--- license: bigcode-openrail-m --- # CodeGen-Alpaca-1B This is a fine-tuned version of `StarCoderBase-1B` using the **CodeAlpaca (2k subset)** dataset. It has been trained with **QLoRA** on Google Colab for lightweight, memory-efficient code generation. --- ## Model Capabilities This model understands **instruction-style prompts** for generating code in multiple programming languages, especially Python. --- ## Requirements (Colab Setup) If you are running this model on **Google Colab**, you’ll need to: 1. Go to the left sidebar and click the **🔑 (Secrets)** tab. 2. Add a new secret with the name:`HF_TOKEN` and set the value to your **Hugging Face token** (from https://huggingface.co/settings/tokens). 3. Enable **Notebook access** for your token. 4. Restart the Colab session. Then log in inside the notebook: ```python from huggingface_hub import login import os login(token=os.environ["HF_TOKEN"]) ``` --- ## How to Use ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch import re model_id = "key-life/codegen-alpaca-1b" # Load model & tokenizer tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto") # Example prompt prompt = "### Instruction:\nWrite a Python function to check if a number is prime.\n\n### Response:\n" inputs = tokenizer(prompt, return_tensors="pt").to(model.device) # Generate code outputs = model.generate( **inputs, max_new_tokens=128, temperature=0.2, # more deterministic top_p=0.9, # avoids rambling do_sample=True, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.eos_token_id ) # Decode decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) # Extract only code block code_block = re.findall(r"```(?:python)?(.*?)```", decoded, re.DOTALL) if code_block: response = code_block[0].strip() else: response = decoded.split("### Response:")[-1].strip() print(response) ```