File size: 2,905 Bytes
3f80640
 
 
 
 
 
 
 
 
 
0f71988
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f80640
 
 
0f71988
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f80640
 
0f71988
 
 
 
 
 
 
 
 
 
 
 
 
 
3f80640
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
pretty_name: VisualToolBench
tags:
  - vision
  - multimodal
  - tool-use
task_categories:
  - visual-question-answering
---

# VisToolBench Dataset

A benchmark dataset for evaluating vision-language models on tool-use tasks.

## Dataset Statistics

- **Total samples**: 1204
- **Single-turn**: 603
- **Multi-turn**: 601

## Schema

| Column | Type | Description |
|--------|------|-------------|
| `id` | string | Unique task identifier |
| `turncase` | string | Either "single-turn" or "multi-turn" |
| `num_turns` | int | Number of conversation turns (1 for single-turn) |
| `prompt_category` | string | Task category (e.g., "medical", "scientific", "general") |
| `eval_focus` | string | What aspect is being evaluated (e.g., "visual_reasoning", "tool_use") |
| `turn_prompts` | List[string] | Per-turn prompts (single-turn → list of length 1) |
| `turn_golden_answers` | List[string] | Per-turn golden answers |
| `turn_tool_trajectories` | List[string] | Per-turn tool trajectories (JSON strings) |
| `rubrics_by_turn` | List[string] | Per-turn rubric dicts as JSON strings (includes weights + metadata) |
| `images` | List[Image] | Flat list of all images (HF viewer shows these) |
| `images_by_turn` | List[List[Image]] | Images grouped by turn (to know which image belongs to which turn) |
| `num_images` | int | Total images in `images` |

## Rubrics Format

Each rubric entry contains:
- `description`: What the rubric evaluates
- `weight`: Importance weight (1-5)
- `objective/subjective`: Whether evaluation is objective or subjective
- `explicit/implicit`: Whether the answer is explicit or implicit in the image
- `category`: List of categories (e.g., "instruction following", "truthfulness")
- `critical`: Whether this is a critical rubric ("yes"/"no")
- `final_answer`: Whether this relates to the final answer ("yes"/"no")

## Usage

```python
from datasets import load_dataset

# Load the dataset
ds = load_dataset("path/to/dataset")

# Access a sample
sample = ds['test'][0]
print(sample['turn_prompts'])       # list[str]
print(sample['images'][0])          # PIL Image (first image overall)
print(sample['images_by_turn'][0])  # list of PIL Images for turn 1

# Parse rubrics for turn 1
import json
turn1_rubrics = json.loads(sample['rubrics_by_turn'][0])
for rubric_id, rubric in turn1_rubrics.items():
    print(f"{rubric['description']} (weight: {rubric['weight']})")
```

## Splits

- `test`: Full dataset (1204 samples)

## Citation

```bibtex
@article{guo2025beyond,
  title={Beyond seeing: Evaluating multimodal llms on tool-enabled image perception, transformation, and reasoning},
  author={Guo, Xingang and Tyagi, Utkarsh and Gosai, Advait and Vergara, Paula and Park, Jayeon and Montoya, Ernesto Gabriel Hern{\'a}ndez and Zhang, Chen Bo Calvin and Hu, Bin and He, Yunzhong and Liu, Bing and others},
  journal={arXiv preprint arXiv:2510.12712},
  year={2025}
}
```