File size: 21,408 Bytes
2c76547 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import logging
from pathlib import Path
from tqdm import tqdm
import os
import torch
import torch.nn as nn
import torch.optim as optim
from munch import DefaultMunch
import json
from pytorch_lightning.lite import LightningLite
from torch.cuda.amp import GradScaler
from train_utils.utils import (
run_test_eval,
save_ims_to_tb,
count_parameters,
)
from train_utils.logger import Logger
from models.core.dynamic_stereo import DynamicStereo
from models.core.sci_codec import sci_encoder
from evaluation.core.evaluator import Evaluator
from train_utils.losses import sequence_loss
import datasets.dynamic_stereo_datasets as datasets
class wrapper(nn.Module):
def __init__(
self,
sigma_range=[0, 1e-9],
num_frames=8,
in_channels=1,
n_taps=2,
resolution=[480, 640],
mixed_precision=True,
attention_type="self_stereo_temporal_update_time_update_space",
update_block_3d=True,
different_update_blocks=True,
train_iters=16):
super(wrapper, self).__init__()
self.train_iters = train_iters
self.sci_enc_L = sci_encoder(sigma_range=sigma_range,
n_frame=num_frames,
in_channels=in_channels,
n_taps=n_taps,
resolution=resolution)
self.sci_enc_R = sci_encoder(sigma_range=sigma_range,
n_frame=num_frames,
in_channels=in_channels,
n_taps=n_taps,
resolution=resolution)
self.stereo = DynamicStereo(max_disp=256,
mixed_precision=mixed_precision,
num_frames=num_frames,
attention_type=attention_type,
use_3d_update_block=update_block_3d,
different_update_blocks=different_update_blocks)
def forward(self, batch):
# ---- ---- FORWARD PASS ---- ----
# -- Modified by Chu King on 20th November 2025
# -- print ("[INFO] batch[\"img\"].device: ", batch["img"].device)
# 0) Convert to Gray
def rgb_to_gray(x):
weights = torch.tensor([0.2989, 0.5870, 0.1140], dtype=x.dtype, device=x.device)
gray = (x * weights[None, None, :, None, None]).sum(dim=2)
return gray # -- shape: [B, T, H, W]
video_L = rgb_to_gray(batch["img"][:, :, 0]).cuda() # ~ (b, t, h, w)
video_R = rgb_to_gray(batch["img"][:, :, 1]).cuda() # ~ (b, t, h, w)
# -- print ("[INFO] video_L.device: ", video_L.device)
# 1) Extract and normalize input videos.
# -- min_max_norm = lambda x : 2. * (x / 255.) - 1.
min_max_norm = lambda x: x / 255.
video_L = min_max_norm(video_L) # ~ (b, t, h, w)
video_R = min_max_norm(video_R) # ~ (b, t, h, w)
# -- print ("[INFO] video_L.device: ", video_L.device)
# 2) If the tensor is non-contiguous and we try .view() later, PyTorch will raise an error:
video_L = video_L.contiguous()
video_R = video_R.contiguous()
# -- print ("[INFO] video_L.device: ", video_L.device)
# 3) Coded exposure modeling.
snapshot_L = self.sci_enc_L(video_L) # ~ (b, c, h, w) -- c=2 for 2 taps
snapshot_R = self.sci_enc_R(video_R) # ~ (b, c, h, w) -- c=2 for 2 taps
# -- print ("[INFO] self.sci_enc_L.device: ", next(self.sci_enc_R.parameters()).device)
# -- print ("[INFO] snapshot_L.device: ", snapshot_L.device)
# 4) Dynamic Stereo
output = {}
disparities = self.stereo(
snapshot_L,
snapshot_R,
iters=self.train_iters,
test_mode=False
)
n_views = len(batch["disp"][0]) # -- sample_len
for i in range(n_views):
seq_loss, metrics = sequence_loss(
disparities[:, i], batch["disp"][:, i, 0], batch["valid_disp"][:, i, 0]
)
output[f"disp_{i}"] = {"loss": seq_loss / n_views, "metrics": metrics}
output["disparity"] = {
"predictions": torch.cat(
[disparities[-1, i, 0] for i in range(n_views)], dim=1
).detach(),
}
return output
def fetch_optimizer(args, model):
"""Create the optimizer and learning rate scheduler"""
optimizer = optim.AdamW(
model.parameters(), lr=args.lr, weight_decay=args.wdecay, eps=1e-8
)
scheduler = optim.lr_scheduler.OneCycleLR(
optimizer,
args.lr,
args.num_steps + 100,
pct_start=0.01,
cycle_momentum=False,
anneal_strategy="linear",
)
return optimizer, scheduler
# -- Modified by Chu King on 20th November 2025
# -- Take snapshots instead of videos as input.
# -- def forward_batch(batch, model, args):
def forward_batch(snapshot_L, snapshot_R, model, args):
output = {}
disparities = model(
# -- batch["img"][:, :, 0],
# -- batch["img"][:, :, 1],
snapshot_L,
snapshot_R,
iters=args.train_iters,
test_mode=False,
)
num_traj = len(batch["disp"][0])
for i in range(num_traj):
seq_loss, metrics = sequence_loss(
disparities[:, i], batch["disp"][:, i, 0], batch["valid_disp"][:, i, 0]
)
output[f"disp_{i}"] = {"loss": seq_loss / num_traj, "metrics": metrics}
output["disparity"] = {
"predictions": torch.cat(
[disparities[-1, i, 0] for i in range(num_traj)], dim=1
).detach(),
}
return output
class Lite(LightningLite):
def run(self, args):
self.seed_everything(0)
# ----------------------------------------- Loading Dataset -----------------------------------------------
# -- Modified by Chu King on 15th November 2025 to allow quick testing with only 1 training video on the workstation.
# -- The number of subframes should be fixed for SCI stereo.
eval_dataloader_dr = datasets.DynamicReplicaDataset(
# -- split="valid", sample_len=40, only_first_n_samples=1, VERBOSE=False
split="valid", sample_len=args.sample_len, only_first_n_samples=1, VERBOSE=False
)
eval_dataloader_sintel_clean = datasets.SequenceSintelStereo(dstype="clean")
eval_dataloader_sintel_final = datasets.SequenceSintelStereo(dstype="final")
eval_dataloaders = [
("sintel_clean", eval_dataloader_sintel_clean),
("sintel_final", eval_dataloader_sintel_final),
("dynamic_replica", eval_dataloader_dr),
]
evaluator = Evaluator()
eval_vis_cfg = {
"visualize_interval": 1, # Use 0 for no visualization
"exp_dir": args.ckpt_path,
}
eval_vis_cfg = DefaultMunch.fromDict(eval_vis_cfg, object())
evaluator.setup_visualization(eval_vis_cfg)
# ----------------------------------------- Model Instantiation -----------------------------------------------
# -- Added by Chu King on 20th November 2025
# -- Instantiate the model
model = wrapper(sigma_range=[0, 1e-9],
num_frames=args.sample_len,
in_channels=1,
n_taps=2,
resolution=args.image_size,
mixed_precision=args.mixed_precision,
attention_type=args.attention_type,
update_block_3d=args.update_block_3d,
different_update_blocks=args.different_update_blocks,
train_iters=args.train_iters)
with open(args.ckpt_path + "/meta.json", "w") as file:
json.dump(vars(args), file, sort_keys=True, indent=4)
model.cuda()
logging.info("count_parameters(model): {}".format(count_parameters(model)))
train_loader = datasets.fetch_dataloader(args)
train_loader = self.setup_dataloaders(train_loader, move_to_device=False)
logging.info(f"Train loader size: {len(train_loader)}")
optimizer, scheduler = fetch_optimizer(args, model)
total_steps = 0
logger = Logger(model, scheduler, args.ckpt_path)
# ----------------------------------------- Loading Checkpoint -----------------------------------------------
folder_ckpts = [
f
for f in os.listdir(args.ckpt_path)
if not os.path.isdir(f) and f.endswith(".pth") and not "final" in f
]
if len(folder_ckpts) > 0:
ckpt_path = sorted(folder_ckpts)[-1]
ckpt = self.load(os.path.join(args.ckpt_path, ckpt_path))
logging.info(f"Loading checkpoint {ckpt_path}")
if "model" in ckpt:
model.load_state_dict(ckpt["model"])
else:
model.load_state_dict(ckpt)
if "optimizer" in ckpt:
logging.info("Load optimizer")
optimizer.load_state_dict(ckpt["optimizer"])
if "scheduler" in ckpt:
logging.info("Load scheduler")
scheduler.load_state_dict(ckpt["scheduler"])
if "total_steps" in ckpt:
total_steps = ckpt["total_steps"]
logging.info(f"Load total_steps {total_steps}")
elif args.restore_ckpt is not None:
assert args.restore_ckpt.endswith(".pth") or args.restore_ckpt.endswith(
".pt"
)
logging.info("Loading checkpoint...")
strict = True
state_dict = self.load(args.restore_ckpt)
if "model" in state_dict:
state_dict = state_dict["model"]
# -- Since we wrapped the model in torch.nn.DataParallel or torch.nn.parallel.DistributedDataParallel,
# PyTorch automatically prefixes all parameter names with "module.":
# state_dict = {
# 'module.conv1.weight': tensor(...),
# 'module.conv1.bias': tensor(...),
# 'module.fc.weight': tensor(...),
# 'module.fc.bias': tensor(...),
# }
# -- So we need to strip the "module." prefix:
if list(state_dict.keys())[0].startswith("module."):
state_dict = {
k.replace("module.", ""): v for k, v in state_dict.items()
}
model.load_state_dict(state_dict, strict=strict)
logging.info(f"Done loading checkpoint")
# ----------------------------------------- Optimzer, Scheduler -----------------------------------------------
model, optimizer = self.setup(model, optimizer, move_to_device=False)
model.cuda()
model.train()
model.module.module.stereo.freeze_bn() # -- We keep BatchNorm frozen
save_freq = args.save_freq
scaler = GradScaler(enabled=args.mixed_precision)
# ----------------------------------------- Training Loop -----------------------------------------------
should_keep_training = True
global_batch_num = 0
epoch = -1
while should_keep_training:
epoch += 1
for i_batch, batch in enumerate(tqdm(train_loader)):
optimizer.zero_grad()
if batch is None:
print("batch is None")
continue
for k, v in batch.items():
batch[k] = v.cuda()
assert model.training
# ---- ---- FORWARD PASS ---- ----
# -- Modified by Chu King on 20th November 2025
output = model(batch)
loss = 0
logger.update()
for k, v in output.items():
if "loss" in v:
loss += v["loss"]
logger.writer.add_scalar(
f"live_{k}_loss", v["loss"].item(), total_steps
)
if "metrics" in v:
logger.push(v["metrics"], k)
if self.global_rank == 0:
if total_steps % save_freq == save_freq - 1:
save_ims_to_tb(logger.writer, batch, output, total_steps)
if len(output) > 1:
logger.writer.add_scalar(
f"live_total_loss", loss.item(), total_steps
)
logger.writer.add_scalar(
f"learning_rate", optimizer.param_groups[0]["lr"], total_steps
)
global_batch_num += 1
self.barrier()
# ---- ---- BACKWARD PASS ---- ----
self.backward(scaler.scale(loss))
scaler.unscale_(optimizer)
# -- Prevent exploding gradients in RNNs or very deep networks
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
scaler.step(optimizer)
scheduler.step()
scaler.update()
total_steps += 1
if self.global_rank == 0:
if (i_batch >= len(train_loader) - 1) or (
total_steps == 1 and args.validate_at_start
):
ckpt_iter = "0" * (6 - len(str(total_steps))) + str(total_steps)
save_path = Path(
f"{args.ckpt_path}/model_{args.name}_{ckpt_iter}.pth"
)
save_dict = {
"model": model.module.module.state_dict(),
"optimizer": optimizer.state_dict(),
"scheduler": scheduler.state_dict(),
"total_steps": total_steps,
}
logging.info(f"Saving file {save_path}")
self.save(save_dict, save_path)
# ---- ---- EVALUATION ---- ----
if epoch % args.evaluate_every_n_epoch == 0:
# -- Added by Chu King on 21st November 2025
model.eval()
logging.info(f"Evaluation at epoch {epoch}")
run_test_eval(
args.ckpt_path,
"valid",
evaluator,
model.module.module.sci_enc_L,
model.module.module.sci_enc_R,
model.module.module.stereo,
eval_dataloaders,
logger.writer,
total_steps,
resolution=args.image_size
)
# -- Added by Chu King on 20th November 2025 for SCI stereo
model.train()
model.module.module.stereo.freeze_bn()
self.barrier()
if total_steps > args.num_steps:
should_keep_training = False
break
logger.close()
# ----------------------------------------- Save models after training -----------------------------------------------
# -- Modified by Chu King on 20th November 2025 to save SCI encoders' models.
# -- PATH = f"{args.ckpt_path}/{args.name}_final.pth"
PATH = f"{args.ckpt_path}/{args.name}_model_final.pth"
torch.save(model.module.module.state_dict(), PATH)
# ----------------------------------------- Testing -----------------------------------------------
# -- Modified by Chu King on 20th November 2025
test_dataloader_dr = datasets.DynamicStereoDataset(
# -- The number of subframes should be fixed for SCI stereo
# -- split="test", sample_len=150, only_first_n_samples=1
split="test", sample_len=args.sample_len, only_first_n_samples=1
)
test_dataloaders = [
("sintel_clean", eval_dataloader_sintel_clean),
("sintel_final", eval_dataloader_sintel_final),
("dynamic_replica", test_dataloader_dr),
]
# -- Modifed by Chu King on 21st November 2025
model.eval()
run_test_eval(
args.ckpt_path,
"test",
evaluator,
model.module.module.sci_enc_L,
model.module.module.sci_enc_R,
model.module.module.stereo,
test_dataloaders,
logger.writer,
total_steps,
resolution=args.image_size
)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--name", default="dynamic-stereo", help="name your experiment")
parser.add_argument("--restore_ckpt", help="restore checkpoint")
parser.add_argument("--ckpt_path", help="path to save checkpoints")
parser.add_argument(
"--mixed_precision", action="store_true", help="use mixed precision"
)
# Training parameters
parser.add_argument(
"--batch_size", type=int, default=6, help="batch size used during training."
)
parser.add_argument(
"--train_datasets",
nargs="+",
default=["things", "monkaa", "driving"],
help="training datasets.",
)
parser.add_argument("--lr", type=float, default=0.0002, help="max learning rate.")
parser.add_argument(
"--num_steps", type=int, default=100000, help="length of training schedule."
)
parser.add_argument(
"--image_size",
type=int,
nargs="+",
default=[320, 720],
help="size of the random image crops used during training.",
)
parser.add_argument(
"--train_iters",
type=int,
default=16,
help="number of updates to the disparity field in each forward pass.",
)
parser.add_argument(
"--wdecay", type=float, default=0.00001, help="Weight decay in optimizer."
)
parser.add_argument(
"--sample_len", type=int, default=2, help="length of training video samples"
)
parser.add_argument(
"--validate_at_start", action="store_true", help="validate the model at start"
)
parser.add_argument("--save_freq", type=int, default=100, help="save frequency")
parser.add_argument(
"--evaluate_every_n_epoch",
type=int,
default=1,
help="evaluate every n epoch",
)
parser.add_argument(
"--num_workers", type=int, default=6, help="number of dataloader workers."
)
# Validation parameters
parser.add_argument(
"--valid_iters",
type=int,
default=32,
help="number of updates to the disparity field in each forward pass during validation.",
)
# Architecure choices
parser.add_argument(
"--different_update_blocks",
action="store_true",
help="use different update blocks for each resolution",
)
parser.add_argument(
"--attention_type",
type=str,
help="attention type of the SST and update blocks. \
Any combination of 'self_stereo', 'temporal', 'update_time', 'update_space' connected by an underscore.",
)
parser.add_argument(
"--update_block_3d", action="store_true", help="use Conv3D update block"
)
# Data augmentation
parser.add_argument(
"--img_gamma", type=float, nargs="+", default=None, help="gamma range"
)
parser.add_argument(
"--saturation_range",
type=float,
nargs="+",
default=None,
help="color saturation",
)
parser.add_argument(
"--do_flip",
default=False,
choices=["h", "v"],
help="flip the images horizontally or vertically",
)
parser.add_argument(
"--spatial_scale",
type=float,
nargs="+",
default=[0, 0],
help="re-scale the images randomly",
)
parser.add_argument(
"--noyjitter",
action="store_true",
help="don't simulate imperfect rectification",
)
args = parser.parse_args()
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s %(levelname)-8s [%(filename)s:%(lineno)d] %(message)s",
)
Path(args.ckpt_path).mkdir(exist_ok=True, parents=True)
from pytorch_lightning.strategies import DDPStrategy
Lite(
# -- strategy=DDPStrategy(find_unused_parameters=True),
strategy=DDPStrategy(find_unused_parameters=False),
devices="auto",
accelerator="gpu",
precision=32,
).run(args)
|