Update README.md
Browse files
README.md
CHANGED
|
@@ -59,13 +59,12 @@ pip install diffusers
|
|
| 59 |
|
| 60 |
```python
|
| 61 |
import torch
|
| 62 |
-
from transformers import
|
| 63 |
from transformers.audio_utils import load_audio_librosa
|
| 64 |
from scipy.io import wavfile
|
| 65 |
|
| 66 |
|
| 67 |
-
|
| 68 |
-
fe_path = "bezzam/VibeVoice-1.5B"
|
| 69 |
sampling_rate = 24000
|
| 70 |
|
| 71 |
# load audio
|
|
@@ -75,11 +74,11 @@ audio = load_audio_librosa(
|
|
| 75 |
)
|
| 76 |
|
| 77 |
# load model
|
| 78 |
-
|
| 79 |
-
feature_extractor =
|
| 80 |
model = VibeVoiceAcousticTokenizerModel.from_pretrained(
|
| 81 |
-
|
| 82 |
-
).
|
| 83 |
|
| 84 |
# preprocess audio
|
| 85 |
inputs = feature_extractor(
|
|
@@ -89,7 +88,7 @@ inputs = feature_extractor(
|
|
| 89 |
pad_to_multiple_of=3200,
|
| 90 |
return_attention_mask=False,
|
| 91 |
return_tensors="pt"
|
| 92 |
-
).to(
|
| 93 |
print("Input audio shape:", inputs.input_features.shape)
|
| 94 |
# Input audio shape: torch.Size([1, 1, 224000])
|
| 95 |
|
|
|
|
| 59 |
|
| 60 |
```python
|
| 61 |
import torch
|
| 62 |
+
from transformers import AutoFeatureExtractor, VibeVoiceAcousticTokenizerModel
|
| 63 |
from transformers.audio_utils import load_audio_librosa
|
| 64 |
from scipy.io import wavfile
|
| 65 |
|
| 66 |
|
| 67 |
+
model_id = "bezzam/VibeVoice-AcousticTokenizer"
|
|
|
|
| 68 |
sampling_rate = 24000
|
| 69 |
|
| 70 |
# load audio
|
|
|
|
| 74 |
)
|
| 75 |
|
| 76 |
# load model
|
| 77 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 78 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(model_id)
|
| 79 |
model = VibeVoiceAcousticTokenizerModel.from_pretrained(
|
| 80 |
+
model_id, device_map=device,
|
| 81 |
+
).eval()
|
| 82 |
|
| 83 |
# preprocess audio
|
| 84 |
inputs = feature_extractor(
|
|
|
|
| 88 |
pad_to_multiple_of=3200,
|
| 89 |
return_attention_mask=False,
|
| 90 |
return_tensors="pt"
|
| 91 |
+
).to(device)
|
| 92 |
print("Input audio shape:", inputs.input_features.shape)
|
| 93 |
# Input audio shape: torch.Size([1, 1, 224000])
|
| 94 |
|