sam2 / build_multi.py
YuqianFu's picture
Upload folder using huggingface_hub
1867b21 verified
import json
import os
from PIL import Image
import numpy as np
from pycocotools.mask import encode, decode, frPyObjects
from tqdm import tqdm
import copy
if __name__ == '__main__':
new_img_id = 0
nerf_dataset = []
first_frame_annotation_relpath = "teacup/Annotations/DSCF0672.png"
first_frame_img_relpath = "teacup/JPEGImages/DSCF0672.JPG"
first_frame_annotation_path = "/home/yuqian_fu/Projects/sam2/teacup/Annotations/DSCF0672.png"
first_frame_annotation_img = Image.open(first_frame_annotation_path)
first_frame_annotation = np.array(first_frame_annotation_img)
height, width = first_frame_annotation.shape
unique_instances = np.unique(first_frame_annotation)
unique_instances = unique_instances[unique_instances != 0]
coco_format_annotations = []
# for semi-supervised VOS, we use first frame's GT for input
for instance_value in unique_instances:
binary_mask = (first_frame_annotation == instance_value).astype(np.uint8)
segmentation = encode(np.asfortranarray(binary_mask))
segmentation = {
'counts': segmentation['counts'].decode('ascii'),
'size': segmentation['size'],
}
area = binary_mask.sum().astype(float)
coco_format_annotations.append(
{
'segmentation': segmentation,
'area': area,
'category_id': instance_value.astype(float),
}
)
sample_img_relpath = "teacup/JPEGImages/DSCF0732.JPG"
image_info = {
'file_name': sample_img_relpath,
'height': height,
'width': width,
}
sample_annotation_path = "/home/yuqian_fu/Projects/sam2/teacup/Annotations/DSCF0732.png"
sample_annotation = np.array(Image.open(sample_annotation_path))
sample_unique_instances = np.unique(sample_annotation)
sample_unique_instances = sample_unique_instances[sample_unique_instances != 0]
anns = []
for instance_value in sample_unique_instances:
assert instance_value in unique_instances, 'Found new target not in the first frame'
binary_mask = (sample_annotation == instance_value).astype(np.uint8)
segmentation = encode(np.asfortranarray(binary_mask))
segmentation = {
'counts': segmentation['counts'].decode('ascii'),
'size': segmentation['size'],
}
area = binary_mask.sum().astype(float)
anns.append(
{
'segmentation': segmentation,
'area': area,
'category_id': instance_value.astype(float),
}
)
first_frame_anns = copy.deepcopy(coco_format_annotations)
if len(anns) < len(first_frame_anns):
first_frame_anns = [ann for ann in first_frame_anns if ann['category_id'] in sample_unique_instances]
assert len(anns) == len(first_frame_anns)
sample = {
'image': sample_img_relpath,
'image_info': image_info,
'anns': anns,
'first_frame_image': first_frame_img_relpath,
'first_frame_anns': first_frame_anns,
'new_img_id': new_img_id,
'video_name': "teacup",
}
nerf_dataset.append(sample)
save_path = "/home/yuqian_fu/Projects/sam2/predicted_mask/nerf6.json"
with open(save_path, 'w') as f:
json.dump(nerf_dataset, f)
print(f'Save at {save_path}. Total sample: {len(nerf_dataset)}')