Datasets:
Tasks:
Token Classification
Sub-tasks:
named-entity-recognition
Languages:
Hausa
Size:
1K<n<10K
License:
| # coding=utf-8 | |
| # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """Introduction to the Yoruba GV NER dataset: A Yoruba Global Voices (News) Named Entity Recognition Dataset""" | |
| import datasets | |
| logger = datasets.logging.get_logger(__name__) | |
| # TODO: Add BibTeX citation | |
| # Find for instance the citation on arxiv or on the dataset repo/website | |
| _CITATION = """\ | |
| @inproceedings{hedderich-etal-2020-transfer, | |
| title = "Transfer Learning and Distant Supervision for Multilingual Transformer Models: A Study on {A}frican Languages", | |
| author = "Hedderich, Michael A. and | |
| Adelani, David and | |
| Zhu, Dawei and | |
| Alabi, Jesujoba and | |
| Markus, Udia and | |
| Klakow, Dietrich", | |
| booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)", | |
| month = nov, | |
| year = "2020", | |
| address = "Online", | |
| publisher = "Association for Computational Linguistics", | |
| url = "https://www.aclweb.org/anthology/2020.emnlp-main.204", | |
| doi = "10.18653/v1/2020.emnlp-main.204", | |
| pages = "2580--2591", | |
| } | |
| """ | |
| # TODO: Add description of the dataset here | |
| # You can copy an official description | |
| _DESCRIPTION = """\ | |
| The Hausa VOA NER dataset is a labeled dataset for named entity recognition in Hausa. The texts were obtained from | |
| Hausa Voice of America News articles https://www.voahausa.com/ . We concentrate on | |
| four types of named entities: persons [PER], locations [LOC], organizations [ORG], and dates & time [DATE]. | |
| The Hausa VOA NER data files contain 2 columns separated by a tab ('\t'). Each word has been put on a separate line and | |
| there is an empty line after each sentences i.e the CoNLL format. The first item on each line is a word, the second | |
| is the named entity tag. The named entity tags have the format I-TYPE which means that the word is inside a phrase | |
| of type TYPE. For every multi-word expression like 'New York', the first word gets a tag B-TYPE and the subsequent words | |
| have tags I-TYPE, a word with tag O is not part of a phrase. The dataset is in the BIO tagging scheme. | |
| For more details, see https://www.aclweb.org/anthology/2020.emnlp-main.204/ | |
| """ | |
| _URL = "https://github.com/uds-lsv/transfer-distant-transformer-african/raw/master/data/hausa_ner/" | |
| _TRAINING_FILE = "train_clean.tsv" | |
| _DEV_FILE = "dev.tsv" | |
| _TEST_FILE = "test.tsv" | |
| class HausaVoaNerConfig(datasets.BuilderConfig): | |
| """BuilderConfig for HausaVoaNer""" | |
| def __init__(self, **kwargs): | |
| """BuilderConfig for HausaVoaNer. | |
| Args: | |
| **kwargs: keyword arguments forwarded to super. | |
| """ | |
| super(HausaVoaNerConfig, self).__init__(**kwargs) | |
| class HausaVoaNer(datasets.GeneratorBasedBuilder): | |
| """Hausa VOA NER dataset.""" | |
| BUILDER_CONFIGS = [ | |
| HausaVoaNerConfig( | |
| name="hausa_voa_ner", version=datasets.Version("1.0.0"), description="Hausa VOA NER dataset" | |
| ), | |
| ] | |
| def _info(self): | |
| return datasets.DatasetInfo( | |
| description=_DESCRIPTION, | |
| features=datasets.Features( | |
| { | |
| "id": datasets.Value("string"), | |
| "tokens": datasets.Sequence(datasets.Value("string")), | |
| "ner_tags": datasets.Sequence( | |
| datasets.features.ClassLabel( | |
| names=[ | |
| "O", | |
| "B-PER", | |
| "I-PER", | |
| "B-ORG", | |
| "I-ORG", | |
| "B-LOC", | |
| "I-LOC", | |
| "B-DATE", | |
| "I-DATE", | |
| ] | |
| ) | |
| ), | |
| } | |
| ), | |
| supervised_keys=None, | |
| homepage="https://www.aclweb.org/anthology/2020.emnlp-main.204/", | |
| citation=_CITATION, | |
| ) | |
| def _split_generators(self, dl_manager): | |
| """Returns SplitGenerators.""" | |
| urls_to_download = { | |
| "train": f"{_URL}{_TRAINING_FILE}", | |
| "dev": f"{_URL}{_DEV_FILE}", | |
| "test": f"{_URL}{_TEST_FILE}", | |
| } | |
| downloaded_files = dl_manager.download_and_extract(urls_to_download) | |
| return [ | |
| datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), | |
| datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}), | |
| datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}), | |
| ] | |
| def _generate_examples(self, filepath): | |
| logger.info("⏳ Generating examples from = %s", filepath) | |
| with open(filepath, encoding="utf-8") as f: | |
| guid = 0 | |
| tokens = [] | |
| ner_tags = [] | |
| for line in f: | |
| line = line.strip() | |
| if line == "" or line == "\n": | |
| if tokens: | |
| yield guid, { | |
| "id": str(guid), | |
| "tokens": tokens, | |
| "ner_tags": ner_tags, | |
| } | |
| guid += 1 | |
| tokens = [] | |
| ner_tags = [] | |
| else: | |
| # yoruba_gv_ner tokens are tab separated | |
| splits = line.strip().split("\t") | |
| tokens.append(splits[0]) | |
| ner_tags.append(splits[1].rstrip()) | |
| # last example | |
| yield guid, { | |
| "id": str(guid), | |
| "tokens": tokens, | |
| "ner_tags": ner_tags, | |
| } | |