""" NVFP4 kernels for DeepSeek inference on SM120 (RTX Pro 6000 Blackwell). This module provides NVFP4 equivalents for the FP8 kernels in kernel.py: - nvfp4_gemm: Block-scaled NVFP4 matrix multiplication - act_quant_nvfp4: Quantize activations to NVFP4 Weight format: weight: [N, K/2] packed uint8 (2 FP4 E2M1 per byte) weight_scale: [N, K/16] FP8 E4M3 per-block scale weight_scale_2: [1] FP32 global scale """ import torch import triton import triton.language as tl from triton.tools.tensor_descriptor import TensorDescriptor from typing import Tuple, Optional import functools # NVFP4 E2M1 lookup table for dequantization NVFP4_LUT = torch.tensor([ 0.0, 0.5, 1.0, 1.5, 2.0, 3.0, 4.0, 6.0, # positive values -0.0, -0.5, -1.0, -1.5, -2.0, -3.0, -4.0, -6.0, # negative values ], dtype=torch.float32) @functools.lru_cache(maxsize=8) def _get_nvfp4_lut(device_str: str) -> torch.Tensor: """Get NVFP4 lookup table on specified device (cached). Args: device_str: Device string (e.g., 'cpu', 'cuda:0') Returns: NVFP4 lookup table on the specified device """ return NVFP4_LUT.to(device=device_str) # Block size for NVFP4 (16 elements per scale) NVFP4_BLOCK_SIZE = 16 def get_nvfp4_configs(): """Get kernel configs appropriate for SM120.""" capability = torch.cuda.get_device_capability()[0] if capability == 12: # SM120 - Blackwell workstation return { "BLOCK_SIZE_M": 128, "BLOCK_SIZE_N": 128, "BLOCK_SIZE_K": 128, "num_stages": 2, "VEC_SIZE": 16, } else: # SM100 - Blackwell datacenter return { "BLOCK_SIZE_M": 128, "BLOCK_SIZE_N": 256, "BLOCK_SIZE_K": 256, "num_stages": 4, "VEC_SIZE": 16, } def linear_to_triton_scale( scale_linear: torch.Tensor, M: int, K: int, VEC_SIZE: int = 16, ) -> torch.Tensor: """ Convert linear scale format to Triton's 5D TMA layout. Args: scale_linear: [M, K // VEC_SIZE] FP8 E4M3 scales M: Number of rows K: Number of columns VEC_SIZE: Number of elements per scale block Returns: scale_triton: [1, M//128, K//64, 2, 256] for TMA """ assert scale_linear.shape == (M, K // VEC_SIZE), \ f"Expected shape {(M, K // VEC_SIZE)}, got {scale_linear.shape}" num_m_chunks = M // 128 num_k_chunks = (K // VEC_SIZE) // 4 # Reshape and permute for Triton's packed layout scale = scale_linear.reshape(num_m_chunks, 4, 32, num_k_chunks, 4) scale = scale.permute(0, 3, 2, 1, 4) # [M//128, K//64, 32, 4, 4] scale = scale.reshape(num_m_chunks, num_k_chunks, 32, 16) scale = scale.reshape(1, num_m_chunks, num_k_chunks, 2, 256) return scale.contiguous() def dequantize_nvfp4( packed: torch.Tensor, scale: torch.Tensor, scale_2: torch.Tensor, dtype: torch.dtype = torch.bfloat16, ) -> torch.Tensor: """ Dequantize NVFP4 tensor to float for reference/fallback. Args: packed: [M, K/2] uint8 packed tensor scale: [M, K/16] FP8 E4M3 per-block scales scale_2: [1] FP32 global scale dtype: Output dtype Returns: tensor: [M, K] dequantized tensor """ M, K_half = packed.shape K = K_half * 2 block_size = NVFP4_BLOCK_SIZE # Unpack two FP4 values per byte low = packed & 0x0F high = (packed >> 4) & 0x0F fp4_tensor = torch.stack([low, high], dim=-1).reshape(M, K) # Lookup table dequantization (use cached LUT for efficiency) lut = _get_nvfp4_lut(str(packed.device)) tensor = lut[fp4_tensor.long()] # Apply dual-level scales scale_f32 = scale.to(torch.float32) tensor = tensor.reshape(M, K // block_size, block_size) tensor = tensor * scale_f32.unsqueeze(-1) * scale_2 tensor = tensor.reshape(M, K) return tensor.to(dtype) def nvfp4_gemm_dequant( x: torch.Tensor, weight: torch.Tensor, weight_scale: torch.Tensor, weight_scale_2: torch.Tensor, ) -> torch.Tensor: """ NVFP4 GEMM via dequantization fallback. This is a simple but slow implementation that dequantizes weights to bfloat16 and uses standard matmul. Use for testing/validation. Args: x: Input activation [M, K] in bfloat16 weight: NVFP4 weight [N, K/2] packed uint8 weight_scale: Per-block scales [N, K/16] FP8 E4M3 weight_scale_2: Global scale [1] FP32 Returns: y: Output [M, N] in bfloat16 """ N, K_half = weight.shape K = K_half * 2 # Dequantize weight to bfloat16 weight_bf16 = dequantize_nvfp4(weight, weight_scale, weight_scale_2, dtype=torch.bfloat16) # Standard matmul return torch.matmul(x, weight_bf16.T) @triton.jit def nvfp4_gemm_kernel( a_desc, # Activation TMA descriptor [M, K/2] a_scale_desc, # Activation scale TMA descriptor b_desc, # Weight TMA descriptor [N, K/2] b_scale_desc, # Weight scale TMA descriptor c_desc, # Output TMA descriptor [M, N] M: tl.constexpr, N: tl.constexpr, K: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr, BLOCK_K: tl.constexpr, VEC_SIZE: tl.constexpr, rep_m: tl.constexpr, rep_n: tl.constexpr, rep_k: tl.constexpr, NUM_STAGES: tl.constexpr, ): """Triton NVFP4 block-scaled GEMM kernel.""" pid = tl.program_id(axis=0) num_pid_m = tl.cdiv(M, BLOCK_M) pid_m = pid % num_pid_m pid_n = pid // num_pid_m offs_am = pid_m * BLOCK_M offs_bn = pid_n * BLOCK_N offs_k_a = 0 offs_k_b = 0 offs_scale_m = pid_m * rep_m offs_scale_n = pid_n * rep_n offs_scale_k = 0 c0 = tl.zeros((1,), dtype=tl.int32)[0] accumulator = tl.zeros((BLOCK_M, BLOCK_N), dtype=tl.float32) for k in tl.range(0, tl.cdiv(K, BLOCK_K), num_stages=NUM_STAGES): a = a_desc.load([offs_am, offs_k_a]) b = b_desc.load([offs_bn, offs_k_b]) scale_a = a_scale_desc.load([c0, offs_scale_m, offs_scale_k, c0, c0]) scale_b = b_scale_desc.load([c0, offs_scale_n, offs_scale_k, c0, c0]) scale_a = scale_a.reshape(rep_m, rep_k, 32, 4, 4).trans(0, 3, 2, 1, 4).reshape(BLOCK_M, BLOCK_K // VEC_SIZE) scale_b = scale_b.reshape(rep_n, rep_k, 32, 4, 4).trans(0, 3, 2, 1, 4).reshape(BLOCK_N, BLOCK_K // VEC_SIZE) accumulator = tl.dot_scaled(a, scale_a, "e2m1", b.T, scale_b, "e2m1", accumulator) offs_k_a += BLOCK_K // 2 offs_k_b += BLOCK_K // 2 offs_scale_k += rep_k c_desc.store([offs_am, offs_bn], accumulator.to(tl.float16)) def nvfp4_gemm( a: torch.Tensor, a_scale: torch.Tensor, b: torch.Tensor, b_scale: torch.Tensor, b_scale_2: Optional[torch.Tensor] = None, a_scale_2: Optional[torch.Tensor] = None, ) -> torch.Tensor: """ Perform NVFP4 GEMM using Triton kernel: y = a @ b.T For weight-only quantization (common case): - a: bfloat16 activation [M, K] - b: NVFP4 weight [N, K/2] packed - b_scale: [N, K/16] FP8 E4M3 - b_scale_2: [1] FP32 global scale Args: a: Activation tensor [M, K] (bfloat16 or NVFP4 packed) a_scale: Activation scale [M, K/16] (or None for bfloat16 input) b: Weight tensor [N, K/2] packed uint8 b_scale: Weight per-block scale [N, K/16] FP8 E4M3 b_scale_2: Weight global scale [1] FP32 a_scale_2: Activation global scale [1] FP32 (optional) Returns: y: Output [M, N] """ # Get dimensions if a.dtype == torch.uint8: M, K_half = a.shape K = K_half * 2 else: M, K = a.shape N = b.shape[0] # Get configs configs = get_nvfp4_configs() BLOCK_M = configs["BLOCK_SIZE_M"] BLOCK_N = configs["BLOCK_SIZE_N"] BLOCK_K = configs["BLOCK_SIZE_K"] VEC_SIZE = configs["VEC_SIZE"] num_stages = configs["num_stages"] # Check dimension alignment if M % BLOCK_M != 0 or N % BLOCK_N != 0 or K % BLOCK_K != 0: # Fall back to dequantization method for unaligned dimensions return nvfp4_gemm_dequant(a, b, b_scale, b_scale_2 if b_scale_2 is not None else torch.ones(1, device=a.device)) # If activation is bfloat16, quantize it to NVFP4 first if a.dtype != torch.uint8: a_nvfp4, a_scale, a_scale_2 = quantize_act_nvfp4(a) else: a_nvfp4 = a # Convert scales to Triton format a_scale_triton = linear_to_triton_scale(a_scale, M, K, VEC_SIZE) b_scale_triton = linear_to_triton_scale(b_scale, N, K, VEC_SIZE) # Create TMA descriptors a_desc = TensorDescriptor.from_tensor(a_nvfp4, [BLOCK_M, BLOCK_K // 2]) b_desc = TensorDescriptor.from_tensor(b, [BLOCK_N, BLOCK_K // 2]) rep_m = BLOCK_M // 128 rep_n = BLOCK_N // 128 rep_k = BLOCK_K // VEC_SIZE // 4 a_scale_block_shape = [1, rep_m, rep_k, 2, 256] b_scale_block_shape = [1, rep_n, rep_k, 2, 256] a_scale_desc = TensorDescriptor.from_tensor(a_scale_triton, block_shape=a_scale_block_shape) b_scale_desc = TensorDescriptor.from_tensor(b_scale_triton, block_shape=b_scale_block_shape) # Allocate output output = torch.empty((M, N), dtype=torch.float16, device=a.device) c_desc = TensorDescriptor.from_tensor(output, [BLOCK_M, BLOCK_N]) # Launch kernel grid = (triton.cdiv(M, BLOCK_M) * triton.cdiv(N, BLOCK_N), 1) nvfp4_gemm_kernel[grid]( a_desc, a_scale_desc, b_desc, b_scale_desc, c_desc, M, N, K, BLOCK_M, BLOCK_N, BLOCK_K, VEC_SIZE, rep_m, rep_n, rep_k, num_stages, ) # Apply global scales if a_scale_2 is not None and b_scale_2 is not None: output = output * (a_scale_2 * b_scale_2) elif b_scale_2 is not None: output = output * b_scale_2 return output.to(torch.bfloat16) def quantize_act_nvfp4( x: torch.Tensor, block_size: int = NVFP4_BLOCK_SIZE, ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """ Quantize activation to NVFP4 format. Args: x: Input tensor [M, K] in float/bfloat16 block_size: Number of elements per scale block Returns: packed: [M, K/2] uint8 packed tensor scale: [M, K/block_size] FP8 E4M3 per-block scales scale_2: [1] FP32 global scale """ M, K = x.shape device = x.device x = x.to(torch.float32) # Compute global scale amax = x.abs().max() scale_2 = amax / (6.0 * 448.0) scale_2 = scale_2.clamp(min=1e-12) # Compute per-block scales x_blocks = x.reshape(M, K // block_size, block_size) block_amax = x_blocks.abs().amax(dim=-1) scale = (block_amax / (6.0 * scale_2)).clamp(min=1e-12, max=448.0) scale = scale.to(torch.float8_e4m3fn) # Quantize scale_f32 = scale.to(torch.float32) scale_expanded = (scale_f32 * scale_2).unsqueeze(-1) scaled_x = x_blocks / scale_expanded # Map to nearest NVFP4 values nvfp4_values = torch.tensor([0.0, 0.5, 1.0, 1.5, 2.0, 3.0, 4.0, 6.0], device=device) abs_x = scaled_x.abs() signs = scaled_x.sign() diffs = (abs_x.unsqueeze(-1) - nvfp4_values).abs() indices = diffs.argmin(dim=-1) fp4_values = indices.to(torch.uint8) fp4_values = torch.where(signs < 0, fp4_values + 8, fp4_values) fp4_tensor = fp4_values.reshape(M, K) # Pack two values per byte packed = (fp4_tensor[:, 0::2] & 0x0F) | ((fp4_tensor[:, 1::2] & 0x0F) << 4) packed = packed.to(torch.uint8) return packed, scale, scale_2.reshape(1) def act_quant_nvfp4( x: torch.Tensor, block_size: int = NVFP4_BLOCK_SIZE, scale_fmt: Optional[str] = None, ) -> Tuple[torch.Tensor, torch.Tensor]: """ Quantize activation with interface matching original act_quant. Args: x: Input tensor block_size: Block size for quantization scale_fmt: Scale format (unused, for API compatibility) Returns: y: Quantized tensor [M, K/2] packed uint8 s: Scale tensor [M, K/block_size] FP8 E4M3 """ packed, scale, scale_2 = quantize_act_nvfp4(x.view(-1, x.size(-1)), block_size) # Store scale_2 as attribute for later use scale.scale_2 = scale_2 return packed.view(*x.shape[:-1], x.size(-1) // 2), scale.view(*x.shape[:-1], -1) # Test function def test_nvfp4_gemm(): """Test NVFP4 GEMM implementation.""" M, N, K = 256, 512, 1024 # Create random tensors x = torch.randn(M, K, device="cuda", dtype=torch.bfloat16) # Create fake NVFP4 weight weight_bf16 = torch.randn(N, K, device="cuda", dtype=torch.bfloat16) # Quantize weight to NVFP4 weight_packed, weight_scale, weight_scale_2 = quantize_act_nvfp4(weight_bf16) # Reference: dequantize and matmul weight_deq = dequantize_nvfp4(weight_packed, weight_scale, weight_scale_2, dtype=torch.bfloat16) ref = torch.matmul(x, weight_deq.T) # Test dequant path out_deq = nvfp4_gemm_dequant(x, weight_packed, weight_scale, weight_scale_2) # Compare error = (ref - out_deq).abs().mean() print(f"PASS: NVFP4 GEMM dequant test: mean abs error = {error:.6f}") return True if __name__ == "__main__": test_nvfp4_gemm()