Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +1 -0
- added_tokens.json +28 -0
- config.json +213 -0
- configuration_mimo_v2_flash.py +109 -0
- merges.txt +0 -0
- model.safetensors.index.json +0 -0
- model_10.safetensors +3 -0
- model_11.safetensors +3 -0
- model_12.safetensors +3 -0
- model_16.safetensors +3 -0
- model_2.safetensors +3 -0
- model_23.safetensors +3 -0
- model_24.safetensors +3 -0
- model_26.safetensors +3 -0
- model_27.safetensors +3 -0
- model_30.safetensors +3 -0
- model_31.safetensors +3 -0
- model_32_linear_fc2.safetensors +3 -0
- model_33.safetensors +3 -0
- model_33_linear_fc2.safetensors +3 -0
- model_34.safetensors +3 -0
- model_34_linear_fc2.safetensors +3 -0
- model_36_linear_fc2.safetensors +3 -0
- model_37_linear_fc2.safetensors +3 -0
- model_38_linear_fc2.safetensors +3 -0
- model_39_linear_fc2.safetensors +3 -0
- model_3_linear_fc2.safetensors +3 -0
- model_4.safetensors +3 -0
- model_41_linear_fc2.safetensors +3 -0
- model_42_linear_fc2.safetensors +3 -0
- model_43_linear_fc2.safetensors +3 -0
- model_44_linear_fc2.safetensors +3 -0
- model_45.safetensors +3 -0
- model_45_linear_fc2.safetensors +3 -0
- model_46_linear_fc2.safetensors +3 -0
- model_47.safetensors +3 -0
- model_47_linear_fc2.safetensors +3 -0
- model_4_linear_fc2.safetensors +3 -0
- model_5.safetensors +3 -0
- model_6.safetensors +3 -0
- model_7.safetensors +3 -0
- model_7_linear_fc2.safetensors +3 -0
- model_8.safetensors +3 -0
- model_8_linear_fc2.safetensors +3 -0
- model_9.safetensors +3 -0
- model_final.safetensors +3 -0
- modeling_mimo_v2_flash.py +664 -0
- special_tokens_map.json +31 -0
- tokenizer.json +3 -0
- tokenizer_config.json +240 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
added_tokens.json
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"</think>": 151668,
|
| 3 |
+
"</tool_call>": 151658,
|
| 4 |
+
"</tool_response>": 151666,
|
| 5 |
+
"<think>": 151667,
|
| 6 |
+
"<tool_call>": 151657,
|
| 7 |
+
"<tool_response>": 151665,
|
| 8 |
+
"<|box_end|>": 151649,
|
| 9 |
+
"<|box_start|>": 151648,
|
| 10 |
+
"<|endoftext|>": 151643,
|
| 11 |
+
"<|file_sep|>": 151664,
|
| 12 |
+
"<|fim_middle|>": 151660,
|
| 13 |
+
"<|fim_pad|>": 151662,
|
| 14 |
+
"<|fim_prefix|>": 151659,
|
| 15 |
+
"<|fim_suffix|>": 151661,
|
| 16 |
+
"<|im_end|>": 151645,
|
| 17 |
+
"<|im_start|>": 151644,
|
| 18 |
+
"<|image_pad|>": 151655,
|
| 19 |
+
"<|object_ref_end|>": 151647,
|
| 20 |
+
"<|object_ref_start|>": 151646,
|
| 21 |
+
"<|quad_end|>": 151651,
|
| 22 |
+
"<|quad_start|>": 151650,
|
| 23 |
+
"<|repo_name|>": 151663,
|
| 24 |
+
"<|video_pad|>": 151656,
|
| 25 |
+
"<|vision_end|>": 151653,
|
| 26 |
+
"<|vision_pad|>": 151654,
|
| 27 |
+
"<|vision_start|>": 151652
|
| 28 |
+
}
|
config.json
ADDED
|
@@ -0,0 +1,213 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"MiMoV2FlashForCausalLM"
|
| 4 |
+
],
|
| 5 |
+
"auto_map": {
|
| 6 |
+
"AutoConfig": "configuration_mimo_v2_flash.MiMoV2FlashConfig",
|
| 7 |
+
"AutoModel": "modeling_mimo_v2_flash.MiMoV2FlashModel",
|
| 8 |
+
"AutoModelForCausalLM": "modeling_mimo_v2_flash.MiMoV2FlashForCausalLM"
|
| 9 |
+
},
|
| 10 |
+
"quantization_config": {
|
| 11 |
+
"activation_scheme": "dynamic",
|
| 12 |
+
"fmt": "e4m3",
|
| 13 |
+
"packed_modules_mapping": {},
|
| 14 |
+
"quant_method": "fp8",
|
| 15 |
+
"ignored_layers": [
|
| 16 |
+
"model.layers.0.self_attn.o_proj",
|
| 17 |
+
"model.layers.1.self_attn.o_proj",
|
| 18 |
+
"model.layers.2.self_attn.o_proj",
|
| 19 |
+
"model.layers.3.self_attn.o_proj",
|
| 20 |
+
"model.layers.4.self_attn.o_proj",
|
| 21 |
+
"model.layers.5.self_attn.o_proj",
|
| 22 |
+
"model.layers.6.self_attn.o_proj",
|
| 23 |
+
"model.layers.7.self_attn.o_proj",
|
| 24 |
+
"model.layers.8.self_attn.o_proj",
|
| 25 |
+
"model.layers.9.self_attn.o_proj",
|
| 26 |
+
"model.layers.10.self_attn.o_proj",
|
| 27 |
+
"model.layers.11.self_attn.o_proj",
|
| 28 |
+
"model.layers.12.self_attn.o_proj",
|
| 29 |
+
"model.layers.13.self_attn.o_proj",
|
| 30 |
+
"model.layers.14.self_attn.o_proj",
|
| 31 |
+
"model.layers.15.self_attn.o_proj",
|
| 32 |
+
"model.layers.16.self_attn.o_proj",
|
| 33 |
+
"model.layers.17.self_attn.o_proj",
|
| 34 |
+
"model.layers.18.self_attn.o_proj",
|
| 35 |
+
"model.layers.19.self_attn.o_proj",
|
| 36 |
+
"model.layers.20.self_attn.o_proj",
|
| 37 |
+
"model.layers.21.self_attn.o_proj",
|
| 38 |
+
"model.layers.22.self_attn.o_proj",
|
| 39 |
+
"model.layers.23.self_attn.o_proj",
|
| 40 |
+
"model.layers.24.self_attn.o_proj",
|
| 41 |
+
"model.layers.25.self_attn.o_proj",
|
| 42 |
+
"model.layers.26.self_attn.o_proj",
|
| 43 |
+
"model.layers.27.self_attn.o_proj",
|
| 44 |
+
"model.layers.28.self_attn.o_proj",
|
| 45 |
+
"model.layers.29.self_attn.o_proj",
|
| 46 |
+
"model.layers.30.self_attn.o_proj",
|
| 47 |
+
"model.layers.31.self_attn.o_proj",
|
| 48 |
+
"model.layers.32.self_attn.o_proj",
|
| 49 |
+
"model.layers.33.self_attn.o_proj",
|
| 50 |
+
"model.layers.34.self_attn.o_proj",
|
| 51 |
+
"model.layers.35.self_attn.o_proj",
|
| 52 |
+
"model.layers.36.self_attn.o_proj",
|
| 53 |
+
"model.layers.37.self_attn.o_proj",
|
| 54 |
+
"model.layers.38.self_attn.o_proj",
|
| 55 |
+
"model.layers.39.self_attn.o_proj",
|
| 56 |
+
"model.layers.40.self_attn.o_proj",
|
| 57 |
+
"model.layers.41.self_attn.o_proj",
|
| 58 |
+
"model.layers.42.self_attn.o_proj",
|
| 59 |
+
"model.layers.43.self_attn.o_proj",
|
| 60 |
+
"model.layers.44.self_attn.o_proj",
|
| 61 |
+
"model.layers.45.self_attn.o_proj",
|
| 62 |
+
"model.layers.46.self_attn.o_proj",
|
| 63 |
+
"model.layers.47.self_attn.o_proj",
|
| 64 |
+
"model.decoder.self_attn.o_proj"
|
| 65 |
+
],
|
| 66 |
+
"weight_block_size": [
|
| 67 |
+
128,
|
| 68 |
+
128
|
| 69 |
+
]
|
| 70 |
+
},
|
| 71 |
+
"attention_dropout": 0.0,
|
| 72 |
+
"attention_value_scale": 0.707,
|
| 73 |
+
"hidden_act": "silu",
|
| 74 |
+
"hidden_size": 4096,
|
| 75 |
+
"initializer_range": 0.02,
|
| 76 |
+
"intermediate_size": 16384,
|
| 77 |
+
"max_position_embeddings": 262144,
|
| 78 |
+
"model_type": "mimo_v2_flash",
|
| 79 |
+
"num_attention_heads": 64,
|
| 80 |
+
"head_dim": 192,
|
| 81 |
+
"num_hidden_layers": 48,
|
| 82 |
+
"num_key_value_heads": 4,
|
| 83 |
+
"layernorm_epsilon": 1e-05,
|
| 84 |
+
"rope_theta": 5000000,
|
| 85 |
+
"tie_word_embeddings": false,
|
| 86 |
+
"torch_dtype": "bfloat16",
|
| 87 |
+
"transformers_version": "4.40.1",
|
| 88 |
+
"use_cache": true,
|
| 89 |
+
"vocab_size": 152576,
|
| 90 |
+
"partial_rotary_factor": 0.334,
|
| 91 |
+
"sliding_window": 128,
|
| 92 |
+
"swa_rope_theta": 10000,
|
| 93 |
+
"attention_bias": false,
|
| 94 |
+
"v_head_dim": 128,
|
| 95 |
+
"hybrid_layer_pattern": [
|
| 96 |
+
0,
|
| 97 |
+
1,
|
| 98 |
+
1,
|
| 99 |
+
1,
|
| 100 |
+
1,
|
| 101 |
+
0,
|
| 102 |
+
1,
|
| 103 |
+
1,
|
| 104 |
+
1,
|
| 105 |
+
1,
|
| 106 |
+
1,
|
| 107 |
+
0,
|
| 108 |
+
1,
|
| 109 |
+
1,
|
| 110 |
+
1,
|
| 111 |
+
1,
|
| 112 |
+
1,
|
| 113 |
+
0,
|
| 114 |
+
1,
|
| 115 |
+
1,
|
| 116 |
+
1,
|
| 117 |
+
1,
|
| 118 |
+
1,
|
| 119 |
+
0,
|
| 120 |
+
1,
|
| 121 |
+
1,
|
| 122 |
+
1,
|
| 123 |
+
1,
|
| 124 |
+
1,
|
| 125 |
+
0,
|
| 126 |
+
1,
|
| 127 |
+
1,
|
| 128 |
+
1,
|
| 129 |
+
1,
|
| 130 |
+
1,
|
| 131 |
+
0,
|
| 132 |
+
1,
|
| 133 |
+
1,
|
| 134 |
+
1,
|
| 135 |
+
1,
|
| 136 |
+
1,
|
| 137 |
+
0,
|
| 138 |
+
1,
|
| 139 |
+
1,
|
| 140 |
+
1,
|
| 141 |
+
1,
|
| 142 |
+
1,
|
| 143 |
+
0
|
| 144 |
+
],
|
| 145 |
+
"add_swa_attention_sink_bias": true,
|
| 146 |
+
"add_full_attention_sink_bias": false,
|
| 147 |
+
"sliding_window_size": 128,
|
| 148 |
+
"attention_chunk_size": 128,
|
| 149 |
+
"moe_layer_freq": [
|
| 150 |
+
0,
|
| 151 |
+
1,
|
| 152 |
+
1,
|
| 153 |
+
1,
|
| 154 |
+
1,
|
| 155 |
+
1,
|
| 156 |
+
1,
|
| 157 |
+
1,
|
| 158 |
+
1,
|
| 159 |
+
1,
|
| 160 |
+
1,
|
| 161 |
+
1,
|
| 162 |
+
1,
|
| 163 |
+
1,
|
| 164 |
+
1,
|
| 165 |
+
1,
|
| 166 |
+
1,
|
| 167 |
+
1,
|
| 168 |
+
1,
|
| 169 |
+
1,
|
| 170 |
+
1,
|
| 171 |
+
1,
|
| 172 |
+
1,
|
| 173 |
+
1,
|
| 174 |
+
1,
|
| 175 |
+
1,
|
| 176 |
+
1,
|
| 177 |
+
1,
|
| 178 |
+
1,
|
| 179 |
+
1,
|
| 180 |
+
1,
|
| 181 |
+
1,
|
| 182 |
+
1,
|
| 183 |
+
1,
|
| 184 |
+
1,
|
| 185 |
+
1,
|
| 186 |
+
1,
|
| 187 |
+
1,
|
| 188 |
+
1,
|
| 189 |
+
1,
|
| 190 |
+
1,
|
| 191 |
+
1,
|
| 192 |
+
1,
|
| 193 |
+
1,
|
| 194 |
+
1,
|
| 195 |
+
1,
|
| 196 |
+
1,
|
| 197 |
+
1
|
| 198 |
+
],
|
| 199 |
+
"moe_intermediate_size": 2048,
|
| 200 |
+
"n_routed_experts": 256,
|
| 201 |
+
"n_shared_experts": null,
|
| 202 |
+
"num_experts_per_tok": 8,
|
| 203 |
+
"norm_topk_prob": true,
|
| 204 |
+
"scoring_func": "sigmoid",
|
| 205 |
+
"n_group": 1,
|
| 206 |
+
"topk_group": 1,
|
| 207 |
+
"topk_method": "noaux_tc",
|
| 208 |
+
"routed_scaling_factor": null,
|
| 209 |
+
"swa_num_attention_heads": 64,
|
| 210 |
+
"swa_num_key_value_heads": 8,
|
| 211 |
+
"swa_head_dim": 192,
|
| 212 |
+
"swa_v_head_dim": 128
|
| 213 |
+
}
|
configuration_mimo_v2_flash.py
ADDED
|
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
#
|
| 3 |
+
# Copyright 2025 Xiaomi Corporation.
|
| 4 |
+
# Copyright 2025 The HuggingFace Inc. team.
|
| 5 |
+
#
|
| 6 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 7 |
+
# you may not use this file except in compliance with the License.
|
| 8 |
+
# You may obtain a copy of the License at
|
| 9 |
+
#
|
| 10 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 11 |
+
#
|
| 12 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 13 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 14 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 15 |
+
# See the License for the specific language governing permissions and
|
| 16 |
+
# limitations under the License.
|
| 17 |
+
|
| 18 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 19 |
+
from transformers.modeling_rope_utils import rope_config_validation
|
| 20 |
+
from transformers.utils import logging
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
logger = logging.get_logger(__name__)
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
class MiMoV2FlashConfig(PretrainedConfig):
|
| 27 |
+
|
| 28 |
+
model_type = ""
|
| 29 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
| 30 |
+
|
| 31 |
+
# Default tensor parallel plan for base model `Hybrid`
|
| 32 |
+
base_model_tp_plan = {
|
| 33 |
+
"layers.*.self_attn.q_proj": "colwise",
|
| 34 |
+
"layers.*.self_attn.k_proj": "colwise",
|
| 35 |
+
"layers.*.self_attn.v_proj": "colwise",
|
| 36 |
+
"layers.*.self_attn.o_proj": "rowwise",
|
| 37 |
+
"layers.*.mlp.gate_proj": "colwise",
|
| 38 |
+
"layers.*.mlp.up_proj": "colwise",
|
| 39 |
+
"layers.*.mlp.down_proj": "rowwise",
|
| 40 |
+
}
|
| 41 |
+
base_model_pp_plan = {
|
| 42 |
+
"embed_tokens": (["input_ids"], ["inputs_embeds"]),
|
| 43 |
+
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
|
| 44 |
+
"norm": (["hidden_states"], ["hidden_states"]),
|
| 45 |
+
}
|
| 46 |
+
|
| 47 |
+
attribute_map = {
|
| 48 |
+
"num_local_experts": "n_routed_experts",
|
| 49 |
+
}
|
| 50 |
+
|
| 51 |
+
def __init__(
|
| 52 |
+
self,
|
| 53 |
+
vocab_size=151936,
|
| 54 |
+
hidden_size=4096,
|
| 55 |
+
intermediate_size=22016,
|
| 56 |
+
num_hidden_layers=32,
|
| 57 |
+
num_attention_heads=32,
|
| 58 |
+
num_key_value_heads=32,
|
| 59 |
+
hidden_act="silu",
|
| 60 |
+
max_position_embeddings=32768,
|
| 61 |
+
initializer_range=0.02,
|
| 62 |
+
layernorm_epsilon=1e-6,
|
| 63 |
+
use_cache=True,
|
| 64 |
+
tie_word_embeddings=False,
|
| 65 |
+
rope_theta=10000.0,
|
| 66 |
+
rope_scaling=None,
|
| 67 |
+
attention_dropout=0.0,
|
| 68 |
+
hybrid_block_size=None,
|
| 69 |
+
hybrid_layer_pattern=None,
|
| 70 |
+
partial_rotary_factor=1.0,
|
| 71 |
+
**kwargs,
|
| 72 |
+
):
|
| 73 |
+
self.vocab_size = vocab_size
|
| 74 |
+
self.max_position_embeddings = max_position_embeddings
|
| 75 |
+
self.hidden_size = hidden_size
|
| 76 |
+
self.intermediate_size = intermediate_size
|
| 77 |
+
self.num_hidden_layers = num_hidden_layers
|
| 78 |
+
self.num_attention_heads = num_attention_heads
|
| 79 |
+
|
| 80 |
+
# for backward compatibility
|
| 81 |
+
if num_key_value_heads is None:
|
| 82 |
+
num_key_value_heads = num_attention_heads
|
| 83 |
+
|
| 84 |
+
self.num_key_value_heads = num_key_value_heads
|
| 85 |
+
self.hidden_act = hidden_act
|
| 86 |
+
self.initializer_range = initializer_range
|
| 87 |
+
self.layernorm_epsilon = layernorm_epsilon
|
| 88 |
+
self.use_cache = use_cache
|
| 89 |
+
self.rope_theta = rope_theta
|
| 90 |
+
self.rope_scaling = rope_scaling
|
| 91 |
+
self.attention_dropout = attention_dropout
|
| 92 |
+
|
| 93 |
+
if hybrid_block_size is not None and hybrid_layer_pattern is None:
|
| 94 |
+
hybrid_layer_pattern = [0 if ((i + 1) % hybrid_block_size == 0) else 1 for i in range(num_hidden_layers)]
|
| 95 |
+
self.hybrid_block_size = hybrid_block_size
|
| 96 |
+
self.hybrid_layer_pattern = hybrid_layer_pattern
|
| 97 |
+
|
| 98 |
+
self.partial_rotary_factor = partial_rotary_factor
|
| 99 |
+
|
| 100 |
+
# Validate the correctness of rotary position embeddings parameters
|
| 101 |
+
# BC: if there is a 'type' field, move it to 'rope_type'.
|
| 102 |
+
if self.rope_scaling is not None and "type" in self.rope_scaling:
|
| 103 |
+
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
|
| 104 |
+
rope_config_validation(self)
|
| 105 |
+
|
| 106 |
+
super().__init__(
|
| 107 |
+
tie_word_embeddings=tie_word_embeddings,
|
| 108 |
+
**kwargs,
|
| 109 |
+
)
|
merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
model.safetensors.index.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
model_10.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:15a76d7cd96b8f855072b0b9b2eb2ef323f45605eab9942d1962f3b189d9ae38
|
| 3 |
+
size 132154328
|
model_11.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d34f5fc039a11df7686fed6a46f6f43e5241a49dd8e4df1b959ae3b512d889c5
|
| 3 |
+
size 126910184
|
model_12.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:bb75be363c969bc2487049d654b47418f453f8080a89eb510be9d5bd57c9620b
|
| 3 |
+
size 132154328
|
model_16.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:61e250132d8f4f753d1ee7d5cbffce109bac0e419685757781417d500d0bcc87
|
| 3 |
+
size 132154328
|
model_2.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:63ea731b8fe60181264e89e23b6f7ae43616353b2ceb843a9194806b424c7fcf
|
| 3 |
+
size 132154312
|
model_23.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e165718c4247b60b59d36338804175189c963231048b06013f5863b06510ac33
|
| 3 |
+
size 126910184
|
model_24.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:feea6437a2cd47a770360fe43766f63631556fa4db7ebb3dcad8a7a03f9f3e31
|
| 3 |
+
size 132154328
|
model_26.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d310e39d013dc4b31b4446e4608fae98b48ec18c1c01e2001dd49386dfdb0183
|
| 3 |
+
size 132154328
|
model_27.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:68d833853c487b7b4d362eef59a4d1c24966822a124686973267da8922811794
|
| 3 |
+
size 132154328
|
model_30.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:153fd1cb28d8ded5b7ea3ad3b3da0d6fcee30b369205955fd7caa121cea1dc95
|
| 3 |
+
size 132154328
|
model_31.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1ff636ef43f13b0c98ebc1b0fcbc9b87386a494b607657aeef003143f7c67e54
|
| 3 |
+
size 132154328
|
model_32_linear_fc2.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cc3124abcc242848f94c957a6041794815486bf2293f18847ea5a2e23ce37be8
|
| 3 |
+
size 2148072376
|
model_33.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e2d03e3a4487247dc26331a1fb7feeb652dfcdc54366b8b1f3f9f2d6fa3ffb03
|
| 3 |
+
size 132154328
|
model_33_linear_fc2.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6259518d3e7f46a7b6e13f41ee9db710e5aaa4408bb9509e8118202bb39a56bb
|
| 3 |
+
size 2148072376
|
model_34.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f1d7181c26f84fd2e3b05849adae8cf4f056afad0877039c7275b50b5c52914e
|
| 3 |
+
size 132154328
|
model_34_linear_fc2.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9071848efe17a71f40c2a53814667c6fc956cbd4167afabac1de46321c75afde
|
| 3 |
+
size 2148072376
|
model_36_linear_fc2.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e90abaa875cdbc9b909577f209d7a6b9e2e6bcffa5154ec68fd1c42a05d52a5a
|
| 3 |
+
size 2148072376
|
model_37_linear_fc2.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:60c9c7550c59d9ceb8eb0b4e85d3fc6c3ad5e91fe49a0b38a7d5c82f1d2913c4
|
| 3 |
+
size 2148072376
|
model_38_linear_fc2.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4d420a10c40167b511dcd1014c735ef9b17b64b6d09ba18c06c65dd9e35247b6
|
| 3 |
+
size 2148072376
|
model_39_linear_fc2.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e2a0addc55f7a9615a1bdeea587f3fe3388bc3b39ffc3ba0efac6b5fe2bd6497
|
| 3 |
+
size 2148072376
|
model_3_linear_fc2.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:451a6f68da921add092f85ba78eb545f6cd182684a3151e701f1932752368021
|
| 3 |
+
size 2148071864
|
model_4.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a3d91093a979f17cc49daf48e92b683a8d06f74aba1a716babd02409687e320e
|
| 3 |
+
size 132154312
|
model_41_linear_fc2.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f675c8a46718a7b108730a2c7fef60140fafecb93eb1ec94a4ed6003c57897a4
|
| 3 |
+
size 2148072376
|
model_42_linear_fc2.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:dc752712bcea4e6548d2058d315e856e4a72d3e3b1aa02ea24e80b28c041da2b
|
| 3 |
+
size 2148072376
|
model_43_linear_fc2.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:32ed548ceae946e085cc32c62d6dae38c29407c66772068011307a9732d6f26b
|
| 3 |
+
size 2148072376
|
model_44_linear_fc2.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:838b6dc6cdc6dd81582383727f37b81fec6d6b10d82bf8b3c4ff39d0e5b3d326
|
| 3 |
+
size 2148072376
|
model_45.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1a4811b644066e0d1a64d1b9b727ed0124fe1ca491c0eec4a157f9a9a1dcf4d5
|
| 3 |
+
size 132154328
|
model_45_linear_fc2.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4855416cd86ed6531f19e767c35a3a2d1085eaca1b1e3ff74beffe4543f3df7f
|
| 3 |
+
size 2148072376
|
model_46_linear_fc2.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3120281e83b4844bd287c15bba7b60c6427bf2234deeb89198b29f2628643657
|
| 3 |
+
size 2148072376
|
model_47.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ffdc8fb803808c1f5a4d57a31bb3f60dbe6f851192a0970cedad11e31fe0d378
|
| 3 |
+
size 126910184
|
model_47_linear_fc2.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0ed8bb40c11e14e15e83c72169256a7fceeb15259bce088206d6b1c3134fa779
|
| 3 |
+
size 2148072376
|
model_4_linear_fc2.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:89d1cf0c021e612284ad9efcd4b0efe3f0fbba3a1b5dcfe667cfbbd0e345e4e4
|
| 3 |
+
size 2148071864
|
model_5.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:04c3714f268d8b63a7899051cff1b261a5040775b6bb971436a800ba52ee934c
|
| 3 |
+
size 126910168
|
model_6.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0aee37741f0f614a0c699d6b0307b4b747a9760b21076dadf6d8a2d175516b30
|
| 3 |
+
size 132154312
|
model_7.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d532a38f375a26c439ae135a678178b2999758f6c306ec3a5ce2a61be651e82d
|
| 3 |
+
size 132154312
|
model_7_linear_fc2.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4d3744ee45c9993bdc1df21c61e9fb56551f40f92a9aea6a536880b8db15cdcd
|
| 3 |
+
size 2148071864
|
model_8.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:af3430a88830091f179afc27e76bf121ff145125aebbe1f422fe3e0a3326ef64
|
| 3 |
+
size 132154312
|
model_8_linear_fc2.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:456252982a334059d7c626f46fe2967809714014f10924585e9fcb6183ec0633
|
| 3 |
+
size 2148071864
|
model_9.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:77e5c9fc719a87bc82e9a66bfc7e2188418a82c90fa35970495ddc68c88e964f
|
| 3 |
+
size 132154312
|
model_final.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e179b6c4c1974db5f8c71799eceb7bb0b35b27cf112b8bcd9ebe1ef01c53e6f7
|
| 3 |
+
size 1249910976
|
modeling_mimo_v2_flash.py
ADDED
|
@@ -0,0 +1,664 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
#
|
| 3 |
+
# Copyright 2025 Xiaomi Corporation.
|
| 4 |
+
# Copyright 2025 The HuggingFace Inc. team.
|
| 5 |
+
#
|
| 6 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 7 |
+
# you may not use this file except in compliance with the License.
|
| 8 |
+
# You may obtain a copy of the License at
|
| 9 |
+
#
|
| 10 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 11 |
+
#
|
| 12 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 13 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 14 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 15 |
+
# See the License for the specific language governing permissions and
|
| 16 |
+
# limitations under the License.
|
| 17 |
+
|
| 18 |
+
from typing import Callable, Optional, Tuple, Union
|
| 19 |
+
|
| 20 |
+
import torch
|
| 21 |
+
import torch.nn as nn
|
| 22 |
+
import torch.nn.functional as F
|
| 23 |
+
|
| 24 |
+
from transformers.generation import GenerationMixin
|
| 25 |
+
from transformers.activations import ACT2FN
|
| 26 |
+
from transformers.cache_utils import Cache, DynamicCache
|
| 27 |
+
from transformers.integrations import use_kernel_forward_from_hub
|
| 28 |
+
|
| 29 |
+
from transformers.modeling_outputs import (
|
| 30 |
+
BaseModelOutputWithPast,
|
| 31 |
+
CausalLMOutputWithPast,
|
| 32 |
+
)
|
| 33 |
+
|
| 34 |
+
from transformers.masking_utils import create_causal_mask, create_sliding_window_causal_mask
|
| 35 |
+
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
|
| 36 |
+
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
|
| 37 |
+
from transformers.processing_utils import Unpack
|
| 38 |
+
from transformers.utils import (
|
| 39 |
+
logging,
|
| 40 |
+
)
|
| 41 |
+
|
| 42 |
+
from transformers.modeling_outputs import MoeModelOutputWithPast
|
| 43 |
+
from transformers.utils import TransformersKwargs, auto_docstring, can_return_tuple
|
| 44 |
+
from .configuration_mimo_v2_flash import MiMoV2FlashConfig
|
| 45 |
+
|
| 46 |
+
logger = logging.get_logger(__name__)
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
def rotate_half(x):
|
| 50 |
+
"""Rotates half the hidden dims of the input."""
|
| 51 |
+
x1 = x[..., : x.shape[-1] // 2]
|
| 52 |
+
x2 = x[..., x.shape[-1] // 2:]
|
| 53 |
+
return torch.cat((-x2, x1), dim=-1)
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
| 57 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
| 58 |
+
|
| 59 |
+
Args:
|
| 60 |
+
q (`torch.Tensor`): The query tensor.
|
| 61 |
+
k (`torch.Tensor`): The key tensor.
|
| 62 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
| 63 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
| 64 |
+
position_ids (`torch.Tensor`, *optional*):
|
| 65 |
+
Deprecated and unused.
|
| 66 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
| 67 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
| 68 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
| 69 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
| 70 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
| 71 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
| 72 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
| 73 |
+
Returns:
|
| 74 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
| 75 |
+
"""
|
| 76 |
+
cos = cos.unsqueeze(unsqueeze_dim)
|
| 77 |
+
sin = sin.unsqueeze(unsqueeze_dim)
|
| 78 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
| 79 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
| 80 |
+
return q_embed, k_embed
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
| 84 |
+
"""
|
| 85 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
| 86 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
| 87 |
+
"""
|
| 88 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
| 89 |
+
if n_rep == 1:
|
| 90 |
+
return hidden_states
|
| 91 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
| 92 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
def eager_attention_forward(
|
| 96 |
+
module: nn.Module,
|
| 97 |
+
query: torch.Tensor,
|
| 98 |
+
key: torch.Tensor,
|
| 99 |
+
value: torch.Tensor,
|
| 100 |
+
attention_mask: Optional[torch.Tensor],
|
| 101 |
+
scaling: float,
|
| 102 |
+
dropout: float = 0.0,
|
| 103 |
+
sinks: Optional[torch.Tensor] = None,
|
| 104 |
+
):
|
| 105 |
+
key_states = repeat_kv(key, module.num_key_value_groups)
|
| 106 |
+
value_states = repeat_kv(value, module.num_key_value_groups)
|
| 107 |
+
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
|
| 108 |
+
if attention_mask is not None:
|
| 109 |
+
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
| 110 |
+
attn_weights = attn_weights + causal_mask
|
| 111 |
+
|
| 112 |
+
if sinks is not None:
|
| 113 |
+
sinks = module.attention_sink_bias.reshape(1, -1, 1, 1).expand(query.shape[0], -1, query.shape[-2], -1)
|
| 114 |
+
attn_weights = torch.cat([attn_weights, sinks], dim=-1)
|
| 115 |
+
|
| 116 |
+
attn_weights = attn_weights - attn_weights.max(dim=-1, keepdim=True).values
|
| 117 |
+
probs = F.softmax(attn_weights, dim=-1, dtype=attn_weights.dtype)
|
| 118 |
+
|
| 119 |
+
if sinks is not None:
|
| 120 |
+
probs = probs[..., :-1] # we drop the sink here
|
| 121 |
+
|
| 122 |
+
attn_weights = nn.functional.dropout(probs, p=dropout, training=module.training)
|
| 123 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
| 124 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 125 |
+
return attn_output, attn_weights
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
@use_kernel_forward_from_hub("RMSNorm")
|
| 129 |
+
class MiMoV2RMSNorm(nn.Module):
|
| 130 |
+
def __init__(self, hidden_size, eps=1e-6):
|
| 131 |
+
"""
|
| 132 |
+
MiMoV2RMSNorm is equivalent to T5LayerNorm
|
| 133 |
+
"""
|
| 134 |
+
super().__init__()
|
| 135 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
| 136 |
+
self.variance_epsilon = eps
|
| 137 |
+
|
| 138 |
+
def forward(self, hidden_states):
|
| 139 |
+
input_dtype = hidden_states.dtype
|
| 140 |
+
hidden_states = hidden_states.to(torch.float32)
|
| 141 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
| 142 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
| 143 |
+
return self.weight * hidden_states.to(input_dtype)
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
class MiMoV2MLP(nn.Module):
|
| 147 |
+
"""MiMoV2MLP matching the gate, up, and down projection layers."""
|
| 148 |
+
|
| 149 |
+
def __init__(self, config: MiMoV2FlashConfig, intermediate_size=None):
|
| 150 |
+
super().__init__()
|
| 151 |
+
self.config = config
|
| 152 |
+
self.hidden_size = config.hidden_size
|
| 153 |
+
self.intermediate_size = config.intermediate_size if intermediate_size is None else intermediate_size
|
| 154 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
| 155 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
| 156 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
| 157 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
| 158 |
+
|
| 159 |
+
def forward(self, hidden_states):
|
| 160 |
+
down_proj = self.down_proj(self.act_fn(self.gate_proj(hidden_states)) * self.up_proj(hidden_states))
|
| 161 |
+
return down_proj
|
| 162 |
+
|
| 163 |
+
|
| 164 |
+
class MiMoV2MoEGate(nn.Module):
|
| 165 |
+
def __init__(self, config):
|
| 166 |
+
super().__init__()
|
| 167 |
+
self.config = config
|
| 168 |
+
self.top_k = config.num_experts_per_tok
|
| 169 |
+
self.n_routed_experts = config.n_routed_experts
|
| 170 |
+
self.routed_scaling_factor = (
|
| 171 |
+
config.routed_scaling_factor
|
| 172 |
+
if config.routed_scaling_factor is not None
|
| 173 |
+
else 1.0
|
| 174 |
+
)
|
| 175 |
+
self.scoring_func = config.scoring_func
|
| 176 |
+
self.topk_method = config.topk_method
|
| 177 |
+
self.n_group = config.n_group
|
| 178 |
+
self.topk_group = config.topk_group
|
| 179 |
+
|
| 180 |
+
# topk selection algorithm
|
| 181 |
+
self.norm_topk_prob = config.norm_topk_prob
|
| 182 |
+
self.gating_dim = config.hidden_size
|
| 183 |
+
self.weight = nn.Parameter(
|
| 184 |
+
torch.empty((self.n_routed_experts, self.gating_dim))
|
| 185 |
+
)
|
| 186 |
+
if self.topk_method == "noaux_tc":
|
| 187 |
+
self.e_score_correction_bias = nn.Parameter(
|
| 188 |
+
torch.empty((self.n_routed_experts))
|
| 189 |
+
)
|
| 190 |
+
|
| 191 |
+
def forward(self, hidden_states):
|
| 192 |
+
bsz, seq_len, h = hidden_states.shape
|
| 193 |
+
### compute gating score
|
| 194 |
+
hidden_states = hidden_states.view(-1, h)
|
| 195 |
+
logits = F.linear(
|
| 196 |
+
hidden_states.type(torch.float32), self.weight.type(torch.float32), None
|
| 197 |
+
)
|
| 198 |
+
if self.scoring_func == "sigmoid":
|
| 199 |
+
scores = logits.sigmoid()
|
| 200 |
+
else:
|
| 201 |
+
raise NotImplementedError(
|
| 202 |
+
f"insupportable scoring function for MoE gating: {self.scoring_func}"
|
| 203 |
+
)
|
| 204 |
+
|
| 205 |
+
### select top-k experts
|
| 206 |
+
if self.topk_method == "noaux_tc":
|
| 207 |
+
assert not self.training
|
| 208 |
+
scores_for_choice = scores.view(bsz * seq_len, -1) + self.e_score_correction_bias.unsqueeze(0)
|
| 209 |
+
group_scores = (
|
| 210 |
+
scores_for_choice.view(bsz * seq_len, self.n_group, -1).topk(2, dim=-1)[0].sum(dim = -1)
|
| 211 |
+
) # [n, n_group]
|
| 212 |
+
group_idx = torch.topk(
|
| 213 |
+
group_scores, k=self.topk_group, dim=-1, sorted=False
|
| 214 |
+
)[
|
| 215 |
+
1
|
| 216 |
+
] # [n, top_k_group]
|
| 217 |
+
group_mask = torch.zeros_like(group_scores) # [n, n_group]
|
| 218 |
+
group_mask.scatter_(1, group_idx, 1) # [n, n_group]
|
| 219 |
+
score_mask = (
|
| 220 |
+
group_mask.unsqueeze(-1)
|
| 221 |
+
.expand(
|
| 222 |
+
bsz * seq_len, self.n_group, self.n_routed_experts // self.n_group
|
| 223 |
+
)
|
| 224 |
+
.reshape(bsz * seq_len, -1)
|
| 225 |
+
) # [n, e]
|
| 226 |
+
tmp_scores = scores_for_choice.masked_fill(~score_mask.bool(), float("-inf")) # [n, e]
|
| 227 |
+
_, topk_idx = torch.topk(
|
| 228 |
+
tmp_scores, k=self.top_k, dim=-1, sorted=False
|
| 229 |
+
)
|
| 230 |
+
topk_weight = scores.gather(1, topk_idx)
|
| 231 |
+
else:
|
| 232 |
+
raise NotImplementedError(
|
| 233 |
+
f"insupportable TopK function for MoE gating: {self.topk_method}"
|
| 234 |
+
)
|
| 235 |
+
|
| 236 |
+
### norm gate to sum 1
|
| 237 |
+
if self.top_k > 1 and self.norm_topk_prob:
|
| 238 |
+
denominator = topk_weight.sum(dim=-1, keepdim=True) + 1e-20
|
| 239 |
+
topk_weight = topk_weight / denominator
|
| 240 |
+
topk_weight = topk_weight * self.routed_scaling_factor # must multiply the scaling factor
|
| 241 |
+
|
| 242 |
+
return topk_idx, topk_weight
|
| 243 |
+
|
| 244 |
+
|
| 245 |
+
class MiMoV2MoE(nn.Module):
|
| 246 |
+
"""
|
| 247 |
+
A mixed expert module containing shared experts.
|
| 248 |
+
"""
|
| 249 |
+
|
| 250 |
+
def __init__(self, config):
|
| 251 |
+
super().__init__()
|
| 252 |
+
self.config = config
|
| 253 |
+
self.experts = nn.ModuleList(
|
| 254 |
+
[
|
| 255 |
+
MiMoV2MLP(config, intermediate_size=config.moe_intermediate_size)
|
| 256 |
+
for _ in range(config.n_routed_experts)
|
| 257 |
+
]
|
| 258 |
+
)
|
| 259 |
+
self.gate = MiMoV2MoEGate(config)
|
| 260 |
+
|
| 261 |
+
def moe(self, hidden_states: torch.Tensor, topk_indices: torch.Tensor, topk_weights: torch.Tensor):
|
| 262 |
+
r"""
|
| 263 |
+
CALL FOR CONTRIBUTION! I don't have time to optimise this right now, but expert weights need to be fused
|
| 264 |
+
to not have to do a loop here (deepseek has 256 experts soooo yeah).
|
| 265 |
+
"""
|
| 266 |
+
final_hidden_states = torch.zeros_like(hidden_states, dtype=topk_weights.dtype)
|
| 267 |
+
expert_mask = torch.nn.functional.one_hot(topk_indices, num_classes=len(self.experts))
|
| 268 |
+
expert_mask = expert_mask.permute(2, 0, 1)
|
| 269 |
+
|
| 270 |
+
for expert_idx in range(len(self.experts)):
|
| 271 |
+
expert = self.experts[expert_idx]
|
| 272 |
+
mask = expert_mask[expert_idx]
|
| 273 |
+
token_indices, weight_indices = torch.where(mask)
|
| 274 |
+
|
| 275 |
+
if token_indices.numel() > 0:
|
| 276 |
+
expert_weights = topk_weights[token_indices, weight_indices]
|
| 277 |
+
expert_input = hidden_states[token_indices]
|
| 278 |
+
expert_output = expert(expert_input)
|
| 279 |
+
weighted_output = expert_output * expert_weights.unsqueeze(-1)
|
| 280 |
+
final_hidden_states.index_add_(0, token_indices, weighted_output)
|
| 281 |
+
|
| 282 |
+
# in original deepseek, the output of the experts are gathered once we leave this module
|
| 283 |
+
# thus the moe module is itelsf an IsolatedParallel module
|
| 284 |
+
# and all expert are "local" meaning we shard but we don't gather
|
| 285 |
+
return final_hidden_states.type(hidden_states.dtype)
|
| 286 |
+
|
| 287 |
+
|
| 288 |
+
def forward(self, hidden_states: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
|
| 289 |
+
orig_shape = hidden_states.shape
|
| 290 |
+
topk_indices, topk_weights = self.gate(hidden_states)
|
| 291 |
+
hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
|
| 292 |
+
hidden_states = self.moe(hidden_states, topk_indices, topk_weights).view(*orig_shape)
|
| 293 |
+
|
| 294 |
+
return hidden_states
|
| 295 |
+
|
| 296 |
+
|
| 297 |
+
class MiMoV2Attention(nn.Module):
|
| 298 |
+
"""MiMoV2 Global Attention (pattern == 0) and Sliding Window Attention (pattern == 1)."""
|
| 299 |
+
|
| 300 |
+
def __init__(self, config: MiMoV2FlashConfig, is_swa: bool, layer_idx: int):
|
| 301 |
+
super().__init__()
|
| 302 |
+
self.config = config
|
| 303 |
+
self.layer_idx = layer_idx
|
| 304 |
+
|
| 305 |
+
if is_swa:
|
| 306 |
+
self.head_dim = config.swa_head_dim
|
| 307 |
+
self.v_head_dim = config.swa_v_head_dim
|
| 308 |
+
self.num_attention_heads = config.swa_num_attention_heads
|
| 309 |
+
self.num_key_value_heads = config.swa_num_key_value_heads
|
| 310 |
+
else:
|
| 311 |
+
self.head_dim = config.head_dim
|
| 312 |
+
self.v_head_dim = config.v_head_dim
|
| 313 |
+
self.num_attention_heads = config.num_attention_heads
|
| 314 |
+
self.num_key_value_heads = config.num_key_value_heads
|
| 315 |
+
|
| 316 |
+
self.rope_dim = int(self.head_dim * config.partial_rotary_factor)
|
| 317 |
+
self.num_key_value_groups = self.num_attention_heads // self.num_key_value_heads
|
| 318 |
+
self.attention_bias = config.attention_bias
|
| 319 |
+
self.attention_dropout: float = config.attention_dropout
|
| 320 |
+
self.scaling = self.head_dim ** -0.5
|
| 321 |
+
|
| 322 |
+
# These dimensions are for the attention layers
|
| 323 |
+
q_hidden_size = self.num_attention_heads * self.head_dim
|
| 324 |
+
k_hidden_size = self.num_key_value_heads * self.head_dim
|
| 325 |
+
v_hidden_size = self.num_key_value_heads * self.v_head_dim
|
| 326 |
+
o_hidden_size = self.num_attention_heads * self.v_head_dim
|
| 327 |
+
|
| 328 |
+
self.q_proj = nn.Linear(config.hidden_size, q_hidden_size, bias=self.attention_bias)
|
| 329 |
+
self.k_proj = nn.Linear(config.hidden_size, k_hidden_size, bias=self.attention_bias)
|
| 330 |
+
self.v_proj = nn.Linear(config.hidden_size, v_hidden_size, bias=self.attention_bias)
|
| 331 |
+
self.o_proj = nn.Linear(o_hidden_size, config.hidden_size, bias=False)
|
| 332 |
+
|
| 333 |
+
self.attention_sink_bias = (
|
| 334 |
+
torch.nn.Parameter(torch.empty(config.num_attention_heads), requires_grad=False)
|
| 335 |
+
if (config.add_full_attention_sink_bias and not is_swa) or (config.add_swa_attention_sink_bias and is_swa)
|
| 336 |
+
else None
|
| 337 |
+
)
|
| 338 |
+
|
| 339 |
+
def forward(
|
| 340 |
+
self,
|
| 341 |
+
hidden_states: torch.Tensor,
|
| 342 |
+
position_embeddings: tuple[torch.Tensor, torch.Tensor],
|
| 343 |
+
attention_mask: Optional[torch.Tensor],
|
| 344 |
+
past_key_values: Optional[Cache] = None,
|
| 345 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 346 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 347 |
+
**kwargs: Unpack[TransformersKwargs],
|
| 348 |
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
| 349 |
+
input_shape = hidden_states.shape[:-1]
|
| 350 |
+
qk_hidden_shape = (*input_shape, -1, self.head_dim)
|
| 351 |
+
v_hidden_shape = (*input_shape, -1, self.v_head_dim)
|
| 352 |
+
|
| 353 |
+
query_states = self.q_proj(hidden_states).view(qk_hidden_shape).transpose(1, 2)
|
| 354 |
+
key_states = self.k_proj(hidden_states).view(qk_hidden_shape).transpose(1, 2)
|
| 355 |
+
value_states = self.v_proj(hidden_states).view(v_hidden_shape).transpose(1, 2)
|
| 356 |
+
|
| 357 |
+
cos, sin = position_embeddings
|
| 358 |
+
|
| 359 |
+
query_rope, query_nope = query_states.split([self.rope_dim, self.head_dim - self.rope_dim], dim=-1)
|
| 360 |
+
key_rope, key_nope = key_states.split([self.rope_dim, self.head_dim - self.rope_dim], dim=-1)
|
| 361 |
+
|
| 362 |
+
query_rope, key_rope = apply_rotary_pos_emb(query_rope, key_rope, cos, sin)
|
| 363 |
+
|
| 364 |
+
query_states = torch.cat([query_rope, query_nope], dim=-1)
|
| 365 |
+
key_states = torch.cat([key_rope, key_nope], dim=-1)
|
| 366 |
+
|
| 367 |
+
if past_key_values is not None:
|
| 368 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
| 369 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
| 370 |
+
key_states, value_states = past_key_values.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
| 371 |
+
|
| 372 |
+
attention_interface: Callable = eager_attention_forward
|
| 373 |
+
if self.config._attn_implementation != "eager":
|
| 374 |
+
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
|
| 375 |
+
|
| 376 |
+
attn_output, attn_weights = attention_interface(
|
| 377 |
+
self,
|
| 378 |
+
query_states,
|
| 379 |
+
key_states,
|
| 380 |
+
value_states,
|
| 381 |
+
attention_mask,
|
| 382 |
+
dropout=0.0 if not self.training else self.attention_dropout,
|
| 383 |
+
scaling=self.scaling,
|
| 384 |
+
position_ids=position_ids,
|
| 385 |
+
sinks=self.attention_sink_bias,
|
| 386 |
+
)
|
| 387 |
+
|
| 388 |
+
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
|
| 389 |
+
attn_output = self.o_proj(attn_output)
|
| 390 |
+
return attn_output, attn_weights
|
| 391 |
+
|
| 392 |
+
|
| 393 |
+
class MiMoV2DecoderLayer(nn.Module):
|
| 394 |
+
"""
|
| 395 |
+
MiMoV2 Decoder Layer. It dynamically chooses the correct attention
|
| 396 |
+
module based on the layer index and the `hybrid_layer_pattern`.
|
| 397 |
+
"""
|
| 398 |
+
|
| 399 |
+
def __init__(self, config: MiMoV2FlashConfig, layer_idx: int):
|
| 400 |
+
super().__init__()
|
| 401 |
+
|
| 402 |
+
# This is the key logic: choose the module based on the pattern
|
| 403 |
+
is_swa_layer = config.hybrid_layer_pattern[layer_idx] == 1
|
| 404 |
+
if is_swa_layer:
|
| 405 |
+
self.attention_type = "sliding_window_attention"
|
| 406 |
+
self.self_attn = MiMoV2Attention(config, True, layer_idx)
|
| 407 |
+
else:
|
| 408 |
+
self.attention_type = "full_attention"
|
| 409 |
+
self.self_attn = MiMoV2Attention(config, False, layer_idx)
|
| 410 |
+
|
| 411 |
+
self.mlp = (
|
| 412 |
+
MiMoV2MoE(config)
|
| 413 |
+
if (
|
| 414 |
+
getattr(config, 'n_routed_experts', None) is not None
|
| 415 |
+
and config.moe_layer_freq[layer_idx]
|
| 416 |
+
)
|
| 417 |
+
else MiMoV2MLP(config)
|
| 418 |
+
)
|
| 419 |
+
|
| 420 |
+
self.input_layernorm = MiMoV2RMSNorm(config.hidden_size, eps=config.layernorm_epsilon)
|
| 421 |
+
self.post_attention_layernorm = MiMoV2RMSNorm(config.hidden_size, eps=config.layernorm_epsilon)
|
| 422 |
+
self.hidden_size = config.hidden_size
|
| 423 |
+
|
| 424 |
+
def forward(
|
| 425 |
+
self,
|
| 426 |
+
hidden_states: torch.Tensor,
|
| 427 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 428 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 429 |
+
past_key_values: Optional[Cache] = None,
|
| 430 |
+
use_cache: Optional[bool] = False,
|
| 431 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 432 |
+
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None,
|
| 433 |
+
**kwargs: Unpack[TransformersKwargs],
|
| 434 |
+
) -> torch.Tensor:
|
| 435 |
+
residual = hidden_states
|
| 436 |
+
hidden_states = self.input_layernorm(hidden_states)
|
| 437 |
+
# Self Attention
|
| 438 |
+
hidden_states, _ = self.self_attn(
|
| 439 |
+
hidden_states=hidden_states,
|
| 440 |
+
attention_mask=attention_mask,
|
| 441 |
+
position_ids=position_ids,
|
| 442 |
+
past_key_values=past_key_values,
|
| 443 |
+
use_cache=use_cache,
|
| 444 |
+
cache_position=cache_position,
|
| 445 |
+
position_embeddings=position_embeddings,
|
| 446 |
+
**kwargs,
|
| 447 |
+
)
|
| 448 |
+
hidden_states = residual + hidden_states
|
| 449 |
+
|
| 450 |
+
# MLP or MOE
|
| 451 |
+
residual = hidden_states
|
| 452 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
| 453 |
+
hidden_states = self.mlp(hidden_states)
|
| 454 |
+
hidden_states = residual + hidden_states
|
| 455 |
+
return hidden_states
|
| 456 |
+
|
| 457 |
+
class MiMoV2FlashRotaryEmbedding(nn.Module):
|
| 458 |
+
inv_freq: torch.Tensor # fix linting for `register_buffer`
|
| 459 |
+
|
| 460 |
+
def __init__(self, config: MiMoV2FlashConfig, is_swa, device=None):
|
| 461 |
+
super().__init__()
|
| 462 |
+
# BC: "rope_type" was originally "type"
|
| 463 |
+
if hasattr(config, "rope_scaling") and isinstance(config.rope_scaling, dict):
|
| 464 |
+
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
|
| 465 |
+
else:
|
| 466 |
+
self.rope_type = "default"
|
| 467 |
+
self.max_seq_len_cached = config.max_position_embeddings
|
| 468 |
+
self.original_max_seq_len = config.max_position_embeddings
|
| 469 |
+
|
| 470 |
+
self.config = config
|
| 471 |
+
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
|
| 472 |
+
|
| 473 |
+
if is_swa:
|
| 474 |
+
self.config.rope_theta = config.swa_rope_theta
|
| 475 |
+
self.config.head_dim = config.swa_head_dim
|
| 476 |
+
|
| 477 |
+
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
|
| 478 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
| 479 |
+
self.original_inv_freq = self.inv_freq
|
| 480 |
+
|
| 481 |
+
@torch.no_grad()
|
| 482 |
+
@dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
|
| 483 |
+
def forward(self, x, position_ids):
|
| 484 |
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
|
| 485 |
+
position_ids_expanded = position_ids[:, None, :].float()
|
| 486 |
+
|
| 487 |
+
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
|
| 488 |
+
with torch.autocast(device_type=device_type, enabled=False): # Force float32
|
| 489 |
+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
| 490 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 491 |
+
cos = emb.cos() * self.attention_scaling
|
| 492 |
+
sin = emb.sin() * self.attention_scaling
|
| 493 |
+
|
| 494 |
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
| 495 |
+
|
| 496 |
+
|
| 497 |
+
@auto_docstring
|
| 498 |
+
class MiMoV2Model(PreTrainedModel):
|
| 499 |
+
"""The main 'model' block, corresponding to `model.` in the weight map."""
|
| 500 |
+
config_class = MiMoV2FlashConfig
|
| 501 |
+
|
| 502 |
+
def __init__(self, config: MiMoV2FlashConfig):
|
| 503 |
+
super().__init__(config)
|
| 504 |
+
self.vocab_size = config.vocab_size
|
| 505 |
+
|
| 506 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
|
| 507 |
+
self.layers = nn.ModuleList(
|
| 508 |
+
[MiMoV2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
| 509 |
+
)
|
| 510 |
+
self.norm = MiMoV2RMSNorm(config.hidden_size, eps=config.layernorm_epsilon)
|
| 511 |
+
self.rotary_emb = MiMoV2FlashRotaryEmbedding(config=config, is_swa=False)
|
| 512 |
+
self.swa_rotary_emb = MiMoV2FlashRotaryEmbedding(config=config, is_swa=True)
|
| 513 |
+
|
| 514 |
+
self.has_sliding_layers = any(
|
| 515 |
+
pattern == 1 for pattern in config.hybrid_layer_pattern
|
| 516 |
+
)
|
| 517 |
+
|
| 518 |
+
# For Huggingface DynamicCache compatibility
|
| 519 |
+
self.config.layer_types = [
|
| 520 |
+
"sliding_attention" if config.hybrid_layer_pattern[i] == 1 else "full_attention"
|
| 521 |
+
for i in range(config.num_hidden_layers)
|
| 522 |
+
]
|
| 523 |
+
|
| 524 |
+
@auto_docstring
|
| 525 |
+
def forward(
|
| 526 |
+
self,
|
| 527 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 528 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 529 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 530 |
+
past_key_values: Optional[Cache] = None,
|
| 531 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 532 |
+
use_cache: Optional[bool] = None,
|
| 533 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 534 |
+
**kwargs: Unpack[TransformersKwargs],
|
| 535 |
+
) -> MoeModelOutputWithPast:
|
| 536 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
| 537 |
+
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
| 538 |
+
|
| 539 |
+
if inputs_embeds is None:
|
| 540 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
| 541 |
+
|
| 542 |
+
if use_cache and past_key_values is None:
|
| 543 |
+
past_key_values = DynamicCache(config=self.config)
|
| 544 |
+
|
| 545 |
+
if cache_position is None:
|
| 546 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
| 547 |
+
cache_position = torch.arange(
|
| 548 |
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
| 549 |
+
)
|
| 550 |
+
|
| 551 |
+
if position_ids is None:
|
| 552 |
+
position_ids = cache_position.unsqueeze(0)
|
| 553 |
+
|
| 554 |
+
# It may already have been prepared by e.g. `generate`
|
| 555 |
+
if not isinstance(causal_mask_mapping := attention_mask, dict):
|
| 556 |
+
# Prepare mask arguments
|
| 557 |
+
mask_kwargs = {
|
| 558 |
+
"config": self.config,
|
| 559 |
+
"input_embeds": inputs_embeds,
|
| 560 |
+
"attention_mask": attention_mask,
|
| 561 |
+
"cache_position": cache_position,
|
| 562 |
+
"past_key_values": past_key_values,
|
| 563 |
+
"position_ids": position_ids,
|
| 564 |
+
}
|
| 565 |
+
# Create the masks
|
| 566 |
+
causal_mask_mapping = {
|
| 567 |
+
"full_attention": create_causal_mask(**mask_kwargs),
|
| 568 |
+
}
|
| 569 |
+
# The sliding window alternating layers are not always activated depending on the config
|
| 570 |
+
if self.has_sliding_layers:
|
| 571 |
+
causal_mask_mapping["sliding_window_attention"] = create_sliding_window_causal_mask(**mask_kwargs)
|
| 572 |
+
|
| 573 |
+
hidden_states = inputs_embeds
|
| 574 |
+
position_embeddings = self.rotary_emb(hidden_states, position_ids)
|
| 575 |
+
swa_position_embeddings = self.swa_rotary_emb(hidden_states, position_ids)
|
| 576 |
+
|
| 577 |
+
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
|
| 578 |
+
hidden_states = decoder_layer(
|
| 579 |
+
hidden_states,
|
| 580 |
+
attention_mask=causal_mask_mapping[decoder_layer.attention_type],
|
| 581 |
+
position_embeddings=(
|
| 582 |
+
position_embeddings
|
| 583 |
+
if decoder_layer.attention_type == "full_attention"
|
| 584 |
+
else swa_position_embeddings
|
| 585 |
+
),
|
| 586 |
+
position_ids=position_ids,
|
| 587 |
+
past_key_values=past_key_values,
|
| 588 |
+
use_cache=use_cache,
|
| 589 |
+
cache_position=cache_position,
|
| 590 |
+
**kwargs,
|
| 591 |
+
)
|
| 592 |
+
|
| 593 |
+
hidden_states = self.norm(hidden_states)
|
| 594 |
+
return BaseModelOutputWithPast(
|
| 595 |
+
last_hidden_state=hidden_states,
|
| 596 |
+
past_key_values=past_key_values if use_cache else None,
|
| 597 |
+
)
|
| 598 |
+
|
| 599 |
+
|
| 600 |
+
@auto_docstring
|
| 601 |
+
class MiMoV2FlashForCausalLM(PreTrainedModel,GenerationMixin):
|
| 602 |
+
_tied_weights_keys = {"lm_head.weight": "model.embed_tokens.weight"}
|
| 603 |
+
_tp_plan = {"lm_head": "colwise_rep"}
|
| 604 |
+
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])}
|
| 605 |
+
|
| 606 |
+
config_class = MiMoV2FlashConfig
|
| 607 |
+
_keys_to_ignore_on_load_unexpected = [r"model.layers\.\d+\.self_attn\.rotary_emb\.inv_freq"]
|
| 608 |
+
|
| 609 |
+
def __init__(self, config: MiMoV2FlashConfig):
|
| 610 |
+
super().__init__(config)
|
| 611 |
+
self.model = MiMoV2Model(config)
|
| 612 |
+
self.vocab_size = config.vocab_size
|
| 613 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
| 614 |
+
|
| 615 |
+
# Initialize weights and apply final processing
|
| 616 |
+
self.post_init()
|
| 617 |
+
|
| 618 |
+
@can_return_tuple
|
| 619 |
+
@auto_docstring
|
| 620 |
+
def forward(
|
| 621 |
+
self,
|
| 622 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 623 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 624 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 625 |
+
past_key_values: Optional[Cache] = None,
|
| 626 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 627 |
+
labels: Optional[torch.LongTensor] = None,
|
| 628 |
+
use_cache: Optional[bool] = None,
|
| 629 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 630 |
+
logits_to_keep: Union[int, torch.Tensor] = 0,
|
| 631 |
+
**kwargs: Unpack[TransformersKwargs],
|
| 632 |
+
) -> CausalLMOutputWithPast:
|
| 633 |
+
|
| 634 |
+
outputs: BaseModelOutputWithPast = self.model(
|
| 635 |
+
input_ids=input_ids,
|
| 636 |
+
attention_mask=attention_mask,
|
| 637 |
+
position_ids=position_ids,
|
| 638 |
+
past_key_values=past_key_values,
|
| 639 |
+
inputs_embeds=inputs_embeds,
|
| 640 |
+
use_cache=use_cache,
|
| 641 |
+
cache_position=cache_position,
|
| 642 |
+
**kwargs,
|
| 643 |
+
)
|
| 644 |
+
|
| 645 |
+
hidden_states = outputs.last_hidden_state
|
| 646 |
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
| 647 |
+
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
| 648 |
+
logits = self.lm_head(hidden_states[:, slice_indices, :])
|
| 649 |
+
|
| 650 |
+
loss = None
|
| 651 |
+
if labels is not None:
|
| 652 |
+
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
|
| 653 |
+
|
| 654 |
+
return CausalLMOutputWithPast(
|
| 655 |
+
loss=loss,
|
| 656 |
+
logits=logits,
|
| 657 |
+
past_key_values=outputs.past_key_values,
|
| 658 |
+
hidden_states=outputs.hidden_states,
|
| 659 |
+
attentions=outputs.attentions,
|
| 660 |
+
)
|
| 661 |
+
|
| 662 |
+
__all__ = [
|
| 663 |
+
"MiMoV2FlashForCausalLM"
|
| 664 |
+
]
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
"<|im_start|>",
|
| 4 |
+
"<|im_end|>",
|
| 5 |
+
"<|object_ref_start|>",
|
| 6 |
+
"<|object_ref_end|>",
|
| 7 |
+
"<|box_start|>",
|
| 8 |
+
"<|box_end|>",
|
| 9 |
+
"<|quad_start|>",
|
| 10 |
+
"<|quad_end|>",
|
| 11 |
+
"<|vision_start|>",
|
| 12 |
+
"<|vision_end|>",
|
| 13 |
+
"<|vision_pad|>",
|
| 14 |
+
"<|image_pad|>",
|
| 15 |
+
"<|video_pad|>"
|
| 16 |
+
],
|
| 17 |
+
"eos_token": {
|
| 18 |
+
"content": "<|im_end|>",
|
| 19 |
+
"lstrip": false,
|
| 20 |
+
"normalized": false,
|
| 21 |
+
"rstrip": false,
|
| 22 |
+
"single_word": false
|
| 23 |
+
},
|
| 24 |
+
"pad_token": {
|
| 25 |
+
"content": "<|endoftext|>",
|
| 26 |
+
"lstrip": false,
|
| 27 |
+
"normalized": false,
|
| 28 |
+
"rstrip": false,
|
| 29 |
+
"single_word": false
|
| 30 |
+
}
|
| 31 |
+
}
|
tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:aeb13307a71acd8fe81861d94ad54ab689df773318809eed3cbe794b4492dae4
|
| 3 |
+
size 11422654
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,240 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": false,
|
| 3 |
+
"add_prefix_space": false,
|
| 4 |
+
"added_tokens_decoder": {
|
| 5 |
+
"151643": {
|
| 6 |
+
"content": "<|endoftext|>",
|
| 7 |
+
"lstrip": false,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false,
|
| 11 |
+
"special": true
|
| 12 |
+
},
|
| 13 |
+
"151644": {
|
| 14 |
+
"content": "<|im_start|>",
|
| 15 |
+
"lstrip": false,
|
| 16 |
+
"normalized": false,
|
| 17 |
+
"rstrip": false,
|
| 18 |
+
"single_word": false,
|
| 19 |
+
"special": true
|
| 20 |
+
},
|
| 21 |
+
"151645": {
|
| 22 |
+
"content": "<|im_end|>",
|
| 23 |
+
"lstrip": false,
|
| 24 |
+
"normalized": false,
|
| 25 |
+
"rstrip": false,
|
| 26 |
+
"single_word": false,
|
| 27 |
+
"special": true
|
| 28 |
+
},
|
| 29 |
+
"151646": {
|
| 30 |
+
"content": "<|object_ref_start|>",
|
| 31 |
+
"lstrip": false,
|
| 32 |
+
"normalized": false,
|
| 33 |
+
"rstrip": false,
|
| 34 |
+
"single_word": false,
|
| 35 |
+
"special": true
|
| 36 |
+
},
|
| 37 |
+
"151647": {
|
| 38 |
+
"content": "<|object_ref_end|>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false,
|
| 43 |
+
"special": true
|
| 44 |
+
},
|
| 45 |
+
"151648": {
|
| 46 |
+
"content": "<|box_start|>",
|
| 47 |
+
"lstrip": false,
|
| 48 |
+
"normalized": false,
|
| 49 |
+
"rstrip": false,
|
| 50 |
+
"single_word": false,
|
| 51 |
+
"special": true
|
| 52 |
+
},
|
| 53 |
+
"151649": {
|
| 54 |
+
"content": "<|box_end|>",
|
| 55 |
+
"lstrip": false,
|
| 56 |
+
"normalized": false,
|
| 57 |
+
"rstrip": false,
|
| 58 |
+
"single_word": false,
|
| 59 |
+
"special": true
|
| 60 |
+
},
|
| 61 |
+
"151650": {
|
| 62 |
+
"content": "<|quad_start|>",
|
| 63 |
+
"lstrip": false,
|
| 64 |
+
"normalized": false,
|
| 65 |
+
"rstrip": false,
|
| 66 |
+
"single_word": false,
|
| 67 |
+
"special": true
|
| 68 |
+
},
|
| 69 |
+
"151651": {
|
| 70 |
+
"content": "<|quad_end|>",
|
| 71 |
+
"lstrip": false,
|
| 72 |
+
"normalized": false,
|
| 73 |
+
"rstrip": false,
|
| 74 |
+
"single_word": false,
|
| 75 |
+
"special": true
|
| 76 |
+
},
|
| 77 |
+
"151652": {
|
| 78 |
+
"content": "<|vision_start|>",
|
| 79 |
+
"lstrip": false,
|
| 80 |
+
"normalized": false,
|
| 81 |
+
"rstrip": false,
|
| 82 |
+
"single_word": false,
|
| 83 |
+
"special": true
|
| 84 |
+
},
|
| 85 |
+
"151653": {
|
| 86 |
+
"content": "<|vision_end|>",
|
| 87 |
+
"lstrip": false,
|
| 88 |
+
"normalized": false,
|
| 89 |
+
"rstrip": false,
|
| 90 |
+
"single_word": false,
|
| 91 |
+
"special": true
|
| 92 |
+
},
|
| 93 |
+
"151654": {
|
| 94 |
+
"content": "<|vision_pad|>",
|
| 95 |
+
"lstrip": false,
|
| 96 |
+
"normalized": false,
|
| 97 |
+
"rstrip": false,
|
| 98 |
+
"single_word": false,
|
| 99 |
+
"special": true
|
| 100 |
+
},
|
| 101 |
+
"151655": {
|
| 102 |
+
"content": "<|image_pad|>",
|
| 103 |
+
"lstrip": false,
|
| 104 |
+
"normalized": false,
|
| 105 |
+
"rstrip": false,
|
| 106 |
+
"single_word": false,
|
| 107 |
+
"special": true
|
| 108 |
+
},
|
| 109 |
+
"151656": {
|
| 110 |
+
"content": "<|video_pad|>",
|
| 111 |
+
"lstrip": false,
|
| 112 |
+
"normalized": false,
|
| 113 |
+
"rstrip": false,
|
| 114 |
+
"single_word": false,
|
| 115 |
+
"special": true
|
| 116 |
+
},
|
| 117 |
+
"151657": {
|
| 118 |
+
"content": "<tool_call>",
|
| 119 |
+
"lstrip": false,
|
| 120 |
+
"normalized": false,
|
| 121 |
+
"rstrip": false,
|
| 122 |
+
"single_word": false,
|
| 123 |
+
"special": false
|
| 124 |
+
},
|
| 125 |
+
"151658": {
|
| 126 |
+
"content": "</tool_call>",
|
| 127 |
+
"lstrip": false,
|
| 128 |
+
"normalized": false,
|
| 129 |
+
"rstrip": false,
|
| 130 |
+
"single_word": false,
|
| 131 |
+
"special": false
|
| 132 |
+
},
|
| 133 |
+
"151659": {
|
| 134 |
+
"content": "<|fim_prefix|>",
|
| 135 |
+
"lstrip": false,
|
| 136 |
+
"normalized": false,
|
| 137 |
+
"rstrip": false,
|
| 138 |
+
"single_word": false,
|
| 139 |
+
"special": false
|
| 140 |
+
},
|
| 141 |
+
"151660": {
|
| 142 |
+
"content": "<|fim_middle|>",
|
| 143 |
+
"lstrip": false,
|
| 144 |
+
"normalized": false,
|
| 145 |
+
"rstrip": false,
|
| 146 |
+
"single_word": false,
|
| 147 |
+
"special": false
|
| 148 |
+
},
|
| 149 |
+
"151661": {
|
| 150 |
+
"content": "<|fim_suffix|>",
|
| 151 |
+
"lstrip": false,
|
| 152 |
+
"normalized": false,
|
| 153 |
+
"rstrip": false,
|
| 154 |
+
"single_word": false,
|
| 155 |
+
"special": false
|
| 156 |
+
},
|
| 157 |
+
"151662": {
|
| 158 |
+
"content": "<|fim_pad|>",
|
| 159 |
+
"lstrip": false,
|
| 160 |
+
"normalized": false,
|
| 161 |
+
"rstrip": false,
|
| 162 |
+
"single_word": false,
|
| 163 |
+
"special": false
|
| 164 |
+
},
|
| 165 |
+
"151663": {
|
| 166 |
+
"content": "<|repo_name|>",
|
| 167 |
+
"lstrip": false,
|
| 168 |
+
"normalized": false,
|
| 169 |
+
"rstrip": false,
|
| 170 |
+
"single_word": false,
|
| 171 |
+
"special": false
|
| 172 |
+
},
|
| 173 |
+
"151664": {
|
| 174 |
+
"content": "<|file_sep|>",
|
| 175 |
+
"lstrip": false,
|
| 176 |
+
"normalized": false,
|
| 177 |
+
"rstrip": false,
|
| 178 |
+
"single_word": false,
|
| 179 |
+
"special": false
|
| 180 |
+
},
|
| 181 |
+
"151665": {
|
| 182 |
+
"content": "<tool_response>",
|
| 183 |
+
"lstrip": false,
|
| 184 |
+
"normalized": false,
|
| 185 |
+
"rstrip": false,
|
| 186 |
+
"single_word": false,
|
| 187 |
+
"special": false
|
| 188 |
+
},
|
| 189 |
+
"151666": {
|
| 190 |
+
"content": "</tool_response>",
|
| 191 |
+
"lstrip": false,
|
| 192 |
+
"normalized": false,
|
| 193 |
+
"rstrip": false,
|
| 194 |
+
"single_word": false,
|
| 195 |
+
"special": false
|
| 196 |
+
},
|
| 197 |
+
"151667": {
|
| 198 |
+
"content": "<think>",
|
| 199 |
+
"lstrip": false,
|
| 200 |
+
"normalized": false,
|
| 201 |
+
"rstrip": false,
|
| 202 |
+
"single_word": false,
|
| 203 |
+
"special": false
|
| 204 |
+
},
|
| 205 |
+
"151668": {
|
| 206 |
+
"content": "</think>",
|
| 207 |
+
"lstrip": false,
|
| 208 |
+
"normalized": false,
|
| 209 |
+
"rstrip": false,
|
| 210 |
+
"single_word": false,
|
| 211 |
+
"special": false
|
| 212 |
+
}
|
| 213 |
+
},
|
| 214 |
+
"additional_special_tokens": [
|
| 215 |
+
"<|im_start|>",
|
| 216 |
+
"<|im_end|>",
|
| 217 |
+
"<|object_ref_start|>",
|
| 218 |
+
"<|object_ref_end|>",
|
| 219 |
+
"<|box_start|>",
|
| 220 |
+
"<|box_end|>",
|
| 221 |
+
"<|quad_start|>",
|
| 222 |
+
"<|quad_end|>",
|
| 223 |
+
"<|vision_start|>",
|
| 224 |
+
"<|vision_end|>",
|
| 225 |
+
"<|vision_pad|>",
|
| 226 |
+
"<|image_pad|>",
|
| 227 |
+
"<|video_pad|>"
|
| 228 |
+
],
|
| 229 |
+
"bos_token": null,
|
| 230 |
+
"chat_template": "{%- if not add_generation_prompt is defined -%}\n {%- set add_generation_prompt = false -%}\n{%- endif -%}\n{%- if not enable_thinking is defined -%}\n {%- set enable_thinking = false -%}\n{%- endif -%}\n{%- if not keep_all_reasoning is defined -%}\n {%- set keep_all_reasoning = false -%}\n{%- endif -%}\n{%- macro render_extra_keys(json_dict, handled_keys) -%}\n {%- if json_dict is mapping %}\n {%- for json_key in json_dict if json_key not in handled_keys %}\n {%- if json_dict[json_key] is mapping or (json_dict[json_key] is sequence and json_dict[json_key] is not string) %}\n {{- '\\n<' ~ json_key ~ '>' ~ (json_dict[json_key] | tojson | safe) ~ '</' ~ json_key ~ '>' }}\n {%- else %}\n {{-'\\n<' ~ json_key ~ '>' ~ (json_dict[json_key] | string) ~ '</' ~ json_key ~ '>' }}\n {%- endif %}\n {%- endfor %}\n {%- endif %}\n{%- endmacro -%}\n{%- if messages[0][\"role\"] == \"system\" %}\n {%- set system_message = messages[0][\"content\"] %}\n {%- set loop_messages = messages[1:] %}\n{%- else %}\n {%- set loop_messages = messages %}\n{%- endif %}\n{%- set ns = namespace(last_user_index=-1) %}\n{%- for m in loop_messages %}\n {%- if m.role == 'user' %}\n {%- set ns.last_user_index = loop.index0 -%}\n {%- endif %}\n{%- endfor %}\n{%- if not tools is defined %}\n {%- set tools = [] %}\n{%- endif %}\n{%- if system_message is defined %}\n {{- \"<|im_start|>system\\n\" + system_message }}\n{%- else %}\n {{- \"<|im_start|>system\\nYou are MiMo, a helpful AI assistant engineered by Xiaomi.\" }}\n{%- endif %}\n{%- if tools is iterable and tools | length > 0 %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou have access to the following functions:\\n\\n\" }}\n {{- \"<tools>\" }}\n {%- for tool in tools %}\n {%- if tool.function is defined %}\n {%- set tool = tool.function %}\n {%- endif %}\n {{- \"\\n<function>\\n<name>\" ~ tool.name ~ \"</name>\" }}\n {%- if tool.description is defined %}\n {{- '\\n<description>' ~ (tool.description | trim) ~ '</description>' }}\n {%- endif %}\n {{- '\\n<parameters>' }}\n {%- if tool.parameters is defined and tool.parameters is mapping and tool.parameters.properties is defined and tool.parameters.properties is mapping %}\n {%- for param_name, param_fields in tool.parameters.properties|items %}\n {{- '\\n<parameter>' }}\n {{- '\\n<name>' ~ param_name ~ '</name>' }}\n {%- if param_fields.type is defined %}\n {{- '\\n<type>' ~ (param_fields.type | string) ~ '</type>' }}\n {%- endif %}\n {%- if param_fields.description is defined %}\n {{- '\\n<description>' ~ (param_fields.description | trim) ~ '</description>' }}\n {%- endif %}\n {%- set handled_keys = ['name', 'type', 'description'] %}\n {{- render_extra_keys(param_fields, handled_keys) }}\n {{- '\\n</parameter>' }}\n {%- endfor %}\n {%- endif %}\n {%- set handled_keys = ['type', 'properties'] %}\n {{- render_extra_keys(tool.parameters, handled_keys) }}\n {{- '\\n</parameters>' }}\n {%- set handled_keys = ['type', 'name', 'description', 'parameters'] %}\n {{- render_extra_keys(tool, handled_keys) }}\n {{- '\\n</function>' }}\n {%- endfor %}\n {{- \"\\n</tools>\" }}\n {{- '\\n\\nFor each function call, output the function name and arguments in the following format:\\n<tool_call>\\n<function=example_function_name>\\n<parameter=example_parameter_1>value_1</parameter>\\n<parameter=example_parameter_2>This is the value for the second parameter\\nthat can span\\nmultiple lines</parameter>\\n</function>\\n</tool_call>\\n\\n<IMPORTANT>\\n- Function calls MUST follow the specified format: an inner <function=...></function> block must be nested within <tool_call></tool_call> XML tags\\n- DO NOT use function calls inside <think></think> tags.\\n- The value enclosed between parameter tags is preserved exactly as-is, including newlines and spaces.\\n</IMPORTANT>' }}\n{%- endif %}\n{{- '<|im_end|>' }}\n{%- for message in loop_messages %}\n {%- if message.content is string %}\n {%- set content = message.content %}\n {%- else %}\n {%- set content = '' %}\n {%- endif %}\n {%- if message.role == \"assistant\" %}\n {%- if message.reasoning_content is string %}\n {%- set reasoning_content = message.reasoning_content %}\n {%- else %}\n {%- set reasoning_content = '' %}\n {%- if '</think>' in content %}\n {%- set reasoning_content = content.split('</think>')[0].split('<think>')[-1] %}\n {%- set content = content.split('</think>')[-1] %}\n {%- endif %}\n {%- endif %}\n {%- if (keep_all_reasoning or loop.index0 > ns.last_user_index) and reasoning_content -%}\n {{- '<|im_start|>' + message.role + '\\n<think>' + reasoning_content + '</think>' + content }}\n {%- else %}\n {{- '<|im_start|>' + message.role + '\\n<think></think>' + content }}\n {%- endif %}\n {%- if message.tool_calls is defined and message.tool_calls is iterable and message.tool_calls | length > 0 %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '<tool_call>\\n<function=' + tool_call.name + '>\\n' }}\n {%- if tool_call.arguments is defined %}\n {%- for args_name, args_value in tool_call.arguments|items %}\n {{- '<parameter=' + args_name + '>' }}\n {%- set args_value = args_value | tojson | safe if args_value is mapping or (args_value is sequence and args_value is not string) else args_value | string %}\n {{- args_value }}\n {{- '</parameter>\\n' }}\n {%- endfor %}\n {%- endif %}\n {{- '</function>\\n</tool_call>' }}\n {%- endfor %}\n {%- endif %}\n {{- '<|im_end|>' }}\n {%- elif message.role == \"user\" or message.role == \"system\"%}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' }}\n {%- elif message.role == \"tool\" %}\n {%- if loop.previtem and loop.previtem.role != \"tool\" %}\n {{- '<|im_start|>tool\\n' }}\n {%- endif %}\n {{- '<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>\\n' }}\n {%- if not loop.last and loop.nextitem.role != \"tool\" %}\n {{- '<|im_end|>' }}\n {%- elif loop.last %}\n {{- '<|im_end|>' }}\n {%- endif %}\n {%- else %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' }}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n {%- if not enable_thinking -%}\n {{- '<think></think>' -}}\n {%- else -%}\n {{- '' -}}\n {%- endif -%}\n{%- endif %}",
|
| 231 |
+
"clean_up_tokenization_spaces": false,
|
| 232 |
+
"eos_token": "<|im_end|>",
|
| 233 |
+
"errors": "replace",
|
| 234 |
+
"extra_special_tokens": {},
|
| 235 |
+
"model_max_length": 262144,
|
| 236 |
+
"pad_token": "<|endoftext|>",
|
| 237 |
+
"split_special_tokens": false,
|
| 238 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
| 239 |
+
"unk_token": null
|
| 240 |
+
}
|