File size: 3,474 Bytes
72a5beb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
from typing import Dict
import json
import struct
import torch

class MemoryEfficientSafeOpen:
    """
    A class to read tensors from a .safetensors file in a memory-efficient way.
    """
    # does not support metadata loading
    def __init__(self, filename):
        self.filename = filename
        self.file = open(filename, "rb")
        self.header, self.header_size = self._read_header()

    def __enter__(self):
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.file.close()

    def keys(self):
        return [k for k in self.header.keys() if k != "__metadata__"]

    def metadata(self) -> Dict[str, str]:
        return self.header.get("__metadata__", {})

    def get_tensor(self, key):
        if key not in self.header:
            raise KeyError(f"Tensor '{key}' not found in the file")

        metadata = self.header[key]
        offset_start, offset_end = metadata["data_offsets"]

        if offset_start == offset_end:
            tensor_bytes = None
        else:
            # adjust offset by header size
            self.file.seek(self.header_size + 8 + offset_start)
            tensor_bytes = self.file.read(offset_end - offset_start)

        return self._deserialize_tensor(tensor_bytes, metadata)

    def _read_header(self):
        header_size = struct.unpack("<Q", self.file.read(8))[0]
        header_json = self.file.read(header_size).decode("utf-8")
        return json.loads(header_json), header_size

    def _deserialize_tensor(self, tensor_bytes, metadata):
        dtype = self._get_torch_dtype(metadata["dtype"])
        shape = metadata["shape"]

        if tensor_bytes is None:
            byte_tensor = torch.empty(0, dtype=torch.uint8)
        else:
            tensor_bytes = bytearray(tensor_bytes)  # make it writable
            byte_tensor = torch.frombuffer(tensor_bytes, dtype=torch.uint8)

        # process float8 types
        if metadata["dtype"] in ["F8_E5M2", "F8_E4M3"]:
            return self._convert_float8(byte_tensor, metadata["dtype"], shape)

        # convert to the target dtype and reshape
        return byte_tensor.view(dtype).reshape(shape)

    @staticmethod
    def _get_torch_dtype(dtype_str):
        dtype_map = {
            "F64": torch.float64,
            "F32": torch.float32,
            "F16": torch.float16,
            "BF16": torch.bfloat16,
            "I64": torch.int64,
            "I32": torch.int32,
            "I16": torch.int16,
            "I8": torch.int8,
            "U8": torch.uint8,
            "BOOL": torch.bool,
        }
        # add float8 types if available
        if hasattr(torch, "float8_e5m2"):
            dtype_map["F8_E5M2"] = torch.float8_e5m2
        if hasattr(torch, "float8_e4m3fn"):
            dtype_map["F8_E4M3"] = torch.float8_e4m3fn
        return dtype_map.get(dtype_str)

    @staticmethod
    def _convert_float8(byte_tensor, dtype_str, shape):
        if dtype_str == "F8_E5M2" and hasattr(torch, "float8_e5m2"):
            return byte_tensor.view(torch.float8_e5m2).reshape(shape)
        elif dtype_str == "F8_E4M3" and hasattr(torch, "float8_e4m3fn"):
            return byte_tensor.view(torch.float8_e4m3fn).reshape(shape)
        else:
            # convert to float16 if float8 is not supported
            # return byte_tensor.view(torch.uint8).to(torch.float16).reshape(shape)
            raise ValueError(f"Unsupported float8 type: {dtype_str} (upgrade PyTorch to support float8 types)")