export NCCL_IB_HCA=mlx5_0:1,mlx5_1:1,mlx5_2:1,mlx5_3:1,mlx5_4:1,mlx5_7:1,mlx5_8:1,mlx5_9:1 export NCCL_IB_DISABLE=0 export NCCL_SOCKET_IFNAME=bond0 export NCCL_DEBUG=INFO export NCCL_NVLS_ENABLE=0 export TEXT_ENCODER_NAME="google/t5-v1_1-xxl" export VISION_ENCODER_NAME="google/siglip-so400m-patch14-384" export OUTPUT_DIR="./checkpoints/rdt-pretrain-1b" export CFLAGS="-I/usr/include" export LDFLAGS="-L/usr/lib/x86_64-linux-gnu" export CUTLASS_PATH="/path/to/cutlass" export WANDB_PROJECT="robotics_diffusion_transformer" if [ ! -d "$OUTPUT_DIR" ]; then mkdir "$OUTPUT_DIR" echo "Folder '$OUTPUT_DIR' created" else echo "Folder '$OUTPUT_DIR' already exists" fi # For run in a single node/machine # accelerate launch main.py \ # --deepspeed="./configs/zero2.json" \ # ... deepspeed --hostfile=hostfile.txt main.py \ --deepspeed="./configs/zero2.json" \ --pretrained_text_encoder_name_or_path=$TEXT_ENCODER_NAME \ --pretrained_vision_encoder_name_or_path=$VISION_ENCODER_NAME \ --output_dir=$OUTPUT_DIR \ --train_batch_size=32 \ --sample_batch_size=64 \ --max_train_steps=1000000 \ --checkpointing_period=1000 \ --sample_period=500 \ --checkpoints_total_limit=40 \ --lr_scheduler="constant" \ --learning_rate=1e-4 \ --mixed_precision="bf16" \ --dataloader_num_workers=8 \ --dataset_type="pretrain" \ --report_to=wandb # Use this to resume training from some previous checkpoint # --resume_from_checkpoint="checkpoint-1000" \