from rank_bm25 import BM25Plus import os import sys import re from nltk.corpus import stopwords from nltk.stem import PorterStemmer, WordNetLemmatizer def read_corpus(corpus_files_path): corpus = [] corpus_files = os.listdir(corpus_files_path) for corpus_file in corpus_files: with open(os.path.join(corpus_files_path, corpus_file), 'r') as input_file: tmp = input_file.read() corpus.append(tmp) return corpus def normalize_text(text): # 大小写归一化 text = text.lower() # 分词 words = re.findall(r'\w+|[^\s\w]+', text) # 去除停用词 stop_words = set(stopwords.words('english')) words = [word for word in words if word not in stop_words] # 词干提取 stemmer = PorterStemmer() words = [stemmer.stem(word) for word in words] # 词形还原 lemmatizer = WordNetLemmatizer() words = [lemmatizer.lemmatize(word) for word in words] return words # 使用正则表达式进行分词 def tokenize_code(code): # 使用归一化 return normalize_text(code) def main(): corpus_files_path = "functions" query_files_path = "functions_with_unitTest" match_results_path = "potential_function_pair" project = sys.argv[1] corpus_lang = sys.argv[2] query_lang = sys.argv[3] corpus_files_path = os.path.join(corpus_files_path, project, corpus_lang) query_files_path = os.path.join(query_files_path, project, query_lang) match_results_path = os.path.join(match_results_path, project, f"{query_lang}__{corpus_lang}") query_files = os.listdir(query_files_path) # 获取匹配池子 corpus = read_corpus(corpus_files_path) tokenized_corpus = [tokenize_code(doc) for doc in corpus] bm25 = BM25Plus(tokenized_corpus) # 获取请求 for query_file in query_files: with open(os.path.join(query_files_path, query_file), 'r') as input_file: query = input_file.read() # 对于每个请求计算前n个匹配结果 # 放大函数名的权重 tokenized_query = tokenize_code(query) # 获取相关性评分 scores = bm25.get_scores(tokenized_query) # 获取最相关的前几个函数定义 top_n = 10 match_results_index = sorted(range(len(scores)), key=lambda i: scores[i], reverse=True)[:top_n] # 如果文件夹不存在,则创建它 if not os.path.exists(match_results_path): os.makedirs(match_results_path) # 记录匹配结果 with open(os.path.join(match_results_path, query_file), 'w') as output_file: output_file.write("\n") output_file.write(query) output_file.write("\n\n\n") # for match_result in match_results: # output_file.write(match_result) # output_file.write("\n") output_file.write("\n") i = 1 for index in match_results_index: output_file.write(" \n{}\n\n\n".format(i, corpus[index], i)) # output_file.write("Score: {}\n".format(scores[index])) i += 1 output_file.write("\n") if __name__ == "__main__" : main()