Upload folder using huggingface_hub
Browse files- config.json +41 -0
- configuration_gidd.py +74 -0
- generation_config.json +6 -0
- model-00001-of-00004.safetensors +3 -0
- model-00002-of-00004.safetensors +3 -0
- model-00003-of-00004.safetensors +3 -0
- model-00004-of-00004.safetensors +3 -0
- model.safetensors.index.json +487 -0
- modeling_gidd.py +1134 -0
- special_tokens_map.json +30 -0
- tokenizer.json +0 -0
- tokenizer_config.json +140 -0
config.json
ADDED
|
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"GiddForDiffusionLM"
|
| 4 |
+
],
|
| 5 |
+
"attention_bias": true,
|
| 6 |
+
"attn_performer": "eager",
|
| 7 |
+
"attn_soft_cap": 30.0,
|
| 8 |
+
"auto_map": {
|
| 9 |
+
"AutoConfig": "configuration_gidd.GiddConfig",
|
| 10 |
+
"AutoModel": "modeling_gidd.GiddModel",
|
| 11 |
+
"AutoModelForCausalLM": "modeling_gidd.GiddForDiffusionLM"
|
| 12 |
+
},
|
| 13 |
+
"bos_token_id": 0,
|
| 14 |
+
"emb_init_scale": 0.1,
|
| 15 |
+
"eos_token_id": 1,
|
| 16 |
+
"head_dim": 128,
|
| 17 |
+
"head_init_scale": 0.0,
|
| 18 |
+
"head_scaling": 0.1111111111111111,
|
| 19 |
+
"hidden_size": 4608,
|
| 20 |
+
"init_scale": 0.005892556509887897,
|
| 21 |
+
"intermediate_size": 18432,
|
| 22 |
+
"is_causal": false,
|
| 23 |
+
"max_log_snr": 9.0,
|
| 24 |
+
"max_position_embeddings": 2048,
|
| 25 |
+
"min_log_snr": -9.0,
|
| 26 |
+
"mlp_bias": true,
|
| 27 |
+
"model_type": "gidd",
|
| 28 |
+
"noise_type": 1000.0,
|
| 29 |
+
"num_attention_heads": 36,
|
| 30 |
+
"num_hidden_layers": 34,
|
| 31 |
+
"resid_scale": 4.0,
|
| 32 |
+
"rms_norm_eps": 1e-06,
|
| 33 |
+
"rope_scaling": null,
|
| 34 |
+
"rope_theta": 10000.0,
|
| 35 |
+
"tie_word_embeddings": false,
|
| 36 |
+
"torch_dtype": "bfloat16",
|
| 37 |
+
"transformers_version": "4.54.0",
|
| 38 |
+
"use_qk_norm": true,
|
| 39 |
+
"vocab_size": 131072,
|
| 40 |
+
"weight_scaling": 1.0
|
| 41 |
+
}
|
configuration_gidd.py
ADDED
|
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import typing as tp
|
| 2 |
+
|
| 3 |
+
from transformers import PretrainedConfig
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
class GiddConfig(PretrainedConfig):
|
| 7 |
+
model_type: str = "gidd"
|
| 8 |
+
|
| 9 |
+
def __init__(
|
| 10 |
+
self,
|
| 11 |
+
vocab_size: int = 131072,
|
| 12 |
+
hidden_size: int = 768,
|
| 13 |
+
intermediate_size: int = 3072,
|
| 14 |
+
num_hidden_layers: int = 12,
|
| 15 |
+
num_attention_heads: int = 12,
|
| 16 |
+
head_dim: tp.Optional[int] = None,
|
| 17 |
+
is_causal: bool = False,
|
| 18 |
+
attn_soft_cap: float = 30.0,
|
| 19 |
+
max_position_embeddings: int = 1024,
|
| 20 |
+
resid_scale: float = 4.0,
|
| 21 |
+
rms_norm_eps: float = 1e-6,
|
| 22 |
+
use_qk_norm: bool = True,
|
| 23 |
+
init_scale: float = 0.4,
|
| 24 |
+
emb_init_scale: float = 0.1,
|
| 25 |
+
head_init_scale: float = 0.0,
|
| 26 |
+
weight_scaling: str = "fan_in",
|
| 27 |
+
head_scaling: float = 1.0,
|
| 28 |
+
bos_token_id: int = 0,
|
| 29 |
+
eos_token_id: int = 1,
|
| 30 |
+
rope_theta: float = 10000.0,
|
| 31 |
+
rope_scaling: tp.Dict[str, tp.Union[str, float]] = None,
|
| 32 |
+
attention_bias: bool = False,
|
| 33 |
+
mlp_bias: bool = False,
|
| 34 |
+
tie_word_embeddings: bool = False,
|
| 35 |
+
attn_performer: str = "eager",
|
| 36 |
+
noise_type: float = 0.0,
|
| 37 |
+
min_log_snr: float = -9.0,
|
| 38 |
+
max_log_snr: float = 9.0,
|
| 39 |
+
**kwargs,
|
| 40 |
+
):
|
| 41 |
+
super().__init__(
|
| 42 |
+
bos_token_id=bos_token_id,
|
| 43 |
+
eos_token_id=eos_token_id,
|
| 44 |
+
**kwargs,
|
| 45 |
+
)
|
| 46 |
+
self.vocab_size = vocab_size
|
| 47 |
+
|
| 48 |
+
self.hidden_size = hidden_size
|
| 49 |
+
self.intermediate_size = intermediate_size
|
| 50 |
+
self.num_hidden_layers = num_hidden_layers
|
| 51 |
+
self.rope_theta = rope_theta
|
| 52 |
+
self.num_attention_heads = num_attention_heads
|
| 53 |
+
self.attn_soft_cap = attn_soft_cap
|
| 54 |
+
self.is_causal = is_causal
|
| 55 |
+
self.max_position_embeddings = max_position_embeddings
|
| 56 |
+
self.resid_scale = resid_scale
|
| 57 |
+
self.init_scale = init_scale
|
| 58 |
+
self.emb_init_scale = emb_init_scale
|
| 59 |
+
self.head_init_scale = head_init_scale
|
| 60 |
+
self.weight_scaling = weight_scaling
|
| 61 |
+
self.head_scaling = head_scaling
|
| 62 |
+
self.rms_norm_eps = rms_norm_eps
|
| 63 |
+
self.use_qk_norm = use_qk_norm
|
| 64 |
+
self.attention_bias = attention_bias
|
| 65 |
+
self.mlp_bias = mlp_bias
|
| 66 |
+
self.rope_scaling = rope_scaling
|
| 67 |
+
self.head_dim = (
|
| 68 |
+
head_dim if head_dim is not None else hidden_size // num_attention_heads
|
| 69 |
+
)
|
| 70 |
+
self.tie_word_embeddings = tie_word_embeddings
|
| 71 |
+
self.attn_performer = attn_performer
|
| 72 |
+
self.noise_type = noise_type
|
| 73 |
+
self.min_log_snr = min_log_snr
|
| 74 |
+
self.max_log_snr = max_log_snr
|
generation_config.json
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"bos_token_id": 0,
|
| 4 |
+
"eos_token_id": 1,
|
| 5 |
+
"transformers_version": "4.54.0"
|
| 6 |
+
}
|
model-00001-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0ee10c0dc3b60f8f4ea60be06c590920a7b85078a250511aac0db4c184c4fcf0
|
| 3 |
+
size 4946119120
|
model-00002-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:dd8257df5e1bbcd0dc099389a5f80f58a4c854baa669bac3cd4799f75714253a
|
| 3 |
+
size 4970074808
|
model-00003-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c50fd4558188506075bb3b1e1732c6c4fbff651d80fa57e853bb1a5ffbf37b98
|
| 3 |
+
size 4885038200
|
model-00004-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:22ba8c7f034ceece1884afee15a202e03ecbe1194540b72d0cd81fbfb959c2b2
|
| 3 |
+
size 4946128048
|
model.safetensors.index.json
ADDED
|
@@ -0,0 +1,487 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_parameters": 9873022464,
|
| 4 |
+
"total_size": 19747307520
|
| 5 |
+
},
|
| 6 |
+
"weight_map": {
|
| 7 |
+
"lm_head.weight": "model-00004-of-00004.safetensors",
|
| 8 |
+
"model.embed_tokens.weight": "model-00001-of-00004.safetensors",
|
| 9 |
+
"model.layers.0.attn_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 10 |
+
"model.layers.0.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
| 11 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 12 |
+
"model.layers.0.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
| 13 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 14 |
+
"model.layers.0.mlp_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 15 |
+
"model.layers.0.self_attn.k_bias": "model-00001-of-00004.safetensors",
|
| 16 |
+
"model.layers.0.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
|
| 17 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 18 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 19 |
+
"model.layers.0.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
|
| 20 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 21 |
+
"model.layers.0.self_attn.v_bias": "model-00001-of-00004.safetensors",
|
| 22 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 23 |
+
"model.layers.1.attn_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 24 |
+
"model.layers.1.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
| 25 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 26 |
+
"model.layers.1.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
| 27 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 28 |
+
"model.layers.1.mlp_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 29 |
+
"model.layers.1.self_attn.k_bias": "model-00001-of-00004.safetensors",
|
| 30 |
+
"model.layers.1.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
|
| 31 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 32 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 33 |
+
"model.layers.1.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
|
| 34 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 35 |
+
"model.layers.1.self_attn.v_bias": "model-00001-of-00004.safetensors",
|
| 36 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 37 |
+
"model.layers.10.attn_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 38 |
+
"model.layers.10.mlp.down_proj.bias": "model-00002-of-00004.safetensors",
|
| 39 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 40 |
+
"model.layers.10.mlp.up_proj.bias": "model-00002-of-00004.safetensors",
|
| 41 |
+
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 42 |
+
"model.layers.10.mlp_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 43 |
+
"model.layers.10.self_attn.k_bias": "model-00002-of-00004.safetensors",
|
| 44 |
+
"model.layers.10.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
|
| 45 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 46 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 47 |
+
"model.layers.10.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
|
| 48 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 49 |
+
"model.layers.10.self_attn.v_bias": "model-00002-of-00004.safetensors",
|
| 50 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 51 |
+
"model.layers.11.attn_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 52 |
+
"model.layers.11.mlp.down_proj.bias": "model-00002-of-00004.safetensors",
|
| 53 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 54 |
+
"model.layers.11.mlp.up_proj.bias": "model-00002-of-00004.safetensors",
|
| 55 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 56 |
+
"model.layers.11.mlp_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 57 |
+
"model.layers.11.self_attn.k_bias": "model-00002-of-00004.safetensors",
|
| 58 |
+
"model.layers.11.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
|
| 59 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 60 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 61 |
+
"model.layers.11.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
|
| 62 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 63 |
+
"model.layers.11.self_attn.v_bias": "model-00002-of-00004.safetensors",
|
| 64 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 65 |
+
"model.layers.12.attn_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 66 |
+
"model.layers.12.mlp.down_proj.bias": "model-00002-of-00004.safetensors",
|
| 67 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 68 |
+
"model.layers.12.mlp.up_proj.bias": "model-00002-of-00004.safetensors",
|
| 69 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 70 |
+
"model.layers.12.mlp_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 71 |
+
"model.layers.12.self_attn.k_bias": "model-00002-of-00004.safetensors",
|
| 72 |
+
"model.layers.12.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
|
| 73 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 74 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 75 |
+
"model.layers.12.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
|
| 76 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 77 |
+
"model.layers.12.self_attn.v_bias": "model-00002-of-00004.safetensors",
|
| 78 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 79 |
+
"model.layers.13.attn_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 80 |
+
"model.layers.13.mlp.down_proj.bias": "model-00002-of-00004.safetensors",
|
| 81 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 82 |
+
"model.layers.13.mlp.up_proj.bias": "model-00002-of-00004.safetensors",
|
| 83 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 84 |
+
"model.layers.13.mlp_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 85 |
+
"model.layers.13.self_attn.k_bias": "model-00002-of-00004.safetensors",
|
| 86 |
+
"model.layers.13.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
|
| 87 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 88 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 89 |
+
"model.layers.13.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
|
| 90 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 91 |
+
"model.layers.13.self_attn.v_bias": "model-00002-of-00004.safetensors",
|
| 92 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 93 |
+
"model.layers.14.attn_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 94 |
+
"model.layers.14.mlp.down_proj.bias": "model-00002-of-00004.safetensors",
|
| 95 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 96 |
+
"model.layers.14.mlp.up_proj.bias": "model-00002-of-00004.safetensors",
|
| 97 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 98 |
+
"model.layers.14.mlp_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 99 |
+
"model.layers.14.self_attn.k_bias": "model-00002-of-00004.safetensors",
|
| 100 |
+
"model.layers.14.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
|
| 101 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 102 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 103 |
+
"model.layers.14.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
|
| 104 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 105 |
+
"model.layers.14.self_attn.v_bias": "model-00002-of-00004.safetensors",
|
| 106 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 107 |
+
"model.layers.15.attn_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 108 |
+
"model.layers.15.mlp.down_proj.bias": "model-00002-of-00004.safetensors",
|
| 109 |
+
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 110 |
+
"model.layers.15.mlp.up_proj.bias": "model-00002-of-00004.safetensors",
|
| 111 |
+
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 112 |
+
"model.layers.15.mlp_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 113 |
+
"model.layers.15.self_attn.k_bias": "model-00002-of-00004.safetensors",
|
| 114 |
+
"model.layers.15.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
|
| 115 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 116 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 117 |
+
"model.layers.15.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
|
| 118 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 119 |
+
"model.layers.15.self_attn.v_bias": "model-00002-of-00004.safetensors",
|
| 120 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 121 |
+
"model.layers.16.attn_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 122 |
+
"model.layers.16.mlp.down_proj.bias": "model-00002-of-00004.safetensors",
|
| 123 |
+
"model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 124 |
+
"model.layers.16.mlp.up_proj.bias": "model-00002-of-00004.safetensors",
|
| 125 |
+
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 126 |
+
"model.layers.16.mlp_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 127 |
+
"model.layers.16.self_attn.k_bias": "model-00002-of-00004.safetensors",
|
| 128 |
+
"model.layers.16.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
|
| 129 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 130 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 131 |
+
"model.layers.16.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
|
| 132 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 133 |
+
"model.layers.16.self_attn.v_bias": "model-00002-of-00004.safetensors",
|
| 134 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 135 |
+
"model.layers.17.attn_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 136 |
+
"model.layers.17.mlp.down_proj.bias": "model-00003-of-00004.safetensors",
|
| 137 |
+
"model.layers.17.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 138 |
+
"model.layers.17.mlp.up_proj.bias": "model-00003-of-00004.safetensors",
|
| 139 |
+
"model.layers.17.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 140 |
+
"model.layers.17.mlp_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 141 |
+
"model.layers.17.self_attn.k_bias": "model-00002-of-00004.safetensors",
|
| 142 |
+
"model.layers.17.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
|
| 143 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 144 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 145 |
+
"model.layers.17.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
|
| 146 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 147 |
+
"model.layers.17.self_attn.v_bias": "model-00002-of-00004.safetensors",
|
| 148 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 149 |
+
"model.layers.18.attn_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 150 |
+
"model.layers.18.mlp.down_proj.bias": "model-00003-of-00004.safetensors",
|
| 151 |
+
"model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 152 |
+
"model.layers.18.mlp.up_proj.bias": "model-00003-of-00004.safetensors",
|
| 153 |
+
"model.layers.18.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 154 |
+
"model.layers.18.mlp_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 155 |
+
"model.layers.18.self_attn.k_bias": "model-00003-of-00004.safetensors",
|
| 156 |
+
"model.layers.18.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
|
| 157 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 158 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 159 |
+
"model.layers.18.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
|
| 160 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 161 |
+
"model.layers.18.self_attn.v_bias": "model-00003-of-00004.safetensors",
|
| 162 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 163 |
+
"model.layers.19.attn_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 164 |
+
"model.layers.19.mlp.down_proj.bias": "model-00003-of-00004.safetensors",
|
| 165 |
+
"model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 166 |
+
"model.layers.19.mlp.up_proj.bias": "model-00003-of-00004.safetensors",
|
| 167 |
+
"model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 168 |
+
"model.layers.19.mlp_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 169 |
+
"model.layers.19.self_attn.k_bias": "model-00003-of-00004.safetensors",
|
| 170 |
+
"model.layers.19.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
|
| 171 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 172 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 173 |
+
"model.layers.19.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
|
| 174 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 175 |
+
"model.layers.19.self_attn.v_bias": "model-00003-of-00004.safetensors",
|
| 176 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 177 |
+
"model.layers.2.attn_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 178 |
+
"model.layers.2.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
| 179 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 180 |
+
"model.layers.2.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
| 181 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 182 |
+
"model.layers.2.mlp_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 183 |
+
"model.layers.2.self_attn.k_bias": "model-00001-of-00004.safetensors",
|
| 184 |
+
"model.layers.2.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
|
| 185 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 186 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 187 |
+
"model.layers.2.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
|
| 188 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 189 |
+
"model.layers.2.self_attn.v_bias": "model-00001-of-00004.safetensors",
|
| 190 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 191 |
+
"model.layers.20.attn_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 192 |
+
"model.layers.20.mlp.down_proj.bias": "model-00003-of-00004.safetensors",
|
| 193 |
+
"model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 194 |
+
"model.layers.20.mlp.up_proj.bias": "model-00003-of-00004.safetensors",
|
| 195 |
+
"model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 196 |
+
"model.layers.20.mlp_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 197 |
+
"model.layers.20.self_attn.k_bias": "model-00003-of-00004.safetensors",
|
| 198 |
+
"model.layers.20.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
|
| 199 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 200 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 201 |
+
"model.layers.20.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
|
| 202 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 203 |
+
"model.layers.20.self_attn.v_bias": "model-00003-of-00004.safetensors",
|
| 204 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 205 |
+
"model.layers.21.attn_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 206 |
+
"model.layers.21.mlp.down_proj.bias": "model-00003-of-00004.safetensors",
|
| 207 |
+
"model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 208 |
+
"model.layers.21.mlp.up_proj.bias": "model-00003-of-00004.safetensors",
|
| 209 |
+
"model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 210 |
+
"model.layers.21.mlp_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 211 |
+
"model.layers.21.self_attn.k_bias": "model-00003-of-00004.safetensors",
|
| 212 |
+
"model.layers.21.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
|
| 213 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 214 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 215 |
+
"model.layers.21.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
|
| 216 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 217 |
+
"model.layers.21.self_attn.v_bias": "model-00003-of-00004.safetensors",
|
| 218 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 219 |
+
"model.layers.22.attn_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 220 |
+
"model.layers.22.mlp.down_proj.bias": "model-00003-of-00004.safetensors",
|
| 221 |
+
"model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 222 |
+
"model.layers.22.mlp.up_proj.bias": "model-00003-of-00004.safetensors",
|
| 223 |
+
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 224 |
+
"model.layers.22.mlp_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 225 |
+
"model.layers.22.self_attn.k_bias": "model-00003-of-00004.safetensors",
|
| 226 |
+
"model.layers.22.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
|
| 227 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 228 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 229 |
+
"model.layers.22.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
|
| 230 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 231 |
+
"model.layers.22.self_attn.v_bias": "model-00003-of-00004.safetensors",
|
| 232 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 233 |
+
"model.layers.23.attn_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 234 |
+
"model.layers.23.mlp.down_proj.bias": "model-00003-of-00004.safetensors",
|
| 235 |
+
"model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 236 |
+
"model.layers.23.mlp.up_proj.bias": "model-00003-of-00004.safetensors",
|
| 237 |
+
"model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 238 |
+
"model.layers.23.mlp_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 239 |
+
"model.layers.23.self_attn.k_bias": "model-00003-of-00004.safetensors",
|
| 240 |
+
"model.layers.23.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
|
| 241 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 242 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 243 |
+
"model.layers.23.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
|
| 244 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 245 |
+
"model.layers.23.self_attn.v_bias": "model-00003-of-00004.safetensors",
|
| 246 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 247 |
+
"model.layers.24.attn_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 248 |
+
"model.layers.24.mlp.down_proj.bias": "model-00003-of-00004.safetensors",
|
| 249 |
+
"model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 250 |
+
"model.layers.24.mlp.up_proj.bias": "model-00003-of-00004.safetensors",
|
| 251 |
+
"model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 252 |
+
"model.layers.24.mlp_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 253 |
+
"model.layers.24.self_attn.k_bias": "model-00003-of-00004.safetensors",
|
| 254 |
+
"model.layers.24.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
|
| 255 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 256 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 257 |
+
"model.layers.24.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
|
| 258 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 259 |
+
"model.layers.24.self_attn.v_bias": "model-00003-of-00004.safetensors",
|
| 260 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 261 |
+
"model.layers.25.attn_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 262 |
+
"model.layers.25.mlp.down_proj.bias": "model-00003-of-00004.safetensors",
|
| 263 |
+
"model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 264 |
+
"model.layers.25.mlp.up_proj.bias": "model-00003-of-00004.safetensors",
|
| 265 |
+
"model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 266 |
+
"model.layers.25.mlp_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 267 |
+
"model.layers.25.self_attn.k_bias": "model-00003-of-00004.safetensors",
|
| 268 |
+
"model.layers.25.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
|
| 269 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 270 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 271 |
+
"model.layers.25.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
|
| 272 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 273 |
+
"model.layers.25.self_attn.v_bias": "model-00003-of-00004.safetensors",
|
| 274 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 275 |
+
"model.layers.26.attn_layernorm.weight": "model-00004-of-00004.safetensors",
|
| 276 |
+
"model.layers.26.mlp.down_proj.bias": "model-00004-of-00004.safetensors",
|
| 277 |
+
"model.layers.26.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 278 |
+
"model.layers.26.mlp.up_proj.bias": "model-00003-of-00004.safetensors",
|
| 279 |
+
"model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 280 |
+
"model.layers.26.mlp_layernorm.weight": "model-00004-of-00004.safetensors",
|
| 281 |
+
"model.layers.26.self_attn.k_bias": "model-00003-of-00004.safetensors",
|
| 282 |
+
"model.layers.26.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
|
| 283 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 284 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 285 |
+
"model.layers.26.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
|
| 286 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 287 |
+
"model.layers.26.self_attn.v_bias": "model-00003-of-00004.safetensors",
|
| 288 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 289 |
+
"model.layers.27.attn_layernorm.weight": "model-00004-of-00004.safetensors",
|
| 290 |
+
"model.layers.27.mlp.down_proj.bias": "model-00004-of-00004.safetensors",
|
| 291 |
+
"model.layers.27.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 292 |
+
"model.layers.27.mlp.up_proj.bias": "model-00004-of-00004.safetensors",
|
| 293 |
+
"model.layers.27.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 294 |
+
"model.layers.27.mlp_layernorm.weight": "model-00004-of-00004.safetensors",
|
| 295 |
+
"model.layers.27.self_attn.k_bias": "model-00004-of-00004.safetensors",
|
| 296 |
+
"model.layers.27.self_attn.k_norm.weight": "model-00004-of-00004.safetensors",
|
| 297 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
| 298 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
| 299 |
+
"model.layers.27.self_attn.q_norm.weight": "model-00004-of-00004.safetensors",
|
| 300 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
| 301 |
+
"model.layers.27.self_attn.v_bias": "model-00004-of-00004.safetensors",
|
| 302 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
| 303 |
+
"model.layers.28.attn_layernorm.weight": "model-00004-of-00004.safetensors",
|
| 304 |
+
"model.layers.28.mlp.down_proj.bias": "model-00004-of-00004.safetensors",
|
| 305 |
+
"model.layers.28.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 306 |
+
"model.layers.28.mlp.up_proj.bias": "model-00004-of-00004.safetensors",
|
| 307 |
+
"model.layers.28.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 308 |
+
"model.layers.28.mlp_layernorm.weight": "model-00004-of-00004.safetensors",
|
| 309 |
+
"model.layers.28.self_attn.k_bias": "model-00004-of-00004.safetensors",
|
| 310 |
+
"model.layers.28.self_attn.k_norm.weight": "model-00004-of-00004.safetensors",
|
| 311 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
| 312 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
| 313 |
+
"model.layers.28.self_attn.q_norm.weight": "model-00004-of-00004.safetensors",
|
| 314 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
| 315 |
+
"model.layers.28.self_attn.v_bias": "model-00004-of-00004.safetensors",
|
| 316 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
| 317 |
+
"model.layers.29.attn_layernorm.weight": "model-00004-of-00004.safetensors",
|
| 318 |
+
"model.layers.29.mlp.down_proj.bias": "model-00004-of-00004.safetensors",
|
| 319 |
+
"model.layers.29.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 320 |
+
"model.layers.29.mlp.up_proj.bias": "model-00004-of-00004.safetensors",
|
| 321 |
+
"model.layers.29.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 322 |
+
"model.layers.29.mlp_layernorm.weight": "model-00004-of-00004.safetensors",
|
| 323 |
+
"model.layers.29.self_attn.k_bias": "model-00004-of-00004.safetensors",
|
| 324 |
+
"model.layers.29.self_attn.k_norm.weight": "model-00004-of-00004.safetensors",
|
| 325 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
| 326 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
| 327 |
+
"model.layers.29.self_attn.q_norm.weight": "model-00004-of-00004.safetensors",
|
| 328 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
| 329 |
+
"model.layers.29.self_attn.v_bias": "model-00004-of-00004.safetensors",
|
| 330 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
| 331 |
+
"model.layers.3.attn_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 332 |
+
"model.layers.3.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
| 333 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 334 |
+
"model.layers.3.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
| 335 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 336 |
+
"model.layers.3.mlp_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 337 |
+
"model.layers.3.self_attn.k_bias": "model-00001-of-00004.safetensors",
|
| 338 |
+
"model.layers.3.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
|
| 339 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 340 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 341 |
+
"model.layers.3.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
|
| 342 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 343 |
+
"model.layers.3.self_attn.v_bias": "model-00001-of-00004.safetensors",
|
| 344 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 345 |
+
"model.layers.30.attn_layernorm.weight": "model-00004-of-00004.safetensors",
|
| 346 |
+
"model.layers.30.mlp.down_proj.bias": "model-00004-of-00004.safetensors",
|
| 347 |
+
"model.layers.30.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 348 |
+
"model.layers.30.mlp.up_proj.bias": "model-00004-of-00004.safetensors",
|
| 349 |
+
"model.layers.30.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 350 |
+
"model.layers.30.mlp_layernorm.weight": "model-00004-of-00004.safetensors",
|
| 351 |
+
"model.layers.30.self_attn.k_bias": "model-00004-of-00004.safetensors",
|
| 352 |
+
"model.layers.30.self_attn.k_norm.weight": "model-00004-of-00004.safetensors",
|
| 353 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
| 354 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
| 355 |
+
"model.layers.30.self_attn.q_norm.weight": "model-00004-of-00004.safetensors",
|
| 356 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
| 357 |
+
"model.layers.30.self_attn.v_bias": "model-00004-of-00004.safetensors",
|
| 358 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
| 359 |
+
"model.layers.31.attn_layernorm.weight": "model-00004-of-00004.safetensors",
|
| 360 |
+
"model.layers.31.mlp.down_proj.bias": "model-00004-of-00004.safetensors",
|
| 361 |
+
"model.layers.31.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 362 |
+
"model.layers.31.mlp.up_proj.bias": "model-00004-of-00004.safetensors",
|
| 363 |
+
"model.layers.31.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 364 |
+
"model.layers.31.mlp_layernorm.weight": "model-00004-of-00004.safetensors",
|
| 365 |
+
"model.layers.31.self_attn.k_bias": "model-00004-of-00004.safetensors",
|
| 366 |
+
"model.layers.31.self_attn.k_norm.weight": "model-00004-of-00004.safetensors",
|
| 367 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
| 368 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
| 369 |
+
"model.layers.31.self_attn.q_norm.weight": "model-00004-of-00004.safetensors",
|
| 370 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
| 371 |
+
"model.layers.31.self_attn.v_bias": "model-00004-of-00004.safetensors",
|
| 372 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
| 373 |
+
"model.layers.32.attn_layernorm.weight": "model-00004-of-00004.safetensors",
|
| 374 |
+
"model.layers.32.mlp.down_proj.bias": "model-00004-of-00004.safetensors",
|
| 375 |
+
"model.layers.32.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 376 |
+
"model.layers.32.mlp.up_proj.bias": "model-00004-of-00004.safetensors",
|
| 377 |
+
"model.layers.32.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 378 |
+
"model.layers.32.mlp_layernorm.weight": "model-00004-of-00004.safetensors",
|
| 379 |
+
"model.layers.32.self_attn.k_bias": "model-00004-of-00004.safetensors",
|
| 380 |
+
"model.layers.32.self_attn.k_norm.weight": "model-00004-of-00004.safetensors",
|
| 381 |
+
"model.layers.32.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
| 382 |
+
"model.layers.32.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
| 383 |
+
"model.layers.32.self_attn.q_norm.weight": "model-00004-of-00004.safetensors",
|
| 384 |
+
"model.layers.32.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
| 385 |
+
"model.layers.32.self_attn.v_bias": "model-00004-of-00004.safetensors",
|
| 386 |
+
"model.layers.32.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
| 387 |
+
"model.layers.33.attn_layernorm.weight": "model-00004-of-00004.safetensors",
|
| 388 |
+
"model.layers.33.mlp.down_proj.bias": "model-00004-of-00004.safetensors",
|
| 389 |
+
"model.layers.33.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 390 |
+
"model.layers.33.mlp.up_proj.bias": "model-00004-of-00004.safetensors",
|
| 391 |
+
"model.layers.33.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 392 |
+
"model.layers.33.mlp_layernorm.weight": "model-00004-of-00004.safetensors",
|
| 393 |
+
"model.layers.33.self_attn.k_bias": "model-00004-of-00004.safetensors",
|
| 394 |
+
"model.layers.33.self_attn.k_norm.weight": "model-00004-of-00004.safetensors",
|
| 395 |
+
"model.layers.33.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
| 396 |
+
"model.layers.33.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
| 397 |
+
"model.layers.33.self_attn.q_norm.weight": "model-00004-of-00004.safetensors",
|
| 398 |
+
"model.layers.33.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
| 399 |
+
"model.layers.33.self_attn.v_bias": "model-00004-of-00004.safetensors",
|
| 400 |
+
"model.layers.33.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
| 401 |
+
"model.layers.4.attn_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 402 |
+
"model.layers.4.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
| 403 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 404 |
+
"model.layers.4.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
| 405 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 406 |
+
"model.layers.4.mlp_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 407 |
+
"model.layers.4.self_attn.k_bias": "model-00001-of-00004.safetensors",
|
| 408 |
+
"model.layers.4.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
|
| 409 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 410 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 411 |
+
"model.layers.4.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
|
| 412 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 413 |
+
"model.layers.4.self_attn.v_bias": "model-00001-of-00004.safetensors",
|
| 414 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 415 |
+
"model.layers.5.attn_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 416 |
+
"model.layers.5.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
| 417 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 418 |
+
"model.layers.5.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
| 419 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 420 |
+
"model.layers.5.mlp_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 421 |
+
"model.layers.5.self_attn.k_bias": "model-00001-of-00004.safetensors",
|
| 422 |
+
"model.layers.5.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
|
| 423 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 424 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 425 |
+
"model.layers.5.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
|
| 426 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 427 |
+
"model.layers.5.self_attn.v_bias": "model-00001-of-00004.safetensors",
|
| 428 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 429 |
+
"model.layers.6.attn_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 430 |
+
"model.layers.6.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
| 431 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 432 |
+
"model.layers.6.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
| 433 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 434 |
+
"model.layers.6.mlp_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 435 |
+
"model.layers.6.self_attn.k_bias": "model-00001-of-00004.safetensors",
|
| 436 |
+
"model.layers.6.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
|
| 437 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 438 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 439 |
+
"model.layers.6.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
|
| 440 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 441 |
+
"model.layers.6.self_attn.v_bias": "model-00001-of-00004.safetensors",
|
| 442 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 443 |
+
"model.layers.7.attn_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 444 |
+
"model.layers.7.mlp.down_proj.bias": "model-00002-of-00004.safetensors",
|
| 445 |
+
"model.layers.7.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 446 |
+
"model.layers.7.mlp.up_proj.bias": "model-00002-of-00004.safetensors",
|
| 447 |
+
"model.layers.7.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 448 |
+
"model.layers.7.mlp_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 449 |
+
"model.layers.7.self_attn.k_bias": "model-00001-of-00004.safetensors",
|
| 450 |
+
"model.layers.7.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
|
| 451 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 452 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 453 |
+
"model.layers.7.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
|
| 454 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 455 |
+
"model.layers.7.self_attn.v_bias": "model-00001-of-00004.safetensors",
|
| 456 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 457 |
+
"model.layers.8.attn_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 458 |
+
"model.layers.8.mlp.down_proj.bias": "model-00002-of-00004.safetensors",
|
| 459 |
+
"model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 460 |
+
"model.layers.8.mlp.up_proj.bias": "model-00002-of-00004.safetensors",
|
| 461 |
+
"model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 462 |
+
"model.layers.8.mlp_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 463 |
+
"model.layers.8.self_attn.k_bias": "model-00002-of-00004.safetensors",
|
| 464 |
+
"model.layers.8.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
|
| 465 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 466 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 467 |
+
"model.layers.8.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
|
| 468 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 469 |
+
"model.layers.8.self_attn.v_bias": "model-00002-of-00004.safetensors",
|
| 470 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 471 |
+
"model.layers.9.attn_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 472 |
+
"model.layers.9.mlp.down_proj.bias": "model-00002-of-00004.safetensors",
|
| 473 |
+
"model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 474 |
+
"model.layers.9.mlp.up_proj.bias": "model-00002-of-00004.safetensors",
|
| 475 |
+
"model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 476 |
+
"model.layers.9.mlp_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 477 |
+
"model.layers.9.self_attn.k_bias": "model-00002-of-00004.safetensors",
|
| 478 |
+
"model.layers.9.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
|
| 479 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 480 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 481 |
+
"model.layers.9.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
|
| 482 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 483 |
+
"model.layers.9.self_attn.v_bias": "model-00002-of-00004.safetensors",
|
| 484 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 485 |
+
"model.norm.weight": "model-00004-of-00004.safetensors"
|
| 486 |
+
}
|
| 487 |
+
}
|
modeling_gidd.py
ADDED
|
@@ -0,0 +1,1134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import typing as tp
|
| 2 |
+
import warnings
|
| 3 |
+
from functools import partial
|
| 4 |
+
from dataclasses import dataclass
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
import torch.nn as nn
|
| 8 |
+
from torch.nn.attention.flex_attention import flex_attention
|
| 9 |
+
from transformers import PreTrainedModel
|
| 10 |
+
from transformers.cache_utils import Cache, DynamicCache
|
| 11 |
+
from transformers.generation.utils import GenerationMixin
|
| 12 |
+
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
|
| 13 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
| 14 |
+
|
| 15 |
+
from .configuration_gidd import GiddConfig
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
@dataclass
|
| 19 |
+
class AttentionLayerOutput:
|
| 20 |
+
hidden_states: torch.Tensor
|
| 21 |
+
attentions: tp.Optional[torch.Tensor] = None
|
| 22 |
+
past_key_values: tp.Optional[tp.List[tp.Tuple[torch.Tensor, torch.Tensor]]] = None
|
| 23 |
+
|
| 24 |
+
@dataclass
|
| 25 |
+
class DecoderLayerOutput:
|
| 26 |
+
hidden_states: torch.Tensor
|
| 27 |
+
attentions: tp.Optional[torch.Tensor] = None
|
| 28 |
+
past_key_values: tp.Optional[tp.List[tp.Tuple[torch.Tensor, torch.Tensor]]] = None
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def promote_dtype(args: tuple, *, dtype: torch.dtype | None = None) -> tuple:
|
| 32 |
+
return tuple(
|
| 33 |
+
torch.as_tensor(x, dtype=dtype) if x is not None else None
|
| 34 |
+
for x in args
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
class ScaledLinear(nn.Module):
|
| 39 |
+
def __init__(
|
| 40 |
+
self,
|
| 41 |
+
in_features: int,
|
| 42 |
+
out_features: int,
|
| 43 |
+
*,
|
| 44 |
+
scale: float | tp.Literal["fan_in", "fan_out"] = 1.0,
|
| 45 |
+
use_bias: bool = True,
|
| 46 |
+
dtype: torch.dtype | None = None,
|
| 47 |
+
):
|
| 48 |
+
super().__init__()
|
| 49 |
+
|
| 50 |
+
if scale == "fan_in":
|
| 51 |
+
scale = in_features**-0.5
|
| 52 |
+
elif scale == "fan_out":
|
| 53 |
+
scale = out_features**-0.5
|
| 54 |
+
|
| 55 |
+
if scale != 1.0:
|
| 56 |
+
def _scale_operator(x):
|
| 57 |
+
return x * scale
|
| 58 |
+
else:
|
| 59 |
+
def _scale_operator(x):
|
| 60 |
+
return x
|
| 61 |
+
|
| 62 |
+
self._scale_operator = _scale_operator
|
| 63 |
+
self.in_features = in_features
|
| 64 |
+
self.out_features = out_features
|
| 65 |
+
|
| 66 |
+
self.use_bias = use_bias
|
| 67 |
+
|
| 68 |
+
weight_shape = (out_features, in_features)
|
| 69 |
+
weight = torch.zeros(weight_shape, dtype=dtype)
|
| 70 |
+
self.weight = nn.Parameter(weight)
|
| 71 |
+
|
| 72 |
+
if use_bias:
|
| 73 |
+
bias = torch.zeros((out_features,), dtype=dtype)
|
| 74 |
+
self.bias = nn.Parameter(bias)
|
| 75 |
+
else:
|
| 76 |
+
self.bias = None
|
| 77 |
+
|
| 78 |
+
def forward(
|
| 79 |
+
self,
|
| 80 |
+
inputs: torch.Tensor,
|
| 81 |
+
w: torch.Tensor | None = None,
|
| 82 |
+
) -> torch.Tensor:
|
| 83 |
+
dtype = inputs.dtype
|
| 84 |
+
weight = self.weight if w is None else w
|
| 85 |
+
bias = self.bias if self.use_bias else None
|
| 86 |
+
|
| 87 |
+
if bias is not None:
|
| 88 |
+
inputs, weight, bias = promote_dtype((inputs, weight, bias), dtype=dtype)
|
| 89 |
+
else:
|
| 90 |
+
inputs, weight = promote_dtype((inputs, weight), dtype=dtype)
|
| 91 |
+
|
| 92 |
+
y = torch.matmul(
|
| 93 |
+
inputs,
|
| 94 |
+
weight.T,
|
| 95 |
+
)
|
| 96 |
+
|
| 97 |
+
y = self._scale_operator(y)
|
| 98 |
+
|
| 99 |
+
if bias is not None:
|
| 100 |
+
y = y + bias.reshape((1,) * (y.ndim - 1) + (-1,))
|
| 101 |
+
|
| 102 |
+
return y
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
def _apply_rotary_emb(
|
| 106 |
+
x: torch.Tensor,
|
| 107 |
+
cos: torch.Tensor,
|
| 108 |
+
sin: torch.Tensor,
|
| 109 |
+
is_neox_style: bool,
|
| 110 |
+
) -> torch.Tensor:
|
| 111 |
+
cos = cos.unsqueeze(2).to(dtype=x.dtype)
|
| 112 |
+
sin = sin.unsqueeze(2).to(dtype=x.dtype)
|
| 113 |
+
assert sin.ndim == x.ndim
|
| 114 |
+
if is_neox_style:
|
| 115 |
+
x1, x2 = torch.chunk(x, 2, dim=-1)
|
| 116 |
+
else:
|
| 117 |
+
x1 = x[..., ::2]
|
| 118 |
+
x2 = x[..., 1::2]
|
| 119 |
+
|
| 120 |
+
o1 = x1 * cos - x2 * sin
|
| 121 |
+
o2 = x2 * cos + x1 * sin
|
| 122 |
+
|
| 123 |
+
if is_neox_style:
|
| 124 |
+
return torch.cat((o1, o2), dim=-1)
|
| 125 |
+
else:
|
| 126 |
+
return torch.stack((o1, o2), dim=-1).reshape(x.shape)
|
| 127 |
+
|
| 128 |
+
def apply_basic_rope(
|
| 129 |
+
query: torch.Tensor,
|
| 130 |
+
key: torch.Tensor,
|
| 131 |
+
positions: torch.Tensor,
|
| 132 |
+
frequencies: torch.Tensor,
|
| 133 |
+
rotary_dim: int,
|
| 134 |
+
is_neox_style: bool,
|
| 135 |
+
offsets: torch.Tensor | None = None,
|
| 136 |
+
dtype: torch.dtype = torch.float32,
|
| 137 |
+
):
|
| 138 |
+
if offsets is not None:
|
| 139 |
+
positions = positions + offsets
|
| 140 |
+
cos, sin = torch.chunk(frequencies[positions], 2, dim=-1)
|
| 141 |
+
if rotary_dim != query.shape[-1]:
|
| 142 |
+
query_rot = _apply_rotary_emb(query[..., :rotary_dim], cos, sin, is_neox_style)
|
| 143 |
+
query = torch.cat((query_rot, query[..., rotary_dim:]), dim=-1)
|
| 144 |
+
key_rot = _apply_rotary_emb(key[..., :rotary_dim], cos, sin, is_neox_style)
|
| 145 |
+
key = torch.cat((key_rot, key[..., rotary_dim:]), dim=-1)
|
| 146 |
+
return query.to(dtype), key.to(dtype), cos, sin
|
| 147 |
+
else:
|
| 148 |
+
query = _apply_rotary_emb(query, cos, sin, is_neox_style)
|
| 149 |
+
key = _apply_rotary_emb(key, cos, sin, is_neox_style)
|
| 150 |
+
return query.to(dtype), key.to(dtype), cos, sin
|
| 151 |
+
|
| 152 |
+
def compute_basic_frequencies(
|
| 153 |
+
base: int,
|
| 154 |
+
rotary_dim: int,
|
| 155 |
+
max_position_embeddings: int,
|
| 156 |
+
):
|
| 157 |
+
inv = 1.0 / torch.pow(
|
| 158 |
+
base,
|
| 159 |
+
torch.arange(0, rotary_dim, 2, dtype=torch.float32) / rotary_dim,
|
| 160 |
+
)
|
| 161 |
+
freqs = torch.einsum(
|
| 162 |
+
"i,j->ij",
|
| 163 |
+
torch.arange(max_position_embeddings, dtype=torch.float32),
|
| 164 |
+
inv,
|
| 165 |
+
)
|
| 166 |
+
freqs = torch.cat([freqs.cos(), freqs.sin()], dim=-1)
|
| 167 |
+
return freqs
|
| 168 |
+
|
| 169 |
+
class RotaryEmbedding(nn.Module):
|
| 170 |
+
def __init__(
|
| 171 |
+
self,
|
| 172 |
+
head_size: int,
|
| 173 |
+
rotary_dim: int,
|
| 174 |
+
max_position_embeddings: int,
|
| 175 |
+
base: int,
|
| 176 |
+
is_neox_style: bool,
|
| 177 |
+
dtype: torch.dtype,
|
| 178 |
+
):
|
| 179 |
+
super().__init__()
|
| 180 |
+
self.head_size = head_size
|
| 181 |
+
self.rotary_dim = rotary_dim
|
| 182 |
+
self.max_position_embeddings = max_position_embeddings
|
| 183 |
+
self.base = base
|
| 184 |
+
self.is_neox_style = is_neox_style
|
| 185 |
+
self.dtype = dtype
|
| 186 |
+
|
| 187 |
+
def forward(
|
| 188 |
+
self,
|
| 189 |
+
positions: torch.Tensor,
|
| 190 |
+
query: torch.Tensor,
|
| 191 |
+
key: torch.Tensor,
|
| 192 |
+
offsets: torch.Tensor | None = None,
|
| 193 |
+
frequencies: torch.Tensor | None = None,
|
| 194 |
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
| 195 |
+
if frequencies is None:
|
| 196 |
+
frequencies = compute_basic_frequencies(
|
| 197 |
+
base=self.base,
|
| 198 |
+
rotary_dim=self.rotary_dim,
|
| 199 |
+
max_position_embeddings=self.max_position_embeddings,
|
| 200 |
+
)
|
| 201 |
+
if hasattr(frequencies, "value"):
|
| 202 |
+
frequencies = frequencies.value
|
| 203 |
+
return apply_basic_rope(
|
| 204 |
+
query=query,
|
| 205 |
+
key=key,
|
| 206 |
+
positions=positions,
|
| 207 |
+
frequencies=frequencies,
|
| 208 |
+
rotary_dim=self.rotary_dim,
|
| 209 |
+
is_neox_style=self.is_neox_style,
|
| 210 |
+
offsets=offsets,
|
| 211 |
+
dtype=self.dtype,
|
| 212 |
+
)
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
class GiddRMSNorm(nn.Module):
|
| 216 |
+
def __init__(
|
| 217 |
+
self,
|
| 218 |
+
config: GiddConfig,
|
| 219 |
+
dtype=torch.float32,
|
| 220 |
+
):
|
| 221 |
+
super().__init__()
|
| 222 |
+
self.config = config
|
| 223 |
+
self.epsilon = self.config.rms_norm_eps
|
| 224 |
+
self.weight = nn.Parameter(torch.zeros(self.config.hidden_size, dtype=dtype))
|
| 225 |
+
# self.bias = nn.Parameter(torch.zeros(self.config.hidden_size, dtype=dtype))
|
| 226 |
+
|
| 227 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 228 |
+
dtype = hidden_states.dtype
|
| 229 |
+
variance = hidden_states.to(torch.float32)
|
| 230 |
+
variance = variance.pow(2.0)
|
| 231 |
+
variance = variance.mean(-1, keepdim=True)
|
| 232 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.epsilon)
|
| 233 |
+
|
| 234 |
+
hidden_states = ((1 + self.weight) * hidden_states)
|
| 235 |
+
return hidden_states.to(dtype)
|
| 236 |
+
|
| 237 |
+
ALL_LAYERNORM_LAYERS.append(GiddRMSNorm)
|
| 238 |
+
|
| 239 |
+
|
| 240 |
+
class GiddMLP(nn.Module):
|
| 241 |
+
def __init__(
|
| 242 |
+
self,
|
| 243 |
+
config: GiddConfig,
|
| 244 |
+
dtype=torch.float32,
|
| 245 |
+
):
|
| 246 |
+
super().__init__()
|
| 247 |
+
self.config = config
|
| 248 |
+
self.dtype = dtype
|
| 249 |
+
|
| 250 |
+
linear_class = partial(
|
| 251 |
+
ScaledLinear,
|
| 252 |
+
scale=config.weight_scaling,
|
| 253 |
+
dtype=dtype,
|
| 254 |
+
use_bias=self.config.mlp_bias,
|
| 255 |
+
)
|
| 256 |
+
self.up_proj = linear_class(config.hidden_size, config.intermediate_size)
|
| 257 |
+
self.down_proj = linear_class(config.intermediate_size, config.hidden_size)
|
| 258 |
+
|
| 259 |
+
def forward(self, h: torch.Tensor) -> torch.Tensor:
|
| 260 |
+
h = self.up_proj(h)
|
| 261 |
+
h = torch.relu(h) ** 2
|
| 262 |
+
h = self.down_proj(h)
|
| 263 |
+
return h
|
| 264 |
+
|
| 265 |
+
|
| 266 |
+
class FlexSoftcapAttention(nn.Module):
|
| 267 |
+
def __init__(self, head_dim, n_heads, softmax_scale, soft_cap):
|
| 268 |
+
super().__init__()
|
| 269 |
+
self.d_model = head_dim * n_heads
|
| 270 |
+
self.n_heads = n_heads
|
| 271 |
+
self.head_dim = head_dim
|
| 272 |
+
self.scale = float(softmax_scale)
|
| 273 |
+
self.soft_cap = float(soft_cap)
|
| 274 |
+
|
| 275 |
+
def forward(
|
| 276 |
+
self,
|
| 277 |
+
q: torch.Tensor,
|
| 278 |
+
k: torch.Tensor,
|
| 279 |
+
v: torch.Tensor,
|
| 280 |
+
attention_mask: torch.Tensor | None = None,
|
| 281 |
+
):
|
| 282 |
+
B, _, L = q.shape[:3]
|
| 283 |
+
|
| 284 |
+
def score_mod(score, b, h, q_idx, kv_idx):
|
| 285 |
+
soft_cap = self.soft_cap
|
| 286 |
+
score = soft_cap * torch.tanh(score / soft_cap)
|
| 287 |
+
keep = attention_mask[b, q_idx, kv_idx]
|
| 288 |
+
return torch.where(keep, score, torch.finfo(score.dtype).min)
|
| 289 |
+
|
| 290 |
+
out = flex_attention(
|
| 291 |
+
q,
|
| 292 |
+
k,
|
| 293 |
+
v,
|
| 294 |
+
score_mod=score_mod,
|
| 295 |
+
scale=self.scale,
|
| 296 |
+
)
|
| 297 |
+
out = out.transpose(1, 2).contiguous().view(B, L, self.d_model)
|
| 298 |
+
return out, None
|
| 299 |
+
|
| 300 |
+
|
| 301 |
+
class VanillaSoftcapAttention(nn.Module):
|
| 302 |
+
def __init__(self, head_dim, n_heads, softmax_scale, soft_cap):
|
| 303 |
+
super().__init__()
|
| 304 |
+
self.d_model = head_dim * n_heads
|
| 305 |
+
self.n_heads = n_heads
|
| 306 |
+
self.head_dim = head_dim
|
| 307 |
+
self.scale = float(softmax_scale)
|
| 308 |
+
self.soft_cap = float(soft_cap)
|
| 309 |
+
|
| 310 |
+
def forward(
|
| 311 |
+
self,
|
| 312 |
+
q: torch.Tensor,
|
| 313 |
+
k: torch.Tensor,
|
| 314 |
+
v: torch.Tensor,
|
| 315 |
+
attention_mask: torch.Tensor | None = None,
|
| 316 |
+
):
|
| 317 |
+
B, _, L = q.shape[:3]
|
| 318 |
+
scores = torch.einsum(
|
| 319 |
+
"bhqd,bhkd->bhqk",
|
| 320 |
+
q * self.scale,
|
| 321 |
+
k,
|
| 322 |
+
)
|
| 323 |
+
scores = self.soft_cap * torch.tanh(scores / self.soft_cap)
|
| 324 |
+
if attention_mask is not None:
|
| 325 |
+
scores = scores.masked_fill(~attention_mask.unsqueeze(1), torch.finfo(scores.dtype).min)
|
| 326 |
+
probs = torch.softmax(scores.to(torch.float32), dim=-1).to(scores.dtype)
|
| 327 |
+
out = torch.einsum(
|
| 328 |
+
"bhqk,bhkd->bhqd",
|
| 329 |
+
probs,
|
| 330 |
+
v,
|
| 331 |
+
)
|
| 332 |
+
out = out.transpose(1, 2).contiguous().view(B, L, self.d_model)
|
| 333 |
+
return out, probs
|
| 334 |
+
|
| 335 |
+
|
| 336 |
+
class GiddAttention(nn.Module):
|
| 337 |
+
def __init__(
|
| 338 |
+
self,
|
| 339 |
+
config: GiddConfig,
|
| 340 |
+
layer_idx: int,
|
| 341 |
+
dtype=torch.float32,
|
| 342 |
+
):
|
| 343 |
+
super().__init__()
|
| 344 |
+
|
| 345 |
+
self.hidden_size = config.hidden_size
|
| 346 |
+
head_dim = config.hidden_size // config.num_attention_heads
|
| 347 |
+
self.head_dim = getattr(config, "head_dim", head_dim)
|
| 348 |
+
self.num_attention_heads = self.hidden_size // self.head_dim
|
| 349 |
+
self.is_causal = config.is_causal
|
| 350 |
+
self.layer_idx = layer_idx
|
| 351 |
+
|
| 352 |
+
self.use_qk_norm = config.use_qk_norm
|
| 353 |
+
if self.use_qk_norm:
|
| 354 |
+
self.q_norm = GiddRMSNorm(config, dtype=torch.float32)
|
| 355 |
+
self.k_norm = GiddRMSNorm(config, dtype=torch.float32)
|
| 356 |
+
else:
|
| 357 |
+
self.q_norm = None
|
| 358 |
+
self.k_norm = None
|
| 359 |
+
|
| 360 |
+
self.attention_bias = config.attention_bias
|
| 361 |
+
if self.attention_bias:
|
| 362 |
+
self.k_bias = nn.Parameter(
|
| 363 |
+
torch.zeros((self.num_attention_heads, self.head_dim), dtype=dtype),
|
| 364 |
+
)
|
| 365 |
+
self.v_bias = nn.Parameter(
|
| 366 |
+
torch.zeros((self.num_attention_heads, self.head_dim), dtype=dtype),
|
| 367 |
+
)
|
| 368 |
+
else:
|
| 369 |
+
self.k_bias = None
|
| 370 |
+
self.v_bias = None
|
| 371 |
+
|
| 372 |
+
linear_class = partial(
|
| 373 |
+
ScaledLinear,
|
| 374 |
+
scale=config.weight_scaling,
|
| 375 |
+
dtype=dtype,
|
| 376 |
+
use_bias=False,
|
| 377 |
+
)
|
| 378 |
+
self.q_proj = linear_class(
|
| 379 |
+
self.hidden_size,
|
| 380 |
+
self.num_attention_heads * self.head_dim,
|
| 381 |
+
)
|
| 382 |
+
self.k_proj = linear_class(
|
| 383 |
+
self.hidden_size,
|
| 384 |
+
self.num_attention_heads * self.head_dim,
|
| 385 |
+
)
|
| 386 |
+
self.v_proj = linear_class(
|
| 387 |
+
self.hidden_size,
|
| 388 |
+
self.num_attention_heads * self.head_dim,
|
| 389 |
+
)
|
| 390 |
+
self.o_proj = linear_class(
|
| 391 |
+
self.num_attention_heads * self.head_dim,
|
| 392 |
+
self.hidden_size,
|
| 393 |
+
)
|
| 394 |
+
|
| 395 |
+
self.rotary = RotaryEmbedding(
|
| 396 |
+
head_size=self.head_dim,
|
| 397 |
+
rotary_dim=self.head_dim,
|
| 398 |
+
max_position_embeddings=config.max_position_embeddings,
|
| 399 |
+
base=config.rope_theta,
|
| 400 |
+
is_neox_style=True,
|
| 401 |
+
dtype=dtype,
|
| 402 |
+
)
|
| 403 |
+
|
| 404 |
+
if config.attn_performer == "flex":
|
| 405 |
+
self.attention_performer = FlexSoftcapAttention(
|
| 406 |
+
head_dim=self.head_dim,
|
| 407 |
+
n_heads=self.num_attention_heads,
|
| 408 |
+
softmax_scale=self.head_dim**-0.5,
|
| 409 |
+
soft_cap=config.attn_soft_cap,
|
| 410 |
+
)
|
| 411 |
+
elif config.attn_performer == "eager":
|
| 412 |
+
self.attention_performer = VanillaSoftcapAttention(
|
| 413 |
+
head_dim=self.head_dim,
|
| 414 |
+
n_heads=self.num_attention_heads,
|
| 415 |
+
softmax_scale=self.head_dim**-0.5,
|
| 416 |
+
soft_cap=config.attn_soft_cap,
|
| 417 |
+
)
|
| 418 |
+
else:
|
| 419 |
+
raise ValueError(f"Unknown attn_performer: {config.attn_performer}")
|
| 420 |
+
|
| 421 |
+
def concatenate(
|
| 422 |
+
self,
|
| 423 |
+
*,
|
| 424 |
+
query: torch.Tensor,
|
| 425 |
+
key: torch.Tensor,
|
| 426 |
+
value: torch.Tensor,
|
| 427 |
+
attention_mask: torch.Tensor,
|
| 428 |
+
past_key_values: tp.Optional[tuple[torch.Tensor, torch.Tensor]] = None,
|
| 429 |
+
):
|
| 430 |
+
assert query.shape[1] == key.shape[1], "Query and Key lengths must match for GIDD attention."
|
| 431 |
+
if attention_mask is not None:
|
| 432 |
+
if attention_mask.dtype != torch.bool:
|
| 433 |
+
warnings.warn("attention_mask should be a boolean array", stacklevel=1)
|
| 434 |
+
attention_mask = (attention_mask == 1)
|
| 435 |
+
|
| 436 |
+
batch_size = query.shape[0]
|
| 437 |
+
|
| 438 |
+
# shape of attention_mask: (batch_size, seq_len)
|
| 439 |
+
# or (batch_size, query_len, kv_len)
|
| 440 |
+
|
| 441 |
+
if attention_mask.ndim == 2:
|
| 442 |
+
attention_mask = attention_mask.unsqueeze(1)
|
| 443 |
+
attention_mask = attention_mask.expand(-1, query.shape[1], -1)
|
| 444 |
+
elif attention_mask.ndim == 3:
|
| 445 |
+
# already in correct shape
|
| 446 |
+
pass
|
| 447 |
+
|
| 448 |
+
if self.attention_bias:
|
| 449 |
+
ones = torch.ones(
|
| 450 |
+
attention_mask.shape[:2] + (1,),
|
| 451 |
+
dtype=attention_mask.dtype,
|
| 452 |
+
device=attention_mask.device,
|
| 453 |
+
)
|
| 454 |
+
attention_mask = torch.cat(
|
| 455 |
+
[
|
| 456 |
+
ones,
|
| 457 |
+
attention_mask,
|
| 458 |
+
],
|
| 459 |
+
dim=-1,
|
| 460 |
+
)
|
| 461 |
+
|
| 462 |
+
if past_key_values is not None:
|
| 463 |
+
past_keys, past_values = past_key_values
|
| 464 |
+
key = torch.cat([past_keys, key], dim=1)
|
| 465 |
+
value = torch.cat([past_values, value], dim=1)
|
| 466 |
+
elif self.attention_bias:
|
| 467 |
+
n_heads = self.num_attention_heads
|
| 468 |
+
bias_shape = (batch_size, 1, n_heads, self.head_dim)
|
| 469 |
+
k_bias = self.k_bias.view(1, 1, n_heads, self.head_dim).expand(bias_shape)
|
| 470 |
+
v_bias = self.v_bias.view(1, 1, n_heads, self.head_dim).expand(bias_shape)
|
| 471 |
+
key = torch.cat([k_bias, key], dim=1)
|
| 472 |
+
value = torch.cat([v_bias, value], dim=1)
|
| 473 |
+
|
| 474 |
+
# shape of attention_mask: (batch_size, 1, query_len, kv_len + 1)
|
| 475 |
+
return query, key, value, attention_mask, (key, value)
|
| 476 |
+
|
| 477 |
+
def forward(
|
| 478 |
+
self,
|
| 479 |
+
hidden_states: torch.Tensor,
|
| 480 |
+
attention_mask: torch.Tensor,
|
| 481 |
+
position_ids: torch.Tensor,
|
| 482 |
+
past_key_values: tp.Optional[tuple[torch.Tensor, torch.Tensor]] = None,
|
| 483 |
+
frequencies: tp.Optional[torch.Tensor] = None,
|
| 484 |
+
output_attentions: bool = False,
|
| 485 |
+
) -> AttentionLayerOutput:
|
| 486 |
+
batch_size, sequence_length = hidden_states.shape[:2]
|
| 487 |
+
query_states = self.q_proj(hidden_states)
|
| 488 |
+
key_states = self.k_proj(hidden_states)
|
| 489 |
+
value_states = self.v_proj(hidden_states)
|
| 490 |
+
|
| 491 |
+
if self.use_qk_norm:
|
| 492 |
+
query_states = self.q_norm(query_states)
|
| 493 |
+
key_states = self.k_norm(key_states)
|
| 494 |
+
|
| 495 |
+
qshape = (
|
| 496 |
+
batch_size,
|
| 497 |
+
sequence_length,
|
| 498 |
+
self.num_attention_heads,
|
| 499 |
+
self.head_dim,
|
| 500 |
+
)
|
| 501 |
+
kv_shape = (
|
| 502 |
+
batch_size,
|
| 503 |
+
sequence_length,
|
| 504 |
+
self.num_attention_heads,
|
| 505 |
+
self.head_dim,
|
| 506 |
+
)
|
| 507 |
+
query_states = query_states.view(qshape)
|
| 508 |
+
key_states = key_states.view(kv_shape)
|
| 509 |
+
value_states = value_states.view(kv_shape)
|
| 510 |
+
|
| 511 |
+
query_states, key_states, cos, sin = self.rotary(
|
| 512 |
+
positions=position_ids,
|
| 513 |
+
query=query_states,
|
| 514 |
+
key=key_states,
|
| 515 |
+
frequencies=frequencies,
|
| 516 |
+
)
|
| 517 |
+
|
| 518 |
+
(
|
| 519 |
+
query_states,
|
| 520 |
+
key_states,
|
| 521 |
+
value_states,
|
| 522 |
+
attention_mask,
|
| 523 |
+
past_key_values,
|
| 524 |
+
) = self.concatenate(
|
| 525 |
+
query=query_states,
|
| 526 |
+
key=key_states,
|
| 527 |
+
value=value_states,
|
| 528 |
+
attention_mask=attention_mask,
|
| 529 |
+
past_key_values=past_key_values,
|
| 530 |
+
)
|
| 531 |
+
|
| 532 |
+
attention_out, attentions = self.attention_performer.forward(
|
| 533 |
+
q=query_states.transpose(1, 2),
|
| 534 |
+
k=key_states.transpose(1, 2),
|
| 535 |
+
v=value_states.transpose(1, 2),
|
| 536 |
+
attention_mask=attention_mask,
|
| 537 |
+
)
|
| 538 |
+
|
| 539 |
+
attn_output = self.o_proj(attention_out)
|
| 540 |
+
|
| 541 |
+
return AttentionLayerOutput(
|
| 542 |
+
hidden_states=attn_output,
|
| 543 |
+
attentions=attentions if output_attentions else None,
|
| 544 |
+
past_key_values=past_key_values,
|
| 545 |
+
)
|
| 546 |
+
|
| 547 |
+
|
| 548 |
+
class GiddLayer(nn.Module):
|
| 549 |
+
def __init__(
|
| 550 |
+
self,
|
| 551 |
+
config: GiddConfig,
|
| 552 |
+
layer_idx: int,
|
| 553 |
+
dtype=torch.float32,
|
| 554 |
+
resid_scale: float = 1.0,
|
| 555 |
+
):
|
| 556 |
+
super().__init__()
|
| 557 |
+
self.config = config
|
| 558 |
+
self.resid_scale = resid_scale
|
| 559 |
+
self.layer_idx = layer_idx
|
| 560 |
+
|
| 561 |
+
self.self_attn = GiddAttention(
|
| 562 |
+
layer_idx=layer_idx,
|
| 563 |
+
config=config,
|
| 564 |
+
dtype=dtype,
|
| 565 |
+
)
|
| 566 |
+
|
| 567 |
+
self.mlp = GiddMLP(
|
| 568 |
+
config=config,
|
| 569 |
+
dtype=dtype,
|
| 570 |
+
)
|
| 571 |
+
self.attn_layernorm = GiddRMSNorm(
|
| 572 |
+
config=config,
|
| 573 |
+
dtype=torch.float32,
|
| 574 |
+
)
|
| 575 |
+
self.mlp_layernorm = GiddRMSNorm(
|
| 576 |
+
config=config,
|
| 577 |
+
dtype=torch.float32,
|
| 578 |
+
)
|
| 579 |
+
|
| 580 |
+
def forward(
|
| 581 |
+
self,
|
| 582 |
+
hidden_states: torch.Tensor,
|
| 583 |
+
attention_mask: torch.Tensor,
|
| 584 |
+
position_ids: torch.Tensor,
|
| 585 |
+
past_key_values: tp.Optional[tuple[torch.Tensor, torch.Tensor]] = None,
|
| 586 |
+
frequencies: tp.Optional[torch.Tensor] = None,
|
| 587 |
+
output_attentions: bool = False,
|
| 588 |
+
) -> DecoderLayerOutput:
|
| 589 |
+
attn_inputs = self.attn_layernorm(hidden_states)
|
| 590 |
+
attn_outputs = self.self_attn(
|
| 591 |
+
attn_inputs,
|
| 592 |
+
attention_mask=attention_mask,
|
| 593 |
+
position_ids=position_ids,
|
| 594 |
+
past_key_values=past_key_values,
|
| 595 |
+
frequencies=frequencies,
|
| 596 |
+
output_attentions=output_attentions,
|
| 597 |
+
)
|
| 598 |
+
hidden_states = hidden_states + self.resid_scale * attn_outputs.hidden_states
|
| 599 |
+
|
| 600 |
+
mlp_inputs = self.mlp_layernorm(hidden_states)
|
| 601 |
+
mlp_output = self.mlp(mlp_inputs)
|
| 602 |
+
hidden_states = hidden_states + self.resid_scale * mlp_output
|
| 603 |
+
|
| 604 |
+
return DecoderLayerOutput(
|
| 605 |
+
hidden_states=hidden_states,
|
| 606 |
+
attentions=attn_outputs.attentions,
|
| 607 |
+
past_key_values=attn_outputs.past_key_values,
|
| 608 |
+
)
|
| 609 |
+
|
| 610 |
+
|
| 611 |
+
class GiddPreTrainedModel(PreTrainedModel):
|
| 612 |
+
config_class = GiddConfig
|
| 613 |
+
base_model_prefix = "model"
|
| 614 |
+
supports_gradient_checkpointing = False
|
| 615 |
+
_no_split_modules = ["GiddLayer"]
|
| 616 |
+
_skip_keys_device_placement = ["past_key_values"]
|
| 617 |
+
_supports_flash_attn = False
|
| 618 |
+
_supports_sdpa = False
|
| 619 |
+
_supports_flex_attn = False
|
| 620 |
+
_can_compile_fullgraph = False
|
| 621 |
+
_supports_attention_backend = False
|
| 622 |
+
_can_record_outputs = {
|
| 623 |
+
"hidden_states": GiddLayer,
|
| 624 |
+
"attentions": GiddAttention,
|
| 625 |
+
}
|
| 626 |
+
|
| 627 |
+
def _init_weights(self, module):
|
| 628 |
+
super()._init_weights(module)
|
| 629 |
+
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
|
| 630 |
+
|
| 631 |
+
|
| 632 |
+
class GiddModel(GiddPreTrainedModel):
|
| 633 |
+
def __init__(
|
| 634 |
+
self,
|
| 635 |
+
config: GiddConfig,
|
| 636 |
+
):
|
| 637 |
+
super().__init__(config=config)
|
| 638 |
+
|
| 639 |
+
self.resid_scale = config.resid_scale / config.num_hidden_layers
|
| 640 |
+
dtype = config.torch_dtype
|
| 641 |
+
|
| 642 |
+
self.embed_tokens = nn.Embedding(
|
| 643 |
+
num_embeddings=self.config.vocab_size,
|
| 644 |
+
embedding_dim=self.config.hidden_size,
|
| 645 |
+
)
|
| 646 |
+
self.embed_tokens.weight.data = self.embed_tokens.weight.data.to(dtype)
|
| 647 |
+
nn.init.normal_(self.embed_tokens.weight, mean=0.0, std=self.config.emb_init_scale)
|
| 648 |
+
|
| 649 |
+
freqs = compute_basic_frequencies(
|
| 650 |
+
base=config.rope_theta,
|
| 651 |
+
rotary_dim=config.hidden_size // config.num_attention_heads,
|
| 652 |
+
max_position_embeddings=config.max_position_embeddings,
|
| 653 |
+
)
|
| 654 |
+
self.frequencies = nn.Buffer(freqs, persistent=False)
|
| 655 |
+
|
| 656 |
+
self.layers = nn.ModuleList(
|
| 657 |
+
[
|
| 658 |
+
GiddLayer(
|
| 659 |
+
config=config,
|
| 660 |
+
layer_idx=i,
|
| 661 |
+
resid_scale=self.resid_scale,
|
| 662 |
+
dtype=dtype,
|
| 663 |
+
)
|
| 664 |
+
for i in range(self.config.num_hidden_layers)
|
| 665 |
+
]
|
| 666 |
+
)
|
| 667 |
+
self.norm = GiddRMSNorm(
|
| 668 |
+
config=config,
|
| 669 |
+
dtype=torch.float32,
|
| 670 |
+
)
|
| 671 |
+
|
| 672 |
+
def forward(
|
| 673 |
+
self,
|
| 674 |
+
input_ids: tp.Optional[torch.Tensor] = None,
|
| 675 |
+
inputs_embeds: tp.Optional[torch.Tensor] = None,
|
| 676 |
+
attention_mask: tp.Optional[torch.Tensor] = None,
|
| 677 |
+
position_ids: tp.Optional[torch.Tensor] = None,
|
| 678 |
+
past_key_values: tp.Optional[list[tuple[torch.Tensor, torch.Tensor]]] = None,
|
| 679 |
+
use_cache: bool = False,
|
| 680 |
+
cache_position: tp.Optional[torch.LongTensor] = None,
|
| 681 |
+
output_attentions: tp.Optional[bool] = None,
|
| 682 |
+
output_hidden_states: tp.Optional[bool] = None,
|
| 683 |
+
) -> BaseModelOutputWithPast:
|
| 684 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
| 685 |
+
raise ValueError(
|
| 686 |
+
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
|
| 687 |
+
)
|
| 688 |
+
if inputs_embeds is None:
|
| 689 |
+
inputs_embeds = self.embed_tokens(input_ids.to(torch.long))
|
| 690 |
+
|
| 691 |
+
if use_cache and past_key_values is None:
|
| 692 |
+
past_key_values = [None] * self.config.num_hidden_layers
|
| 693 |
+
elif past_key_values is not None:
|
| 694 |
+
past_key_values = list(past_key_values)
|
| 695 |
+
|
| 696 |
+
if position_ids is None:
|
| 697 |
+
past_seen_tokens = 0
|
| 698 |
+
if past_key_values is not None and any(past_key_values):
|
| 699 |
+
past_seen_tokens = [kv[0].shape[1] for kv in past_key_values if kv is not None][0]
|
| 700 |
+
cache_position = torch.arange(inputs_embeds.shape[1], device=inputs_embeds.device) + past_seen_tokens
|
| 701 |
+
position_ids = cache_position.unsqueeze(0)
|
| 702 |
+
|
| 703 |
+
batch_size, sequence_length, _ = inputs_embeds.shape
|
| 704 |
+
|
| 705 |
+
assert sequence_length <= self.config.max_position_embeddings, (
|
| 706 |
+
f"Maximum Position Embedding Reached ! (expected <= {self.config.max_position_embeddings} got {sequence_length})"
|
| 707 |
+
)
|
| 708 |
+
if attention_mask is None:
|
| 709 |
+
attention_mask = torch.ones(
|
| 710 |
+
(batch_size, sequence_length),
|
| 711 |
+
dtype=torch.bool,
|
| 712 |
+
device=inputs_embeds.device,
|
| 713 |
+
)
|
| 714 |
+
else:
|
| 715 |
+
if attention_mask.dtype != torch.bool:
|
| 716 |
+
attention_mask = (attention_mask == 1)
|
| 717 |
+
|
| 718 |
+
if position_ids is None:
|
| 719 |
+
position_ids = torch.arange(
|
| 720 |
+
inputs_embeds.shape[-2],
|
| 721 |
+
dtype=torch.int32,
|
| 722 |
+
device=inputs_embeds.device,
|
| 723 |
+
)
|
| 724 |
+
position_ids = position_ids.unsqueeze(0).expand(inputs_embeds.shape[:-1])
|
| 725 |
+
|
| 726 |
+
hidden_states = inputs_embeds
|
| 727 |
+
|
| 728 |
+
all_attentions = () if output_attentions else None
|
| 729 |
+
all_hidden_states = () if output_hidden_states else None
|
| 730 |
+
for idx, block in enumerate(self.layers):
|
| 731 |
+
if output_hidden_states:
|
| 732 |
+
all_hidden_states += (hidden_states,)
|
| 733 |
+
|
| 734 |
+
layer_outputs = block(
|
| 735 |
+
hidden_states=hidden_states,
|
| 736 |
+
attention_mask=attention_mask,
|
| 737 |
+
position_ids=position_ids,
|
| 738 |
+
output_attentions=output_attentions,
|
| 739 |
+
frequencies=self.frequencies,
|
| 740 |
+
past_key_values=past_key_values[idx] if past_key_values is not None else None,
|
| 741 |
+
)
|
| 742 |
+
hidden_states = layer_outputs.hidden_states
|
| 743 |
+
|
| 744 |
+
if output_attentions:
|
| 745 |
+
all_attentions += (layer_outputs.attentions,)
|
| 746 |
+
|
| 747 |
+
if use_cache:
|
| 748 |
+
past_key_values[idx] = layer_outputs.past_key_values
|
| 749 |
+
|
| 750 |
+
hidden_states = self.norm(hidden_states)
|
| 751 |
+
|
| 752 |
+
if output_hidden_states:
|
| 753 |
+
all_hidden_states += (hidden_states,)
|
| 754 |
+
|
| 755 |
+
return BaseModelOutputWithPast(
|
| 756 |
+
last_hidden_state=hidden_states,
|
| 757 |
+
hidden_states=all_hidden_states,
|
| 758 |
+
attentions=all_attentions,
|
| 759 |
+
past_key_values=past_key_values,
|
| 760 |
+
)
|
| 761 |
+
|
| 762 |
+
|
| 763 |
+
class GiddForDiffusionLM(GiddPreTrainedModel, GenerationMixin):
|
| 764 |
+
def __init__(
|
| 765 |
+
self,
|
| 766 |
+
config: GiddConfig,
|
| 767 |
+
):
|
| 768 |
+
super().__init__(config=config)
|
| 769 |
+
|
| 770 |
+
self.model = GiddModel(config=config)
|
| 771 |
+
|
| 772 |
+
self.lm_head = ScaledLinear(
|
| 773 |
+
config.hidden_size,
|
| 774 |
+
config.vocab_size,
|
| 775 |
+
scale=config.head_scaling,
|
| 776 |
+
dtype=config.torch_dtype,
|
| 777 |
+
use_bias=False,
|
| 778 |
+
)
|
| 779 |
+
|
| 780 |
+
def forward(
|
| 781 |
+
self,
|
| 782 |
+
input_ids: tp.Optional[torch.Tensor] = None,
|
| 783 |
+
inputs_embeds: tp.Optional[torch.Tensor] = None,
|
| 784 |
+
attention_mask: tp.Optional[torch.Tensor] = None,
|
| 785 |
+
position_ids: tp.Optional[torch.Tensor] = None,
|
| 786 |
+
past_key_values: tp.Optional[list[tuple[torch.Tensor, torch.Tensor]]] = None,
|
| 787 |
+
use_cache: bool = False,
|
| 788 |
+
output_attentions: tp.Optional[bool] = None,
|
| 789 |
+
output_hidden_states: tp.Optional[bool] = None,
|
| 790 |
+
) -> CausalLMOutputWithPast:
|
| 791 |
+
outputs = self.model(
|
| 792 |
+
input_ids=input_ids,
|
| 793 |
+
inputs_embeds=inputs_embeds,
|
| 794 |
+
attention_mask=attention_mask,
|
| 795 |
+
position_ids=position_ids,
|
| 796 |
+
past_key_values=past_key_values,
|
| 797 |
+
output_attentions=output_attentions,
|
| 798 |
+
output_hidden_states=output_hidden_states,
|
| 799 |
+
use_cache=use_cache,
|
| 800 |
+
)
|
| 801 |
+
|
| 802 |
+
hidden_states = outputs.last_hidden_state
|
| 803 |
+
|
| 804 |
+
if self.config.tie_word_embeddings:
|
| 805 |
+
logits = hidden_states @ self.model.embed_tokens.weight.t()
|
| 806 |
+
else:
|
| 807 |
+
logits = self.lm_head(hidden_states)
|
| 808 |
+
|
| 809 |
+
return CausalLMOutputWithPast(
|
| 810 |
+
loss=None,
|
| 811 |
+
logits=logits,
|
| 812 |
+
hidden_states=outputs.hidden_states,
|
| 813 |
+
attentions=outputs.attentions,
|
| 814 |
+
past_key_values=outputs.past_key_values,
|
| 815 |
+
)
|
| 816 |
+
|
| 817 |
+
def _sample_prior(self, shape: tuple[int, ...], device: torch.device, mask_token_id: int = 3) -> torch.Tensor:
|
| 818 |
+
p_unif = torch.sigmoid(
|
| 819 |
+
torch.ones(shape, device=device) * self.config.min_log_snr + self.config.noise_type
|
| 820 |
+
)
|
| 821 |
+
r = torch.rand(shape, device=device)
|
| 822 |
+
unif = torch.randint(0, self.config.vocab_size, shape, device=device)
|
| 823 |
+
samples = torch.where(r < p_unif, unif, mask_token_id)
|
| 824 |
+
return samples
|
| 825 |
+
|
| 826 |
+
def _probs_with_topk_topp(self, logits, temperature: float, top_p: float | None, top_k: int | None):
|
| 827 |
+
if temperature == 0.0:
|
| 828 |
+
probs = torch.zeros_like(logits)
|
| 829 |
+
indices = torch.argmax(logits, dim=-1, keepdim=True)
|
| 830 |
+
probs.scatter_(-1, indices, 1.0)
|
| 831 |
+
return probs
|
| 832 |
+
|
| 833 |
+
x = logits / temperature
|
| 834 |
+
|
| 835 |
+
if top_k is not None and 0 < top_k < x.size(-1):
|
| 836 |
+
kth = torch.topk(x, top_k, dim=-1).values[..., -1, None]
|
| 837 |
+
x = torch.where(x < kth, torch.full_like(x, float("-inf")), x)
|
| 838 |
+
|
| 839 |
+
if top_p is not None and 0.0 < top_p < 1.0:
|
| 840 |
+
sorted_logits, sorted_idx = torch.sort(x, descending=True, dim=-1)
|
| 841 |
+
sorted_probs = torch.softmax(sorted_logits, dim=-1)
|
| 842 |
+
cumprobs = sorted_probs.cumsum(dim=-1)
|
| 843 |
+
|
| 844 |
+
remove = cumprobs > top_p
|
| 845 |
+
remove[..., 1:] = remove[..., :-1].clone()
|
| 846 |
+
remove[..., 0] = False
|
| 847 |
+
|
| 848 |
+
sorted_logits = sorted_logits.masked_fill(remove, float("-inf"))
|
| 849 |
+
x = x.scatter(-1, sorted_idx, sorted_logits)
|
| 850 |
+
|
| 851 |
+
probs = torch.softmax(x, dim=-1)
|
| 852 |
+
|
| 853 |
+
return probs
|
| 854 |
+
|
| 855 |
+
def _pi_lambda(self, log_snr, mask_token_id=3):
|
| 856 |
+
unif_vec = torch.ones((self.config.vocab_size,), device=log_snr.device) / (self.config.vocab_size - 1)
|
| 857 |
+
unif_vec[mask_token_id] = 0.0
|
| 858 |
+
alpha = torch.sigmoid(log_snr + self.config.noise_type)
|
| 859 |
+
pi = alpha * unif_vec
|
| 860 |
+
pi[..., mask_token_id] = 1.0 - alpha
|
| 861 |
+
return pi
|
| 862 |
+
|
| 863 |
+
def _sample_ancestral(
|
| 864 |
+
self,
|
| 865 |
+
z: torch.Tensor,
|
| 866 |
+
x_hat: torch.Tensor,
|
| 867 |
+
log_snr_t: torch.Tensor,
|
| 868 |
+
log_snr_s: torch.Tensor,
|
| 869 |
+
mask_token_id: int = 3,
|
| 870 |
+
):
|
| 871 |
+
alpha_s = log_snr_s.sigmoid()
|
| 872 |
+
alpha_t = log_snr_t.sigmoid()
|
| 873 |
+
beta_s, beta_t = 1.0 - alpha_s, 1.0 - alpha_t
|
| 874 |
+
alpha_t_s = alpha_t / alpha_s
|
| 875 |
+
|
| 876 |
+
pi_s = self._pi_lambda(log_snr_s, mask_token_id=mask_token_id)
|
| 877 |
+
pi_t = self._pi_lambda(log_snr_t, mask_token_id=mask_token_id)
|
| 878 |
+
beta_pi_t_s = beta_t * pi_t - alpha_t_s * beta_s * pi_s
|
| 879 |
+
# beta_pi_t_s_at_z = beta_pi_t_s[z]
|
| 880 |
+
|
| 881 |
+
q_t = alpha_t * x_hat + beta_t * pi_t[None, None, :]
|
| 882 |
+
q_s = alpha_s * x_hat + beta_s * pi_s[None, None, :]
|
| 883 |
+
q_t_at_z = q_t.gather(-1, z.unsqueeze(-1)).squeeze(-1)
|
| 884 |
+
|
| 885 |
+
z_vec = torch.nn.functional.one_hot(z, num_classes=self.config.vocab_size).to(q_t.dtype)
|
| 886 |
+
q_t_s_at_z = alpha_t_s * z_vec + beta_pi_t_s[z, None]
|
| 887 |
+
|
| 888 |
+
p_s_t = q_s * q_t_s_at_z / q_t_at_z[..., None]
|
| 889 |
+
|
| 890 |
+
z_next = torch.multinomial(p_s_t.flatten(0, 1), num_samples=1).view_as(z)
|
| 891 |
+
return z_next
|
| 892 |
+
|
| 893 |
+
def _sample_adaptive(
|
| 894 |
+
self,
|
| 895 |
+
z: torch.Tensor,
|
| 896 |
+
logits: torch.Tensor,
|
| 897 |
+
log_snr: torch.Tensor,
|
| 898 |
+
n_tokens: int = 1,
|
| 899 |
+
mask_token_id: int = 3,
|
| 900 |
+
temperature: float = 0.0,
|
| 901 |
+
top_p: float | None = None,
|
| 902 |
+
top_k: int | None = None,
|
| 903 |
+
):
|
| 904 |
+
pi_vec = self._pi_lambda(log_snr, mask_token_id=mask_token_id)
|
| 905 |
+
p_noise = pi_vec[z]
|
| 906 |
+
p_noise = p_noise / p_noise.sum(dim=-1, keepdim=True)
|
| 907 |
+
|
| 908 |
+
x_hat = logits.softmax(dim=-1)
|
| 909 |
+
p_max = x_hat.max(dim=-1).values
|
| 910 |
+
p_curr = x_hat.gather(-1, z.unsqueeze(-1)).squeeze(-1)
|
| 911 |
+
p_delta = (p_max - p_curr) * p_noise
|
| 912 |
+
|
| 913 |
+
next_poss = torch.topk(p_delta, n_tokens, dim=-1).indices
|
| 914 |
+
probs = self._probs_with_topk_topp(
|
| 915 |
+
logits=logits,
|
| 916 |
+
temperature=temperature,
|
| 917 |
+
top_p=top_p,
|
| 918 |
+
top_k=top_k,
|
| 919 |
+
)
|
| 920 |
+
next_tokens = torch.multinomial(probs.flatten(0, 1), num_samples=1).view_as(z)
|
| 921 |
+
|
| 922 |
+
z_next = z.clone()
|
| 923 |
+
batch_indices = torch.arange(z.shape[0], device=z.device).unsqueeze(-1)
|
| 924 |
+
z_next[batch_indices, next_poss] = next_tokens[batch_indices, next_poss]
|
| 925 |
+
return z_next
|
| 926 |
+
|
| 927 |
+
@torch.no_grad()
|
| 928 |
+
def generate(
|
| 929 |
+
self,
|
| 930 |
+
inputs: tp.Optional[torch.Tensor] = None,
|
| 931 |
+
max_length: int = 2048,
|
| 932 |
+
min_length: int = 0,
|
| 933 |
+
temperature: float = 1.0,
|
| 934 |
+
block_length: int = 128,
|
| 935 |
+
steps: int = 128,
|
| 936 |
+
top_p: tp.Optional[float] = None,
|
| 937 |
+
top_k: tp.Optional[int] = None,
|
| 938 |
+
bos_token_id: int = 0,
|
| 939 |
+
eos_token_id: int = 1,
|
| 940 |
+
pad_token_id: int = 2,
|
| 941 |
+
mask_token_id: int = 3,
|
| 942 |
+
sampling_method: tp.Literal["ancestral", "adaptive"] = "ancestral",
|
| 943 |
+
noise_schedule: tp.Literal["linear", "cosine"] | tp.Callable[[torch.Tensor], torch.Tensor] = "cosine",
|
| 944 |
+
tokens_per_step: int = 1,
|
| 945 |
+
show_progress: bool = False,
|
| 946 |
+
):
|
| 947 |
+
r"""
|
| 948 |
+
Generates tokens with block-wise denoising diffusion.
|
| 949 |
+
|
| 950 |
+
Parameters:
|
| 951 |
+
inputs (`torch.Tensor`):
|
| 952 |
+
The token sequence used as a prompt for the generation.
|
| 953 |
+
temperature (`float`, *optional*, defaults to 0.0):
|
| 954 |
+
The value used to module the next token probabilities. A value of 0.0 corresponds to greedy decoding.
|
| 955 |
+
block_length (`int`, *optional*, defaults to 32):
|
| 956 |
+
The size of each generation block. The model generates text in parallel within these blocks. This is a
|
| 957 |
+
key parameter for controlling the granularity of the generation process.
|
| 958 |
+
steps (`int`, *optional*, defaults to 32):
|
| 959 |
+
The number of denoising steps to perform for each block.
|
| 960 |
+
max_length (`int`, *optional*, defaults to 2048):
|
| 961 |
+
The maximum length of the sequence to be generated.
|
| 962 |
+
min_length (`int`, *optional*, defaults to 0):
|
| 963 |
+
The minimum length of the sequence to be generated.
|
| 964 |
+
top_p (`float`, *optional*):
|
| 965 |
+
If set to a float value between 0 and 1, only the most probable tokens with probabilities that add up to
|
| 966 |
+
`top_p` or higher are kept for generation (nucleus sampling).
|
| 967 |
+
top_k (`int`, *optional*):
|
| 968 |
+
The number of highest probability vocabulary tokens to keep for top-k-filtering.
|
| 969 |
+
bos_token_id (`int`, *optional*, defaults to 0):
|
| 970 |
+
The token ID for the beginning-of-sequence token.
|
| 971 |
+
eos_token_id (`int`, *optional*, defaults to 1):
|
| 972 |
+
The token ID for the end-of-sequence token.
|
| 973 |
+
pad_token_id (`int`, *optional*, defaults to 2):
|
| 974 |
+
The token ID for the padding token.
|
| 975 |
+
mask_token_id (`int`, *optional*, defaults to 3):
|
| 976 |
+
The token ID used as a placeholder for tokens that are yet to be generated.
|
| 977 |
+
Return:
|
| 978 |
+
`torch.Tensor`: A string containing the generated token IDs, starting
|
| 979 |
+
after the prompt and stopping at the first `eos_id` or `gen_length`.
|
| 980 |
+
"""
|
| 981 |
+
if sampling_method not in ["ancestral", "adaptive"]:
|
| 982 |
+
raise ValueError(f"Unsupported sampling method: {sampling_method}")
|
| 983 |
+
if noise_schedule not in ["linear", "cosine"] and not callable(noise_schedule):
|
| 984 |
+
raise ValueError("noise_schedule must be 'linear', 'cosine', or a callable function.")
|
| 985 |
+
|
| 986 |
+
if inputs is None:
|
| 987 |
+
inputs = torch.tensor([[bos_token_id]], device=self.device, dtype=torch.long)
|
| 988 |
+
batch_size = 1
|
| 989 |
+
prompt_length = 0
|
| 990 |
+
else:
|
| 991 |
+
batch_size = inputs.shape[0]
|
| 992 |
+
prompt_length = inputs.shape[1]
|
| 993 |
+
if eos_token_id in inputs:
|
| 994 |
+
warnings.warn("Input prompt contains eos_token_id. Generation may stop earlier than expected.", stacklevel=1)
|
| 995 |
+
input_ids = inputs.to(self.device)
|
| 996 |
+
|
| 997 |
+
total_length = self.config.max_position_embeddings
|
| 998 |
+
|
| 999 |
+
if noise_schedule == "linear":
|
| 1000 |
+
noise_schedule_fn = lambda t: 1.0 - t
|
| 1001 |
+
elif noise_schedule == "cosine":
|
| 1002 |
+
noise_schedule_fn = lambda t: 0.5 + 0.5 * torch.cos(t * torch.pi)
|
| 1003 |
+
else:
|
| 1004 |
+
noise_schedule_fn = noise_schedule
|
| 1005 |
+
|
| 1006 |
+
x_prior = self._sample_prior(
|
| 1007 |
+
shape=(batch_size, total_length),
|
| 1008 |
+
device=self.device,
|
| 1009 |
+
mask_token_id=mask_token_id,
|
| 1010 |
+
)
|
| 1011 |
+
x = x_prior.clone()
|
| 1012 |
+
if prompt_length > 0:
|
| 1013 |
+
x[:, :prompt_length] = input_ids.clone()
|
| 1014 |
+
|
| 1015 |
+
position_ids = torch.arange(total_length, device=self.device)
|
| 1016 |
+
position_ids = position_ids.unsqueeze(0).expand(batch_size, -1)
|
| 1017 |
+
|
| 1018 |
+
noise_mask = torch.ones_like(x, dtype=torch.bool)
|
| 1019 |
+
noise_mask[:, :prompt_length] = False
|
| 1020 |
+
|
| 1021 |
+
min_log_snr = torch.tensor(self.config.min_log_snr, device=self.device)
|
| 1022 |
+
max_log_snr = torch.tensor(self.config.max_log_snr, device=self.device)
|
| 1023 |
+
alpha_min = torch.sigmoid(min_log_snr)
|
| 1024 |
+
alpha_max = torch.sigmoid(max_log_snr)
|
| 1025 |
+
ts = torch.linspace(0.0, 1.0, steps=steps + 1, device=self.device)
|
| 1026 |
+
alpha_t = (alpha_max - alpha_min) * noise_schedule_fn(ts) + alpha_min
|
| 1027 |
+
log_snrs = torch.log(alpha_t / (1.0 - alpha_t)).clip(min_log_snr, max_log_snr)
|
| 1028 |
+
|
| 1029 |
+
if show_progress:
|
| 1030 |
+
import tqdm.auto as tqdm
|
| 1031 |
+
est_num_blocks = (max_length + block_length - 1) // block_length
|
| 1032 |
+
est_num_steps = est_num_blocks * steps
|
| 1033 |
+
pbar = tqdm.tqdm(total=est_num_steps)
|
| 1034 |
+
update_pbar = lambda n: pbar.update(n)
|
| 1035 |
+
def stop_pbar():
|
| 1036 |
+
pbar.total = pbar.n
|
| 1037 |
+
pbar.refresh()
|
| 1038 |
+
close_pbar = lambda: pbar.close()
|
| 1039 |
+
else:
|
| 1040 |
+
update_pbar = lambda n: None
|
| 1041 |
+
stop_pbar = lambda: None
|
| 1042 |
+
close_pbar = lambda: None
|
| 1043 |
+
|
| 1044 |
+
try:
|
| 1045 |
+
num_blocks = 0
|
| 1046 |
+
while True:
|
| 1047 |
+
current_window_start = prompt_length + num_blocks * block_length
|
| 1048 |
+
current_window_end = current_window_start + block_length
|
| 1049 |
+
attn_mask = (noise_mask[..., :, None] >= noise_mask[..., None, :])
|
| 1050 |
+
|
| 1051 |
+
keep_logits = False
|
| 1052 |
+
past_key_values = None
|
| 1053 |
+
for step in range(steps, 0, -1):
|
| 1054 |
+
if past_key_values is None:
|
| 1055 |
+
output = self.forward(
|
| 1056 |
+
input_ids=x[:, :current_window_start],
|
| 1057 |
+
attention_mask=attn_mask[:, :current_window_start, :current_window_start],
|
| 1058 |
+
position_ids=position_ids[:, :current_window_start],
|
| 1059 |
+
use_cache=True,
|
| 1060 |
+
)
|
| 1061 |
+
past_key_values = output.past_key_values
|
| 1062 |
+
|
| 1063 |
+
if not keep_logits:
|
| 1064 |
+
logits = self.forward(
|
| 1065 |
+
input_ids=x[:, current_window_start:],
|
| 1066 |
+
attention_mask=attn_mask[:, current_window_start:],
|
| 1067 |
+
position_ids=position_ids[:, current_window_start:],
|
| 1068 |
+
past_key_values=past_key_values,
|
| 1069 |
+
).logits
|
| 1070 |
+
active_logits = logits[:, :block_length, :]
|
| 1071 |
+
# logits = self.forward(
|
| 1072 |
+
# input_ids=x,
|
| 1073 |
+
# attention_mask=attn_mask,
|
| 1074 |
+
# position_ids=position_ids,
|
| 1075 |
+
# past_key_values=None
|
| 1076 |
+
# ).logits
|
| 1077 |
+
# active_logits = logits[:, current_window_start:current_window_end, :]
|
| 1078 |
+
|
| 1079 |
+
active_logits[..., mask_token_id] = float("-inf")
|
| 1080 |
+
min_eos_idx = max(0, min_length + prompt_length - current_window_start)
|
| 1081 |
+
active_logits[:, :min_eos_idx, eos_token_id] = float("-inf")
|
| 1082 |
+
|
| 1083 |
+
z_t = x[:, current_window_start:current_window_end]
|
| 1084 |
+
if sampling_method == "ancestral":
|
| 1085 |
+
x_hat = self._probs_with_topk_topp(
|
| 1086 |
+
active_logits.to(torch.float32),
|
| 1087 |
+
temperature=temperature,
|
| 1088 |
+
top_k=top_k,
|
| 1089 |
+
top_p=top_p,
|
| 1090 |
+
)
|
| 1091 |
+
|
| 1092 |
+
z_s = self._sample_ancestral(
|
| 1093 |
+
z=z_t,
|
| 1094 |
+
x_hat=x_hat,
|
| 1095 |
+
log_snr_t=log_snrs[step],
|
| 1096 |
+
log_snr_s=log_snrs[step - 1],
|
| 1097 |
+
mask_token_id=mask_token_id,
|
| 1098 |
+
)
|
| 1099 |
+
elif sampling_method == "adaptive":
|
| 1100 |
+
z_s = self._sample_adaptive(
|
| 1101 |
+
z=z_t,
|
| 1102 |
+
logits=active_logits.to(torch.float32),
|
| 1103 |
+
log_snr=log_snrs[step],
|
| 1104 |
+
n_tokens=tokens_per_step,
|
| 1105 |
+
mask_token_id=mask_token_id,
|
| 1106 |
+
temperature=temperature,
|
| 1107 |
+
top_p=top_p,
|
| 1108 |
+
top_k=top_k,
|
| 1109 |
+
)
|
| 1110 |
+
keep_logits = (z_s == z_t).all().item()
|
| 1111 |
+
|
| 1112 |
+
x[:, current_window_start:current_window_end] = z_s.clone()
|
| 1113 |
+
|
| 1114 |
+
update_pbar(1)
|
| 1115 |
+
|
| 1116 |
+
num_blocks += 1
|
| 1117 |
+
noise_mask[:, :current_window_end] = False
|
| 1118 |
+
|
| 1119 |
+
has_eos = (x == eos_token_id).any(-1).all().item()
|
| 1120 |
+
all_done = current_window_end >= max_length + prompt_length or has_eos
|
| 1121 |
+
if all_done:
|
| 1122 |
+
stop_pbar()
|
| 1123 |
+
break
|
| 1124 |
+
finally:
|
| 1125 |
+
close_pbar()
|
| 1126 |
+
|
| 1127 |
+
generated_answer = x[:, :max_length + prompt_length]
|
| 1128 |
+
|
| 1129 |
+
eos_idx = (generated_answer == eos_token_id).int().argmax(dim=-1)
|
| 1130 |
+
for i, idx in enumerate(eos_idx):
|
| 1131 |
+
if idx > 0:
|
| 1132 |
+
generated_answer[i, idx:] = pad_token_id
|
| 1133 |
+
|
| 1134 |
+
return generated_answer
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<|begin_of_text|>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"eos_token": {
|
| 10 |
+
"content": "<|end_of_text|>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"mask_token": {
|
| 17 |
+
"content": "<|mask|>",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"pad_token": {
|
| 24 |
+
"content": "<|padding|>",
|
| 25 |
+
"lstrip": false,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
}
|
| 30 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "<|begin_of_text|>",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"1": {
|
| 12 |
+
"content": "<|end_of_text|>",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"2": {
|
| 20 |
+
"content": "<|padding|>",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"3": {
|
| 28 |
+
"content": "<|mask|>",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"4": {
|
| 36 |
+
"content": " ",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": true,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": false
|
| 42 |
+
},
|
| 43 |
+
"5": {
|
| 44 |
+
"content": " ",
|
| 45 |
+
"lstrip": false,
|
| 46 |
+
"normalized": true,
|
| 47 |
+
"rstrip": false,
|
| 48 |
+
"single_word": false,
|
| 49 |
+
"special": false
|
| 50 |
+
},
|
| 51 |
+
"6": {
|
| 52 |
+
"content": " ",
|
| 53 |
+
"lstrip": false,
|
| 54 |
+
"normalized": true,
|
| 55 |
+
"rstrip": false,
|
| 56 |
+
"single_word": false,
|
| 57 |
+
"special": false
|
| 58 |
+
},
|
| 59 |
+
"7": {
|
| 60 |
+
"content": " ",
|
| 61 |
+
"lstrip": false,
|
| 62 |
+
"normalized": true,
|
| 63 |
+
"rstrip": false,
|
| 64 |
+
"single_word": false,
|
| 65 |
+
"special": false
|
| 66 |
+
},
|
| 67 |
+
"8": {
|
| 68 |
+
"content": " ",
|
| 69 |
+
"lstrip": false,
|
| 70 |
+
"normalized": true,
|
| 71 |
+
"rstrip": false,
|
| 72 |
+
"single_word": false,
|
| 73 |
+
"special": false
|
| 74 |
+
},
|
| 75 |
+
"9": {
|
| 76 |
+
"content": " ",
|
| 77 |
+
"lstrip": false,
|
| 78 |
+
"normalized": true,
|
| 79 |
+
"rstrip": false,
|
| 80 |
+
"single_word": false,
|
| 81 |
+
"special": false
|
| 82 |
+
},
|
| 83 |
+
"10": {
|
| 84 |
+
"content": " ",
|
| 85 |
+
"lstrip": false,
|
| 86 |
+
"normalized": true,
|
| 87 |
+
"rstrip": false,
|
| 88 |
+
"single_word": false,
|
| 89 |
+
"special": false
|
| 90 |
+
},
|
| 91 |
+
"11": {
|
| 92 |
+
"content": " ",
|
| 93 |
+
"lstrip": false,
|
| 94 |
+
"normalized": true,
|
| 95 |
+
"rstrip": false,
|
| 96 |
+
"single_word": false,
|
| 97 |
+
"special": false
|
| 98 |
+
},
|
| 99 |
+
"12": {
|
| 100 |
+
"content": " ",
|
| 101 |
+
"lstrip": false,
|
| 102 |
+
"normalized": true,
|
| 103 |
+
"rstrip": false,
|
| 104 |
+
"single_word": false,
|
| 105 |
+
"special": false
|
| 106 |
+
},
|
| 107 |
+
"13": {
|
| 108 |
+
"content": " ",
|
| 109 |
+
"lstrip": false,
|
| 110 |
+
"normalized": true,
|
| 111 |
+
"rstrip": false,
|
| 112 |
+
"single_word": false,
|
| 113 |
+
"special": false
|
| 114 |
+
},
|
| 115 |
+
"14": {
|
| 116 |
+
"content": " ",
|
| 117 |
+
"lstrip": false,
|
| 118 |
+
"normalized": true,
|
| 119 |
+
"rstrip": false,
|
| 120 |
+
"single_word": false,
|
| 121 |
+
"special": false
|
| 122 |
+
},
|
| 123 |
+
"15": {
|
| 124 |
+
"content": " ",
|
| 125 |
+
"lstrip": false,
|
| 126 |
+
"normalized": true,
|
| 127 |
+
"rstrip": false,
|
| 128 |
+
"single_word": false,
|
| 129 |
+
"special": false
|
| 130 |
+
}
|
| 131 |
+
},
|
| 132 |
+
"bos_token": "<|begin_of_text|>",
|
| 133 |
+
"clean_up_tokenization_spaces": false,
|
| 134 |
+
"eos_token": "<|end_of_text|>",
|
| 135 |
+
"extra_special_tokens": {},
|
| 136 |
+
"mask_token": "<|mask|>",
|
| 137 |
+
"model_max_length": 1000000000000000019884624838656,
|
| 138 |
+
"pad_token": "<|padding|>",
|
| 139 |
+
"tokenizer_class": "PreTrainedTokenizerFast"
|
| 140 |
+
}
|