File size: 6,748 Bytes
2c76547 e0700fc 2c76547 e0700fc 2c76547 e0700fc 2c76547 e0700fc 2c76547 e0700fc 2c76547 e0700fc 2c76547 e0700fc 2c76547 e0700fc 2c76547 e0700fc 2c76547 e0700fc 2c76547 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import sys
sys.path.append("../")
import argparse
import logging
from pathlib import Path
from tqdm import tqdm
import os
import torch
import torch.nn as nn
import torch.optim as optim
from munch import DefaultMunch
import json
from pytorch_lightning.lite import LightningLite
from torch.cuda.amp import GradScaler
from train_utils.utils import (
run_test_eval,
save_ims_to_tb,
count_parameters,
)
from train_utils.logger import Logger
from models.core.dynamic_stereo import DynamicStereo
from models.core.sci_codec import sci_encoder
from evaluation.core.evaluator import Evaluator
from train_utils.losses import sequence_loss
import datasets.dynamic_stereo_datasets as datasets
class wrapper(nn.Module):
def __init__(
self,
sigma_range=[0, 1e-9],
num_frames=8,
in_channels=1,
n_taps=2,
resolution=[480, 640],
mixed_precision=True,
attention_type="self_stereo_temporal_update_time_update_space",
update_block_3d=True,
different_update_blocks=True,
train_iters=16):
super(wrapper, self).__init__()
self.train_iters = train_iters
self.sci_enc_L = sci_encoder(sigma_range=sigma_range,
n_frame=num_frames,
in_channels=in_channels,
n_taps=n_taps,
resolution=resolution)
self.sci_enc_R = sci_encoder(sigma_range=sigma_range,
n_frame=num_frames,
in_channels=in_channels,
n_taps=n_taps,
resolution=resolution)
self.stereo = DynamicStereo(max_disp=256,
mixed_precision=mixed_precision,
num_frames=num_frames,
attention_type=attention_type,
use_3d_update_block=update_block_3d,
different_update_blocks=different_update_blocks)
def forward(self, batch):
# ---- ---- FORWARD PASS ---- ----
# -- Modified by Chu King on 20th November 2025
# -- print ("[INFO] batch[\"img\"].device: ", batch["img"].device)
# 0) Convert to Gray
def rgb_to_gray(x):
weights = torch.tensor([0.2989, 0.5870, 0.1140], dtype=x.dtype, device=x.device)
gray = (x * weights[None, None, :, None, None]).sum(dim=2)
return gray # -- shape: [B, T, H, W]
video_L = rgb_to_gray(batch["img"][:, :, 0]) # ~ (b, t, h, w)
video_R = rgb_to_gray(batch["img"][:, :, 1]) # ~ (b, t, h, w)
# -- print ("[INFO] video_L.device: ", video_L.device)
# 1) Extract and normalize input videos.
# -- min_max_norm = lambda x : 2. * (x / 255.) - 1.
min_max_norm = lambda x: x / 255.
video_L = min_max_norm(video_L) # ~ (b, t, h, w)
video_R = min_max_norm(video_R) # ~ (b, t, h, w)
# -- print ("[INFO] video_L.device: ", video_L.device)
# 2) If the tensor is non-contiguous and we try .view() later, PyTorch will raise an error:
video_L = video_L.contiguous()
video_R = video_R.contiguous()
# -- print ("[INFO] video_L.device: ", video_L.device)
# 3) Coded exposure modeling.
snapshot_L = self.sci_enc_L(video_L) # ~ (b, c, h, w) -- c=2 for 2 taps
snapshot_R = self.sci_enc_R(video_R) # ~ (b, c, h, w) -- c=2 for 2 taps
# -- print ("[INFO] self.sci_enc_L.device: ", next(self.sci_enc_R.parameters()).device)
# -- print ("[INFO] snapshot_L.device: ", snapshot_L.device)
# 4) Dynamic Stereo
output = {}
disparities = self.stereo(
snapshot_L,
snapshot_R,
iters=self.train_iters,
test_mode=False
)
n_views = len(batch["disp"][0]) # -- sample_len
for i in range(n_views):
seq_loss, metrics = sequence_loss(
disparities[:, i], batch["disp"][:, i, 0], batch["valid_disp"][:, i, 0]
)
output[f"disp_{i}"] = {"loss": seq_loss / n_views, "metrics": metrics}
output["disparity"] = {
"predictions": torch.cat(
[disparities[-1, i, 0] for i in range(n_views)], dim=1
).detach(),
}
return output
if __name__ == "__main__":
eval_dataloader_dr = datasets.DynamicReplicaDataset(
split="valid", sample_len=8, only_first_n_samples=1, VERBOSE=False, root="../dynamic_replica_data", t_step_validation=4
)
eval_dataloader_sintel_clean = datasets.SequenceSintelStereo(dstype="clean")
eval_dataloader_sintel_final = datasets.SequenceSintelStereo(dstype="final")
eval_dataloaders = [
("sintel_clean", eval_dataloader_sintel_clean),
("sintel_final", eval_dataloader_sintel_final),
("dynamic_replica", eval_dataloader_dr),
]
evaluator = Evaluator()
eval_vis_cfg = {
"visualize_interval": 1, # Use 0 for no visualization
"exp_dir": "./"
}
eval_vis_cfg = DefaultMunch.fromDict(eval_vis_cfg, object())
evaluator.setup_visualization(eval_vis_cfg)
# ----------------------------------------- Model Instantiation -----------------------------------------------
model = wrapper(sigma_range=[0, 1e-9],
num_frames=8,
in_channels=1,
n_taps=2,
resolution=[480, 640],
mixed_precision=True,
attention_type="self_stereo_temporal_update_time_update_space",
update_block_3d=True,
different_update_blocks=True,
train_iters=8)
ckpt_path = "../dynamicstereo_sf_dr/model_dynamic-stereo_050895.pth"
state_dict = torch.load(ckpt_path, map_location=torch.device('cpu'))
model.load_state_dict(state_dict["model"], strict=True)
model.eval()
run_test_eval(
ckpt_path="./",
eval_type="valid",
evaluator=evaluator,
sci_enc_L=model.sci_enc_L,
sci_enc_R=model.sci_enc_R,
model=model.stereo,
dataloaders=eval_dataloaders,
writer=None,
step=None,
resolution=[480, 640]
)
|