Datasets:

ArXiv:
License:
S2NO commited on
Commit
37cf1e0
·
verified ·
1 Parent(s): ec53e85

Update limb_wavefield.py

Browse files
Files changed (1) hide show
  1. limb_wavefield.py +6 -15
limb_wavefield.py CHANGED
@@ -14,23 +14,14 @@ import argparse
14
  torch.set_float32_matmul_precision("medium")
15
  def main(model_name):
16
 
17
- if model_name == 'S2NO_big':
18
- from S2NO_pretrain import S2NO_pretrain
19
- model = S2NO_pretrain().cuda()
20
- PATH = './S2NO/big/600k.ckpt'
21
- if model_name == 'S2NO_small':
22
  from S2NO_pretrain import S2NO_pretrain
23
  model = S2NO_pretrain(width = 20).cuda()
24
- PATH = './S2NO/small/600k.ckpt'
25
- # PATH = '/gpfs/share/home/2401112587/neuralFWI/NCBSO_ckpt/NCBSO_20width_mq_lr01_final/600k_model-epoch=007-val_loss=0.0856-val_loss_breast=0.0772-val_loss_arm=0.0773-val_loss_limb=0.1391.ckpt'
26
- if model_name == 'FNO_big':
27
- from FNO_pretrain import FNO_pretrain
28
- model = FNO_pretrain(features_ = 40).cuda()
29
- PATH = './FNO/big/600k.ckpt'
30
- if model_name == 'FNO_small':
31
  from FNO_pretrain import FNO_pretrain
32
  model = FNO_pretrain(features_ = 20).cuda()
33
- PATH = './FNO/small/600k.ckpt'
34
  if model_name == 'UNet':
35
  from UNet_pretrain import UNet_pretrain
36
  model =UNet_pretrain().cuda()
@@ -147,8 +138,8 @@ if __name__ == '__main__':
147
  # 解析命令行参数
148
  parser = argparse.ArgumentParser(description='Run model inference with specified model.')
149
  parser.add_argument('--model_name', type=str, required=True,
150
- choices=['S2NO_big', 'S2NO_small', 'FNO_big', 'FNO_small','UNet'],
151
- help='Name of the model to use (e.g., S2NO_small)')
152
  args = parser.parse_args()
153
  # 调用主函数
154
  main(args.model_name)
 
14
  torch.set_float32_matmul_precision("medium")
15
  def main(model_name):
16
 
17
+ if model_name == 'S2NO':
 
 
 
 
18
  from S2NO_pretrain import S2NO_pretrain
19
  model = S2NO_pretrain(width = 20).cuda()
20
+ PATH = './S2NO/600k.ckpt'
21
+ if model_name == 'FNO':
 
 
 
 
 
22
  from FNO_pretrain import FNO_pretrain
23
  model = FNO_pretrain(features_ = 20).cuda()
24
+ PATH = './FNO/600k.ckpt'
25
  if model_name == 'UNet':
26
  from UNet_pretrain import UNet_pretrain
27
  model =UNet_pretrain().cuda()
 
138
  # 解析命令行参数
139
  parser = argparse.ArgumentParser(description='Run model inference with specified model.')
140
  parser.add_argument('--model_name', type=str, required=True,
141
+ choices=['S2NO','FNO','UNet'],
142
+ help='Name of the model to use (e.g., S2NO)')
143
  args = parser.parse_args()
144
  # 调用主函数
145
  main(args.model_name)