File size: 30,114 Bytes
2c76547
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# # Data loading based on https://github.com/NVIDIA/flownet2-pytorch

# -- Added by Chu King on 16th November 2025 for debugging purposes.
import torch.distributed as dist
import signal

import os
import copy
import gzip
import logging
import torch
import numpy as np
import torch.utils.data as data
import torch.nn.functional as F
import os.path as osp
from glob import glob

from collections import defaultdict
from PIL import Image
from dataclasses import dataclass
from typing import List, Optional
from pytorch3d.renderer.cameras import PerspectiveCameras
from pytorch3d.implicitron.dataset.types import (
    FrameAnnotation as ImplicitronFrameAnnotation,
    load_dataclass,
)

from datasets import frame_utils
from evaluation.utils.eval_utils import depth2disparity_scale
from datasets.augmentor import SequenceDispFlowAugmentor


@dataclass
class DynamicReplicaFrameAnnotation(ImplicitronFrameAnnotation):
    """A dataclass used to load annotations from json."""

    camera_name: Optional[str] = None


class StereoSequenceDataset(data.Dataset):
    def __init__(self, aug_params=None, sparse=False, reader=None):
        self.augmentor = None
        self.sparse = sparse
        self.img_pad = (
            aug_params.pop("img_pad", None) if aug_params is not None else None
        )
        if aug_params is not None and "crop_size" in aug_params:
            if sparse:
                raise ValueError("Sparse augmentor is not implemented")
            else:
                self.augmentor = SequenceDispFlowAugmentor(**aug_params)

        if reader is None:
            self.disparity_reader = frame_utils.read_gen
        else:
            self.disparity_reader = reader
        self.depth_reader = self._load_16big_png_depth
        self.is_test = False
        self.sample_list = []
        self.extra_info = []
        self.depth_eps = 1e-5

    def _load_16big_png_depth(self, depth_png):
        with Image.open(depth_png) as depth_pil:
            # the image is stored with 16-bit depth but PIL reads it as I (32 bit).
            # we cast it to uint16, then reinterpret as float16, then cast to float32
            depth = (
                np.frombuffer(np.array(depth_pil, dtype=np.uint16), dtype=np.float16)
                .astype(np.float32)
                .reshape((depth_pil.size[1], depth_pil.size[0]))
            )
        return depth

    def _get_pytorch3d_camera(
        self, entry_viewpoint, image_size, scale: float
    ) -> PerspectiveCameras:
        assert entry_viewpoint is not None
        # principal point and focal length
        principal_point = torch.tensor(
            entry_viewpoint.principal_point, dtype=torch.float
        )
        focal_length = torch.tensor(entry_viewpoint.focal_length, dtype=torch.float)

        half_image_size_wh_orig = (
            torch.tensor(list(reversed(image_size)), dtype=torch.float) / 2.0
        )

        # first, we convert from the dataset's NDC convention to pixels
        format = entry_viewpoint.intrinsics_format
        if format.lower() == "ndc_norm_image_bounds":
            # this is e.g. currently used in CO3D for storing intrinsics
            rescale = half_image_size_wh_orig
        elif format.lower() == "ndc_isotropic":
            rescale = half_image_size_wh_orig.min()
        else:
            raise ValueError(f"Unknown intrinsics format: {format}")

        # principal point and focal length in pixels
        principal_point_px = half_image_size_wh_orig - principal_point * rescale
        focal_length_px = focal_length * rescale

        # now, convert from pixels to PyTorch3D v0.5+ NDC convention
        # if self.image_height is None or self.image_width is None:
        out_size = list(reversed(image_size))

        half_image_size_output = torch.tensor(out_size, dtype=torch.float) / 2.0
        half_min_image_size_output = half_image_size_output.min()

        # rescaled principal point and focal length in ndc
        principal_point = (
            half_image_size_output - principal_point_px * scale
        ) / half_min_image_size_output
        focal_length = focal_length_px * scale / half_min_image_size_output

        return PerspectiveCameras(
            focal_length=focal_length[None],
            principal_point=principal_point[None],
            R=torch.tensor(entry_viewpoint.R, dtype=torch.float)[None],
            T=torch.tensor(entry_viewpoint.T, dtype=torch.float)[None],
        )

    def _get_output_tensor(self, sample):
        output_tensor = defaultdict(list)
        sample_size = len(sample["image"]["left"])
        output_tensor_keys = ["img", "disp", "valid_disp", "mask"]
        add_keys = ["viewpoint", "metadata"]
        for add_key in add_keys:
            if add_key in sample:
                output_tensor_keys.append(add_key)

        for key in output_tensor_keys:
            output_tensor[key] = [[] for _ in range(sample_size)]

        if "viewpoint" in sample:
            viewpoint_left = self._get_pytorch3d_camera(
                sample["viewpoint"]["left"][0],
                sample["metadata"]["left"][0][1],
                scale=1.0,
            )
            viewpoint_right = self._get_pytorch3d_camera(
                sample["viewpoint"]["right"][0],
                sample["metadata"]["right"][0][1],
                scale=1.0,
            )
            depth2disp_scale = depth2disparity_scale(
                viewpoint_left,
                viewpoint_right,
                torch.Tensor(sample["metadata"]["left"][0][1])[None],
            )

        for i in range(sample_size):
            for cam in ["left", "right"]:
                if "mask" in sample and cam in sample["mask"]:
                    mask = frame_utils.read_gen(sample["mask"][cam][i])
                    mask = np.array(mask) / 255.0
                    output_tensor["mask"][i].append(mask)

                if "viewpoint" in sample and cam in sample["viewpoint"]:
                    viewpoint = self._get_pytorch3d_camera(
                        sample["viewpoint"][cam][i],
                        sample["metadata"][cam][i][1],
                        scale=1.0,
                    )
                    output_tensor["viewpoint"][i].append(viewpoint)

                if "metadata" in sample and cam in sample["metadata"]:
                    metadata = sample["metadata"][cam][i]
                    output_tensor["metadata"][i].append(metadata)

                if cam in sample["image"]:

                    img = frame_utils.read_gen(sample["image"][cam][i])
                    img = np.array(img).astype(np.uint8)

                    # grayscale images
                    if len(img.shape) == 2:
                        img = np.tile(img[..., None], (1, 1, 3))
                    else:
                        img = img[..., :3]
                    output_tensor["img"][i].append(img)

                if cam in sample["disparity"]:
                    disp = self.disparity_reader(sample["disparity"][cam][i])
                    if isinstance(disp, tuple):
                        disp, valid_disp = disp
                    else:
                        valid_disp = disp < 512
                    disp = np.array(disp).astype(np.float32)

                    disp = np.stack([-disp, np.zeros_like(disp)], axis=-1)

                    output_tensor["disp"][i].append(disp)
                    output_tensor["valid_disp"][i].append(valid_disp)

                elif "depth" in sample and cam in sample["depth"]:
                    depth = self.depth_reader(sample["depth"][cam][i])

                    depth_mask = depth < self.depth_eps
                    depth[depth_mask] = self.depth_eps

                    disp = depth2disp_scale / depth
                    disp[depth_mask] = 0
                    valid_disp = (disp < 512) * (1 - depth_mask)

                    disp = np.array(disp).astype(np.float32)
                    disp = np.stack([-disp, np.zeros_like(disp)], axis=-1)
                    output_tensor["disp"][i].append(disp)
                    output_tensor["valid_disp"][i].append(valid_disp)

        return output_tensor

    def __getitem__(self, index):
        im_tensor = {"img": None}
        sample = self.sample_list[index]
        if self.is_test:
            sample_size = len(sample["image"]["left"])
            im_tensor["img"] = [[] for _ in range(sample_size)]
            for i in range(sample_size):
                for cam in ["left", "right"]:
                    img = frame_utils.read_gen(sample["image"][cam][i])
                    img = np.array(img).astype(np.uint8)[..., :3]
                    img = torch.from_numpy(img).permute(2, 0, 1).float()
                    im_tensor["img"][i].append(img)
            im_tensor["img"] = torch.stack(im_tensor["img"])
            return im_tensor, self.extra_info[index]

        index = index % len(self.sample_list)

        try:
            output_tensor = self._get_output_tensor(sample)
        except:
            logging.warning(f"Exception in loading sample {index}!")
            index = np.random.randint(len(self.sample_list))
            logging.info(f"New index is {index}")
            sample = self.sample_list[index]
            output_tensor = self._get_output_tensor(sample)
        sample_size = len(sample["image"]["left"])

        if self.augmentor is not None:
            output_tensor["img"], output_tensor["disp"] = self.augmentor(
                output_tensor["img"], output_tensor["disp"]
            )
        for i in range(sample_size):
            for cam in (0, 1):
                if cam < len(output_tensor["img"][i]):
                    img = (
                        torch.from_numpy(output_tensor["img"][i][cam])
                        .permute(2, 0, 1)
                        .float()
                    )
                    if self.img_pad is not None:
                        padH, padW = self.img_pad
                        img = F.pad(img, [padW] * 2 + [padH] * 2)
                    output_tensor["img"][i][cam] = img

                if cam < len(output_tensor["disp"][i]):
                    disp = (
                        torch.from_numpy(output_tensor["disp"][i][cam])
                        .permute(2, 0, 1)
                        .float()
                    )

                    if self.sparse:
                        valid_disp = torch.from_numpy(
                            output_tensor["valid_disp"][i][cam]
                        )
                    else:
                        valid_disp = (
                            (disp[0].abs() < 512)
                            & (disp[1].abs() < 512)
                            & (disp[0].abs() != 0)
                        )
                    disp = disp[:1]

                    output_tensor["disp"][i][cam] = disp
                    output_tensor["valid_disp"][i][cam] = valid_disp.float()

                if "mask" in output_tensor and cam < len(output_tensor["mask"][i]):
                    mask = torch.from_numpy(output_tensor["mask"][i][cam]).float()
                    output_tensor["mask"][i][cam] = mask

                if "viewpoint" in output_tensor and cam < len(
                    output_tensor["viewpoint"][i]
                ):
                    viewpoint = output_tensor["viewpoint"][i][cam]
                    output_tensor["viewpoint"][i][cam] = viewpoint

        res = {}
        if "viewpoint" in output_tensor and self.split != "train":
            res["viewpoint"] = output_tensor["viewpoint"]
        if "metadata" in output_tensor and self.split != "train":
            res["metadata"] = output_tensor["metadata"]

        for k, v in output_tensor.items():
            if k != "viewpoint" and k != "metadata":
                for i in range(len(v)):
                    if len(v[i]) > 0:
                        v[i] = torch.stack(v[i])
                if len(v) > 0 and (len(v[0]) > 0):
                    res[k] = torch.stack(v)
        return res

    def __mul__(self, v):
        copy_of_self = copy.deepcopy(self)
        copy_of_self.sample_list = v * copy_of_self.sample_list
        copy_of_self.extra_info = v * copy_of_self.extra_info
        return copy_of_self

    def __len__(self):
        return len(self.sample_list)


class DynamicReplicaDataset(StereoSequenceDataset):
    def __init__(
        self,
        aug_params=None,
        root="./dynamic_replica_data",
        split="train",
        sample_len=-1,
        only_first_n_samples=-1,
        t_step_validation=1,     # -- Added by Chu King on 24th November 2025 to control the separation between consecutive samples in validation 
        VERBOSE=False            # -- Added by Chu King on 16th November 2025 for debugging purposes
    ):
        super(DynamicReplicaDataset, self).__init__(aug_params)
        self.root = root
        self.sample_len = sample_len
        self.split = split

        frame_annotations_file = f"frame_annotations_{split}.jgz"

        with gzip.open(
            osp.join(root, split, frame_annotations_file), "rt", encoding="utf8"
        ) as zipfile:
            frame_annots_list = load_dataclass(
                zipfile, List[DynamicReplicaFrameAnnotation]
            )
        seq_annot = defaultdict(lambda: defaultdict(list))
        for frame_annot in frame_annots_list:
            seq_annot[frame_annot.sequence_name][frame_annot.camera_name].append(
                frame_annot
            )

        # -- Added by Chu King on 16th November 2025 for debugging purposes
        if VERBOSE:
            rank = dist.get_rank() if dist.is_initialized() else 0
            with open(f"debug_rank_{rank}.txt", "a") as f:
                f.write("[INFO] seq_annot: {}\n".format(seq_annot))
                # -- os.kill(os.getpid(), signal.SIGABRT)

        for seq_name in seq_annot.keys():

            # -- Added by Chu King on 16th November 2025 for debugging purposes
            if VERBOSE:
                rank = dist.get_rank() if dist.is_initialized() else 0
                with open(f"debug_rank_{rank}.txt", "a") as f:
                    f.write("---- ----\n")
                    f.write("[INFO] seq_name: {}\n".format(seq_name))

            try:
                filenames = defaultdict(lambda: defaultdict(list))
                for cam in ["left", "right"]:
                    for framedata in seq_annot[seq_name][cam]:
                        im_path = osp.join(root, split, framedata.image.path)
                        depth_path = osp.join(root, split, framedata.depth.path)
                        mask_path = osp.join(root, split, framedata.mask.path)

                        # -- Added by Chu King on 16th November 2025 for debugging purposes
                        if VERBOSE:
                            rank = dist.get_rank() if dist.is_initialized() else 0
                            with open(f"debug_rank_{rank}.txt", "a") as f:
                                f.write("[INFO] cam: {}\n".format(cam))
                                f.write("[INFO] framedata: {}\n".format(framedata))
                                f.write("[INFO] framedata.viewpoint: {}\n".format(framedata.viewpoint))
                                f.write("[INFO] im_path: {}\n".format(im_path))
                                f.write("[INFO] depth_path: {}\n".format(depth_path))
                                f.write("[INFO] mask_path: {}\n".format(mask_path))

                        # -- Modified by Chu King on 16th November 2025 to clarify the nature of assertion errors.
                        assert os.path.isfile(im_path), "[ERROR] Rectified image path {} doesn't exist.".format(im_path)

                        tokens = root.split("/")
                        # -- if split != "test" and "real" not in tokens:
                        # --     assert os.path.isfile(depth_path), "[ERROR] Depth path {} doesn't exist. ".format(depth_path)
                        if not os.path.isfile(depth_path):
                            if split != "test" or "real" not in tokens:
                                print ("[WARNING] Depth path {} doesn't exist.".format(depth_path))

                        assert os.path.isfile(mask_path), "[ERROR] Mask path {} doesn't exist.".format(mask_path)

                        filenames["image"][cam].append(im_path)
                        filenames["mask"][cam].append(mask_path)
                        filenames["depth"][cam].append(depth_path)
                        filenames["viewpoint"][cam].append(framedata.viewpoint)
                        filenames["metadata"][cam].append(
                            [framedata.sequence_name, framedata.image.size]
                        )

                        for k in filenames.keys():
                            assert (
                                len(filenames[k][cam])
                                == len(filenames["image"][cam])
                                > 0
                            ), framedata.sequence_name

                if not os.path.isfile(depth_path):
                    del filenames["depth"]

                seq_len = len(filenames["image"][cam])

                print("seq_len", seq_name, seq_len)
                if split == "train":
                    for ref_idx in range(0, seq_len, 3):
                        # -- step = 1 if self.sample_len == 1 else np.random.randint(1, 6)
                        # -- Modified by Chu King on 24th November 2025 to handle high-speed motion.
                        step = 1 if self.sample_len == 1 else np.random.randint(1, 12)
                        if ref_idx + step * self.sample_len < seq_len:
                            sample = defaultdict(lambda: defaultdict(list))
                            for cam in ["left", "right"]:
                                for idx in range(
                                    ref_idx, ref_idx + step * self.sample_len, step
                                ):
                                    for k in filenames.keys():
                                        if "mask" not in k:
                                            sample[k][cam].append(
                                                filenames[k][cam][idx]
                                            )

                            self.sample_list.append(sample)
                else:
                    step = self.sample_len if self.sample_len > 0 else seq_len
                    counter = 0

                    for ref_idx in range(0, seq_len, step):
                        sample = defaultdict(lambda: defaultdict(list))
                        for cam in ["left", "right"]:
                            # -- Modified by Chu King on 24th November 2025 to control the separation between samples during validation.
                            # -- for idx in range(ref_idx, ref_idx + step):
                            for idx in range(ref_idx, ref_idx + step * t_step_validation, t_step_validation):
                                for k in filenames.keys():
                                    sample[k][cam].append(filenames[k][cam][idx])

                        self.sample_list.append(sample)
                        counter += 1
                        if only_first_n_samples > 0 and counter >= only_first_n_samples:
                            break
            except Exception as e:
                print(e)
                print("Skipping sequence", seq_name)

        assert len(self.sample_list) > 0, "No samples found"
        print(f"Added {len(self.sample_list)} from Dynamic Replica {split}")
        logging.info(f"Added {len(self.sample_list)} from Dynamic Replica {split}")


class SequenceSceneFlowDataset(StereoSequenceDataset):
    def __init__(
        self,
        aug_params=None,
        root="./datasets",
        dstype="frames_cleanpass",
        sample_len=1,
        things_test=False,
        add_things=True,
        add_monkaa=True,
        add_driving=True,
    ):
        super(SequenceSceneFlowDataset, self).__init__(aug_params)
        self.root = root
        self.dstype = dstype
        self.sample_len = sample_len
        if things_test:
            self._add_things("TEST")
        else:
            if add_things:
                self._add_things("TRAIN")
            if add_monkaa:
                self._add_monkaa()
            if add_driving:
                self._add_driving()

    def _add_things(self, split="TRAIN"):
        """Add FlyingThings3D data"""

        original_length = len(self.sample_list)
        root = osp.join(self.root, "FlyingThings3D")
        image_paths = defaultdict(list)
        disparity_paths = defaultdict(list)

        for cam in ["left", "right"]:
            image_paths[cam] = sorted(
                glob(osp.join(root, self.dstype, split, f"*/*/{cam}/"))
            )
            disparity_paths[cam] = [
                path.replace(self.dstype, "disparity") for path in image_paths[cam]
            ]

        # Choose a random subset of 400 images for validation
        state = np.random.get_state()
        np.random.seed(1000)
        val_idxs = set(np.random.permutation(len(image_paths["left"]))[:40])
        np.random.set_state(state)
        np.random.seed(0)
        num_seq = len(image_paths["left"])

        for seq_idx in range(num_seq):
            if (split == "TEST" and seq_idx in val_idxs) or (
                split == "TRAIN" and not seq_idx in val_idxs
            ):
                images, disparities = defaultdict(list), defaultdict(list)
                for cam in ["left", "right"]:
                    images[cam] = sorted(
                        glob(osp.join(image_paths[cam][seq_idx], "*.png"))
                    )
                    disparities[cam] = sorted(
                        glob(osp.join(disparity_paths[cam][seq_idx], "*.pfm"))
                    )

                self._append_sample(images, disparities)

        assert len(self.sample_list) > 0, "No samples found"
        print(
            f"Added {len(self.sample_list) - original_length} from FlyingThings {self.dstype}"
        )
        logging.info(
            f"Added {len(self.sample_list) - original_length} from FlyingThings {self.dstype}"
        )

    def _add_monkaa(self):
        """Add FlyingThings3D data"""

        original_length = len(self.sample_list)
        root = osp.join(self.root, "Monkaa")
        image_paths = defaultdict(list)
        disparity_paths = defaultdict(list)

        for cam in ["left", "right"]:
            image_paths[cam] = sorted(glob(osp.join(root, self.dstype, f"*/{cam}/")))
            disparity_paths[cam] = [
                path.replace(self.dstype, "disparity") for path in image_paths[cam]
            ]

        num_seq = len(image_paths["left"])

        for seq_idx in range(num_seq):
            images, disparities = defaultdict(list), defaultdict(list)
            for cam in ["left", "right"]:
                images[cam] = sorted(glob(osp.join(image_paths[cam][seq_idx], "*.png")))
                disparities[cam] = sorted(
                    glob(osp.join(disparity_paths[cam][seq_idx], "*.pfm"))
                )

            self._append_sample(images, disparities)

        assert len(self.sample_list) > 0, "No samples found"
        print(
            f"Added {len(self.sample_list) - original_length} from Monkaa {self.dstype}"
        )
        logging.info(
            f"Added {len(self.sample_list) - original_length} from Monkaa {self.dstype}"
        )

    def _add_driving(self):
        """Add FlyingThings3D data"""

        original_length = len(self.sample_list)
        root = osp.join(self.root, "Driving")
        image_paths = defaultdict(list)
        disparity_paths = defaultdict(list)

        for cam in ["left", "right"]:
            image_paths[cam] = sorted(
                glob(osp.join(root, self.dstype, f"*/*/*/{cam}/"))
            )
            disparity_paths[cam] = [
                path.replace(self.dstype, "disparity") for path in image_paths[cam]
            ]

        num_seq = len(image_paths["left"])
        for seq_idx in range(num_seq):
            images, disparities = defaultdict(list), defaultdict(list)
            for cam in ["left", "right"]:
                images[cam] = sorted(glob(osp.join(image_paths[cam][seq_idx], "*.png")))
                disparities[cam] = sorted(
                    glob(osp.join(disparity_paths[cam][seq_idx], "*.pfm"))
                )

            self._append_sample(images, disparities)

        assert len(self.sample_list) > 0, "No samples found"
        print(
            f"Added {len(self.sample_list) - original_length} from Driving {self.dstype}"
        )
        logging.info(
            f"Added {len(self.sample_list) - original_length} from Driving {self.dstype}"
        )

    def _append_sample(self, images, disparities):
        seq_len = len(images["left"])
        for ref_idx in range(0, seq_len - self.sample_len):
            sample = defaultdict(lambda: defaultdict(list))
            for cam in ["left", "right"]:
                for idx in range(ref_idx, ref_idx + self.sample_len):
                    sample["image"][cam].append(images[cam][idx])
                    sample["disparity"][cam].append(disparities[cam][idx])
            self.sample_list.append(sample)

            sample = defaultdict(lambda: defaultdict(list))
            for cam in ["left", "right"]:
                for idx in range(ref_idx, ref_idx + self.sample_len):
                    sample["image"][cam].append(images[cam][seq_len - idx - 1])
                    sample["disparity"][cam].append(disparities[cam][seq_len - idx - 1])
            self.sample_list.append(sample)


class SequenceSintelStereo(StereoSequenceDataset):
    def __init__(
        self,
        dstype="clean",
        aug_params=None,
        root="./datasets",
    ):
        super().__init__(
            aug_params, sparse=True, reader=frame_utils.readDispSintelStereo
        )
        self.dstype = dstype
        original_length = len(self.sample_list)
        image_root = osp.join(root, "sintel_stereo", "training")

        image_paths = defaultdict(list)
        disparity_paths = defaultdict(list)

        for cam in ["left", "right"]:
            image_paths[cam] = sorted(
                glob(osp.join(image_root, f"{self.dstype}_{cam}/*"))
            )

        cam = "left"
        disparity_paths[cam] = [
            path.replace(f"{self.dstype}_{cam}", "disparities")
            for path in image_paths[cam]
        ]

        num_seq = len(image_paths["left"])
        # for each sequence
        for seq_idx in range(num_seq):
            sample = defaultdict(lambda: defaultdict(list))
            for cam in ["left", "right"]:
                sample["image"][cam] = sorted(
                    glob(osp.join(image_paths[cam][seq_idx], "*.png"))
                )
            cam = "left"
            sample["disparity"][cam] = sorted(
                glob(osp.join(disparity_paths[cam][seq_idx], "*.png"))
            )
            for im1, disp in zip(sample["image"][cam], sample["disparity"][cam]):
                assert (
                    im1.split("/")[-1].split(".")[0]
                    == disp.split("/")[-1].split(".")[0]
                ), (im1.split("/")[-1].split(".")[0], disp.split("/")[-1].split(".")[0])
            self.sample_list.append(sample)

        logging.info(
            f"Added {len(self.sample_list) - original_length} from SintelStereo {self.dstype}"
        )


def fetch_dataloader(args):
    """Create the data loader for the corresponding trainign set"""

    aug_params = {
        "crop_size": args.image_size,
        "min_scale": args.spatial_scale[0],
        "max_scale": args.spatial_scale[1],
        "do_flip": False,
        "yjitter": not args.noyjitter,
    }
    if hasattr(args, "saturation_range") and args.saturation_range is not None:
        aug_params["saturation_range"] = args.saturation_range
    if hasattr(args, "img_gamma") and args.img_gamma is not None:
        aug_params["gamma"] = args.img_gamma
    if hasattr(args, "do_flip") and args.do_flip is not None:
        aug_params["do_flip"] = args.do_flip

    train_dataset = None

    add_monkaa = "monkaa" in args.train_datasets
    add_driving = "driving" in args.train_datasets
    add_things = "things" in args.train_datasets
    add_dynamic_replica = "dynamic_replica" in args.train_datasets

    new_dataset = None

    if add_monkaa or add_driving or add_things:
        clean_dataset = SequenceSceneFlowDataset(
            aug_params,
            dstype="frames_cleanpass",
            sample_len=args.sample_len,
            add_monkaa=add_monkaa,
            add_driving=add_driving,
            add_things=add_things,
        )

        final_dataset = SequenceSceneFlowDataset(
            aug_params,
            dstype="frames_finalpass",
            sample_len=args.sample_len,
            add_monkaa=add_monkaa,
            add_driving=add_driving,
            add_things=add_things,
        )

        new_dataset = clean_dataset + final_dataset

    if add_dynamic_replica:
        dr_dataset = DynamicReplicaDataset(
            aug_params, split="train", sample_len=args.sample_len
        )
        if new_dataset is None:
            new_dataset = dr_dataset
        else:
            new_dataset = new_dataset + dr_dataset

    logging.info(f"Adding {len(new_dataset)} samples from SceneFlow")
    train_dataset = (
        new_dataset if train_dataset is None else train_dataset + new_dataset
    )

    train_loader = data.DataLoader(
        train_dataset,
        batch_size=args.batch_size,
        pin_memory=True,
        shuffle=True,
        num_workers=args.num_workers,
        drop_last=True,
    )

    logging.info("Training with %d image pairs" % len(train_dataset))
    return train_loader