Migrate model card from transformers-repo
Browse filesRead announcement at https://discuss.huggingface.co/t/announcement-all-model-cards-will-be-migrated-to-hf-co-model-repos/2755
Original file history: https://github.com/huggingface/transformers/commits/master/model_cards/bert-base-multilingual-cased-README.md
README.md
ADDED
|
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language: multilingual
|
| 3 |
+
license: apache-2.0
|
| 4 |
+
datasets:
|
| 5 |
+
- wikipedia
|
| 6 |
+
---
|
| 7 |
+
|
| 8 |
+
# BERT multilingual base model (cased)
|
| 9 |
+
|
| 10 |
+
Pretrained model on the top 104 languages with the largest Wikipedia using a masked language modeling (MLM) objective.
|
| 11 |
+
It was introduced in [this paper](https://arxiv.org/abs/1810.04805) and first released in
|
| 12 |
+
[this repository](https://github.com/google-research/bert). This model is case sensitive: it makes a difference
|
| 13 |
+
between english and English.
|
| 14 |
+
|
| 15 |
+
Disclaimer: The team releasing BERT did not write a model card for this model so this model card has been written by
|
| 16 |
+
the Hugging Face team.
|
| 17 |
+
|
| 18 |
+
## Model description
|
| 19 |
+
|
| 20 |
+
BERT is a transformers model pretrained on a large corpus of multilingual data in a self-supervised fashion. This means
|
| 21 |
+
it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of
|
| 22 |
+
publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it
|
| 23 |
+
was pretrained with two objectives:
|
| 24 |
+
|
| 25 |
+
- Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run
|
| 26 |
+
the entire masked sentence through the model and has to predict the masked words. This is different from traditional
|
| 27 |
+
recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like
|
| 28 |
+
GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the
|
| 29 |
+
sentence.
|
| 30 |
+
- Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes
|
| 31 |
+
they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to
|
| 32 |
+
predict if the two sentences were following each other or not.
|
| 33 |
+
|
| 34 |
+
This way, the model learns an inner representation of the languages in the training set that can then be used to
|
| 35 |
+
extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a
|
| 36 |
+
standard classifier using the features produced by the BERT model as inputs.
|
| 37 |
+
|
| 38 |
+
## Intended uses & limitations
|
| 39 |
+
|
| 40 |
+
You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to
|
| 41 |
+
be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=bert) to look for
|
| 42 |
+
fine-tuned versions on a task that interests you.
|
| 43 |
+
|
| 44 |
+
Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked)
|
| 45 |
+
to make decisions, such as sequence classification, token classification or question answering. For tasks such as text
|
| 46 |
+
generation you should look at model like GPT2.
|
| 47 |
+
|
| 48 |
+
### How to use
|
| 49 |
+
|
| 50 |
+
You can use this model directly with a pipeline for masked language modeling:
|
| 51 |
+
|
| 52 |
+
```python
|
| 53 |
+
>>> from transformers import pipeline
|
| 54 |
+
>>> unmasker = pipeline('fill-mask', model='bert-base-multilingual-cased')
|
| 55 |
+
>>> unmasker("Hello I'm a [MASK] model.")
|
| 56 |
+
|
| 57 |
+
[{'sequence': "[CLS] Hello I'm a model model. [SEP]",
|
| 58 |
+
'score': 0.10182085633277893,
|
| 59 |
+
'token': 13192,
|
| 60 |
+
'token_str': 'model'},
|
| 61 |
+
{'sequence': "[CLS] Hello I'm a world model. [SEP]",
|
| 62 |
+
'score': 0.052126359194517136,
|
| 63 |
+
'token': 11356,
|
| 64 |
+
'token_str': 'world'},
|
| 65 |
+
{'sequence': "[CLS] Hello I'm a data model. [SEP]",
|
| 66 |
+
'score': 0.048930276185274124,
|
| 67 |
+
'token': 11165,
|
| 68 |
+
'token_str': 'data'},
|
| 69 |
+
{'sequence': "[CLS] Hello I'm a flight model. [SEP]",
|
| 70 |
+
'score': 0.02036019042134285,
|
| 71 |
+
'token': 23578,
|
| 72 |
+
'token_str': 'flight'},
|
| 73 |
+
{'sequence': "[CLS] Hello I'm a business model. [SEP]",
|
| 74 |
+
'score': 0.020079681649804115,
|
| 75 |
+
'token': 14155,
|
| 76 |
+
'token_str': 'business'}]
|
| 77 |
+
```
|
| 78 |
+
|
| 79 |
+
Here is how to use this model to get the features of a given text in PyTorch:
|
| 80 |
+
|
| 81 |
+
```python
|
| 82 |
+
from transformers import BertTokenizer, BertModel
|
| 83 |
+
tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-cased')
|
| 84 |
+
model = BertModel.from_pretrained("bert-base-multilingual-cased")
|
| 85 |
+
text = "Replace me by any text you'd like."
|
| 86 |
+
encoded_input = tokenizer(text, return_tensors='pt')
|
| 87 |
+
output = model(**encoded_input)
|
| 88 |
+
```
|
| 89 |
+
|
| 90 |
+
and in TensorFlow:
|
| 91 |
+
|
| 92 |
+
```python
|
| 93 |
+
from transformers import BertTokenizer, TFBertModel
|
| 94 |
+
tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-cased')
|
| 95 |
+
model = TFBertModel.from_pretrained("bert-base-multilingual-cased")
|
| 96 |
+
text = "Replace me by any text you'd like."
|
| 97 |
+
encoded_input = tokenizer(text, return_tensors='tf')
|
| 98 |
+
output = model(encoded_input)
|
| 99 |
+
```
|
| 100 |
+
|
| 101 |
+
## Training data
|
| 102 |
+
|
| 103 |
+
The BERT model was pretrained on the 104 languages with the largest Wikipedias. You can find the complete list
|
| 104 |
+
[here](https://github.com/google-research/bert/blob/master/multilingual.md#list-of-languages).
|
| 105 |
+
|
| 106 |
+
## Training procedure
|
| 107 |
+
|
| 108 |
+
### Preprocessing
|
| 109 |
+
|
| 110 |
+
The texts are lowercased and tokenized using WordPiece and a shared vocabulary size of 110,000. The languages with a
|
| 111 |
+
larger Wikipedia are under-sampled and the ones with lower resources are oversampled. For languages like Chinese,
|
| 112 |
+
Japanese Kanji and Korean Hanja that don't have space, a CJK Unicode block is added around every character.
|
| 113 |
+
|
| 114 |
+
The inputs of the model are then of the form:
|
| 115 |
+
|
| 116 |
+
```
|
| 117 |
+
[CLS] Sentence A [SEP] Sentence B [SEP]
|
| 118 |
+
```
|
| 119 |
+
|
| 120 |
+
With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in
|
| 121 |
+
the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a
|
| 122 |
+
consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two
|
| 123 |
+
"sentences" has a combined length of less than 512 tokens.
|
| 124 |
+
|
| 125 |
+
The details of the masking procedure for each sentence are the following:
|
| 126 |
+
- 15% of the tokens are masked.
|
| 127 |
+
- In 80% of the cases, the masked tokens are replaced by `[MASK]`.
|
| 128 |
+
- In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.
|
| 129 |
+
- In the 10% remaining cases, the masked tokens are left as is.
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
### BibTeX entry and citation info
|
| 133 |
+
|
| 134 |
+
```bibtex
|
| 135 |
+
@article{DBLP:journals/corr/abs-1810-04805,
|
| 136 |
+
author = {Jacob Devlin and
|
| 137 |
+
Ming{-}Wei Chang and
|
| 138 |
+
Kenton Lee and
|
| 139 |
+
Kristina Toutanova},
|
| 140 |
+
title = {{BERT:} Pre-training of Deep Bidirectional Transformers for Language
|
| 141 |
+
Understanding},
|
| 142 |
+
journal = {CoRR},
|
| 143 |
+
volume = {abs/1810.04805},
|
| 144 |
+
year = {2018},
|
| 145 |
+
url = {http://arxiv.org/abs/1810.04805},
|
| 146 |
+
archivePrefix = {arXiv},
|
| 147 |
+
eprint = {1810.04805},
|
| 148 |
+
timestamp = {Tue, 30 Oct 2018 20:39:56 +0100},
|
| 149 |
+
biburl = {https://dblp.org/rec/journals/corr/abs-1810-04805.bib},
|
| 150 |
+
bibsource = {dblp computer science bibliography, https://dblp.org}
|
| 151 |
+
}
|
| 152 |
+
```
|