File size: 6,844 Bytes
72a5beb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
#!/usr/bin/env python
"""
DeepSeek-V3-Base 671B Β· QLoRA NF4 Β· ZeRO-3 (CPU off-load)
Loads **locally** from /workspace/DeepSeek-V3-Base and force-casts F8 β†’ FP16
before 4-bit quantisation, so bitsandbytes is happy.
"""

# ── 1 Β· ENV flags ─────────────────────────────────────────────────────────
import os, gc, time, logging
from pathlib import Path
os.environ["TRANSFORMERS_NO_FLASH_ATT N"] = "1"      # disable FlashAttention
os.environ["DEEPSEEK_MOE_EXPERTS"]      = "2"        # fewer experts/token
os.environ["HF_HUB_OFFLINE"]            = "1"        # never hit the Hub

# ── 2 Β· Imports ───────────────────────────────────────────────────────────
import torch
from accelerate import Accelerator
from datasets import load_dataset, load_from_disk, DatasetDict
from transformers import (
    AutoTokenizer, AutoConfig, AutoModelForCausalLM, BitsAndBytesConfig
)
from peft import LoraConfig, get_peft_model
import deepspeed.utils.groups as ds_groups
from tqdm.auto import tqdm


# ── 2.1 Β· DeepSpeed EP-group helper (works on ≀0.14 and β‰₯0.15) ────────────
def ensure_ep_groups(ep=8):
    if hasattr(ds_groups, "is_initialized"):
        if not ds_groups.is_initialized():
            ds_groups.initialize(ep_size=ep)
    elif hasattr(ds_groups, "initialized"):
        if not ds_groups.initialized():
            ds_groups.initialize(ep_size=ep)
ensure_ep_groups(8)

# ── 3 Β· Logging & paths ───────────────────────────────────────────────────
logging.basicConfig(
    level=logging.INFO,
    format="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
    datefmt="%Y-%m-%d %H:%M:%S",
)
log = logging.getLogger("train_qlora")

MODEL_DIR   = Path("/workspace/DeepSeek-V3-Base")   # <β€” change if needed
DATA_JSONL  = "/workspace/data/splits/train.jsonl"
CACHE_DIR   = "/workspace/data/processed_10k_nf4"

if not MODEL_DIR.exists():
    raise FileNotFoundError(f"βœ– Local model dir {MODEL_DIR} not found.")

# ── 4 Β· Hyper-params (edit freely) ────────────────────────────────────────
epochs        = 0.1        # smoke-test
batch_size    = 1
grad_accum    = 16
lr            = 1e-4
num_samples   = 10_000

# ── 5 Β· Main ──────────────────────────────────────────────────────────────
def main():
    acc = Accelerator(mixed_precision="bf16")
    log.info(f"Rank {acc.process_index} on {acc.device}")

    # 5.1 Tokeniser
    tok = AutoTokenizer.from_pretrained(MODEL_DIR, use_fast=False, trust_remote_code=True)
    tok.pad_token = tok.eos_token
    tok.padding_side = "right"

    # 5.2 4-bit config
    bnb_cfg = BitsAndBytesConfig(
        load_in_4bit=True,
        bnb_4bit_quant_type="nf4",
        bnb_4bit_use_double_quant=True,
        bnb_4bit_compute_dtype=torch.bfloat16,
        bnb_4bit_preprocess_dtype="float16",   # ← NEW: cast F8 ➜ FP16 **before** quantising
    )


    # 5.3 Model load β€” **force FP16 cast to dodge float-8**
    log.info("Loading DeepSeek-V3 locally (F8 β†’ FP16 β†’ 4-bit)…")
    t0 = time.time()
    cfg = AutoConfig.from_pretrained(MODEL_DIR, trust_remote_code=True)
    cfg.ep_size = 8

    model = AutoModelForCausalLM.from_pretrained(
        MODEL_DIR,
        config=cfg,
        device_map="balanced_low_0",
        torch_dtype=torch.float16,          # ← key line: cast F8 ➟ FP16
        quantization_config=bnb_cfg,
        trust_remote_code=True,
    )
    model.gradient_checkpointing_enable()
    log.info(f"Model ready in {time.time()-t0:.1f}s")

    # 5.4 LoRA adapters
    lora_cfg = LoraConfig(
        r=16, lora_alpha=16, bias="none", task_type="CAUSAL_LM",
        target_modules=["q_proj","k_proj","v_proj","o_proj",
                        "gate","up_proj","down_proj"],
    )
    model = get_peft_model(model, lora_cfg)

    # 5.5 Dataset
    if Path(CACHE_DIR).exists():
        ds = load_from_disk(CACHE_DIR)
    else:
        raw = load_dataset("json", data_files={"train": DATA_JSONL}, split="train")
        raw = raw.shuffle(seed=42).select(range(num_samples))
        split = int(0.95 * num_samples)
        tr_raw, va_raw = raw.select(range(split)), raw.select(range(split, num_samples))

        def _tok(b):
            x = [f"<|begin_of_sentence|>User: {p}\nAssistant:" for p in b["prompt"]]
            y = [f"{r}<|end_of_sentence|>"      for r in b["response"]]
            enc = tok(x, 1024, truncation=True, padding="max_length", return_tensors="pt")
            dec = tok(y, 1024, truncation=True, padding="max_length", return_tensors="pt")
            enc["labels"] = dec.input_ids
            return enc

        tr_ds = tr_raw.map(_tok, batched=True, remove_columns=["prompt","response"])
        va_ds = va_raw.map(_tok, batched=True, remove_columns=["prompt","response"])
        tr_ds.set_format("torch"); va_ds.set_format("torch")
        from datasets import DatasetDict
        ds = DatasetDict(train=tr_ds, validation=va_ds).save_to_disk(CACHE_DIR)

    # 5.6 Dataloaders & optimiser
    from torch.utils.data import DataLoader
    tr = DataLoader(ds["train"], batch_size=batch_size, shuffle=True)
    va = DataLoader(ds["validation"], batch_size=batch_size)
    opt = torch.optim.AdamW(model.parameters(), lr=lr)
    model, tr, va, opt = acc.prepare(model, tr, va, opt)

    steps = int(epochs * len(tr) // grad_accum)
    log.info(f"Training {epochs} epochs (β‰ˆ{steps} steps)")

    # 5.7 Training loop
    model.train(); g_step = 0
    for ep in range(int(epochs + 0.999)):
        t_ep, loss_sum = time.time(), 0.0
        for i, batch in enumerate(tqdm(tr, disable=not acc.is_local_main_process)):
            loss = model(**batch).loss / grad_accum
            acc.backward(loss)
            if (i+1) % grad_accum == 0:
                opt.step(); opt.zero_grad(); g_step += 1
            loss_sum += loss.item()*grad_accum
            if g_step >= steps: break
        log.info(f"Epoch {ep} done ({time.time()-t_ep:.1f}s) "
                 f"avg loss {loss_sum/len(tr):.4f}")
        gc.collect(); torch.cuda.empty_cache()
        if g_step >= steps: break

    # 5.8 Save LoRA
    if acc.is_main_process:
        out = Path("ckpt/lora_n16_ep0p1"); out.mkdir(parents=True, exist_ok=True)
        model.save_pretrained(out, safe_serialization=True)
        log.info(f"LoRA saved β†’ {out}")

if __name__ == "__main__":
    main()