
|
val = float(val)
|
|
|
except ValueError:
|
|
|
if comm.rank == 0:
|
|
|
warnings.warn(
|
|
|
"WARNING: tried to compute mean on non-float {}={}".format(
|
|
|
name, val
|
|
|
)
|
|
|
)
|
|
|
else:
|
|
|
name2sum[name] += val * count
|
|
|
name2count[name] += count
|
|
|
return {name: name2sum[name] / name2count[name] for name in name2sum}
|
|
|
else:
|
|
|
return {}
|
|
|
|
|
|
|
|
|
def configure(dir=None, format_strs=None, comm=None, log_suffix=""):
|
|
|
"""
|
|
|
If comm is provided, average all numerical stats across that comm
|
|
|
"""
|
|
|
if dir is None:
|
|
|
dir = os.getenv("OPENAI_LOGDIR")
|
|
|
if dir is None:
|
|
|
dir = osp.join(
|
|
|
tempfile.gettempdir(),
|
|
|
datetime.datetime.now().strftime("openai-%Y-%m-%d-%H-%M-%S-%f"),
|
|
|
)
|
|
|
assert isinstance(dir, str)
|
|
|
dir = os.path.expanduser(dir)
|
|
|
os.makedirs(os.path.expanduser(dir), exist_ok=True)
|
|
|
|
|
|
rank = get_rank_without_mpi_import()
|
|
|
if rank > 0:
|
|
|
log_suffix = log_suffix + "-rank%03i" % rank
|
|
|
|
|
|
if format_strs is None:
|
|
|
if rank == 0:
|
|
|
format_strs = os.getenv("OPENAI_LOG_FORMAT", "stdout,log,csv").split(",")
|
|
|
else:
|
|
|
format_strs = os.getenv("OPENAI_LOG_FORMAT_MPI", "log").split(",")
|
|
|
format_strs = filter(None, format_strs)
|
|
|
output_formats = [make_output_format(f, dir, log_suffix) for f in format_strs]
|
|
|
|
|
|
Logger.CURRENT = Logger(dir=dir, output_formats=output_formats, comm=comm)
|
|
|
if output_formats:
|
|
|
log("Logging to %s" % dir)
|
|
|
|
|
|
|
|
|
def _configure_default_logger():
|
|
|
configure()
|
|
|
Logger.DEFAULT = Logger.CURRENT
|
|
|
|
|
|
|
|
|
def reset():
|
|
|
if Logger.CURRENT is not Logger.DEFAULT:
|
|
|
Logger.CURRENT.close()
|
|
|
Logger.CURRENT = Logger.DEFAULT
|
|
|
log("Reset logger")
|
|
|
|
|
|
|
|
|
@contextmanager
|
|
|
def scoped_configure(dir=None, format_strs=None, comm=None):
|
|
|
prevlogger = Logger.CURRENT
|
|
|
configure(dir=dir, format_strs=format_strs, comm=comm)
|
|
|
try:
|
|
|
yield
|
|
|
finally:
|
|
|
Logger.CURRENT.close()
|
|
|
Logger.CURRENT = prevlogger
|
|
|
|
|
|
|