File size: 5,719 Bytes
2c76547
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import numpy as np
import os
import torch

import json
import flow_vis
import matplotlib.pyplot as plt

import datasets.dynamic_stereo_datasets as datasets
from evaluation.utils.utils import aggregate_and_print_results


def count_parameters(model):
    return sum(p.numel() for p in model.parameters() if p.requires_grad)


def run_test_eval(ckpt_path, eval_type, evaluator, sci_enc_L, sci_enc_R, model, dataloaders, writer, step, resolution=[480, 640]):

    # -- Evalution of real scenes disabled by Chu King on 16th November 2025 as depth data
    #    are not available.
    # -- for real_sequence_name in ["teddy_static", "ignacio_waving", "nikita_reading"]:
    # --     seq_len_real = 50
    # --     ds_path = f"./dynamic_replica_data/real/{real_sequence_name}"
    # --     real_dataset = datasets.DynamicReplicaDataset(
    # --         split="test", root=ds_path, sample_len=seq_len_real, only_first_n_samples=1,
    # --         VERBOSE=False # -- Added by Chu King on 16th November 2025 for debugging purposes
    # --     )

    # --     evaluator.evaluate_sequence(
    # --         model=model.module.module,
    # --         test_dataloader=real_dataset,
    # --         writer=writer,
    # --         step=step,
    # --         train_mode=True,
    # --     )

    for ds_name, dataloader in dataloaders:
        evaluator.visualize_interval = 1 if not "sintel" in ds_name else 0

        evaluate_result = evaluator.evaluate_sequence(
            sci_enc_L=sci_enc_L,
            sci_enc_R=sci_enc_R,
            model=model,
            test_dataloader=dataloader,
            writer=writer if not "sintel" in ds_name else None,
            step=step,
            train_mode=True,
            resolution=resolution
        )

        aggregate_result = aggregate_and_print_results(
            evaluate_result,
        )

        save_metrics = [
            "flow_mean_accuracy_5px",
            "flow_mean_accuracy_3px",
            "flow_mean_accuracy_1px",
            "flow_epe_traj_mean",
        ]
        for epe_name in ("epe", "temp_epe", "temp_epe_r"):
            for m in [
                f"disp_{epe_name}_bad_0.5px",
                f"disp_{epe_name}_bad_1px",
                f"disp_{epe_name}_bad_2px",
                f"disp_{epe_name}_bad_3px",
                f"disp_{epe_name}_mean",
            ]:
                save_metrics.append(m)

        for k, v in aggregate_result.items():
            if k in save_metrics:
                writer.add_scalars(
                    f"{ds_name}_{k.rsplit('_', 1)[0]}",
                    {f"{ds_name}_{k}": v},
                    step,
                )

        result_file = os.path.join(
            ckpt_path,
            f"result_{ds_name}_{eval_type}_{step}_mimo.json",
        )
        print(f"Dumping {eval_type} results to {result_file}.")
        with open(result_file, "w") as f:
            json.dump(aggregate_result, f)


def fig2data(fig):
    """
    fig = plt.figure()
    image = fig2data(fig)
    @brief Convert a Matplotlib figure to a 4D numpy array with RGBA channels and return it
    @param fig a matplotlib figure
    @return a numpy 3D array of RGBA values
    """
    import PIL.Image as Image

    # draw the renderer
    fig.canvas.draw()

    # Get the RGBA buffer from the figure
    w, h = fig.canvas.get_width_height()
    buf = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
    buf.shape = (w, h, 3)

    image = Image.frombytes("RGB", (w, h), buf.tobytes())
    image = np.asarray(image)
    return image


def save_ims_to_tb(writer, batch, output, total_steps):
    writer.add_image(
        "train_im",
        torch.cat([torch.cat([im[0], im[1]], dim=-1) for im in batch["img"][0]], dim=-2)
        / 255.0,
        total_steps,
        dataformats="CHW",
    )
    if "disp" in batch and len(batch["disp"]) > 0:
        disp_im = [
            (torch.cat([im[0], im[1]], dim=-1) * torch.cat([val[0], val[1]], dim=-1))
            for im, val in zip(batch["disp"][0], batch["valid_disp"][0])
        ]

        disp_im = torch.cat(disp_im, dim=1)

        figure = plt.figure()
        plt.imshow(disp_im.cpu()[0])
        disp_im = fig2data(figure).copy()

        writer.add_image(
            "train_disp",
            disp_im,
            total_steps,
            dataformats="HWC",
        )

    for k, v in output.items():
        if "predictions" in v:
            pred = v["predictions"]
            if k == "disparity":
                figure = plt.figure()
                plt.imshow(pred.cpu()[0])
                pred = fig2data(figure).copy()
                dataformat = "HWC"
            else:
                pred = torch.tensor(
                    flow_vis.flow_to_color(
                        pred.permute(1, 2, 0).cpu().numpy(), convert_to_bgr=False
                    )
                    / 255.0
                )
                dataformat = "HWC"
            writer.add_image(
                f"pred_{k}",
                pred,
                total_steps,
                dataformats=dataformat,
            )
        if "gt" in v:
            gt = v["gt"]
            gt = torch.tensor(
                flow_vis.flow_to_color(
                    gt.permute(1, 2, 0).cpu().numpy(), convert_to_bgr=False
                )
                / 255.0
            )
            dataformat = "HWC"
            writer.add_image(
                f"gt_{k}",
                gt,
                total_steps,
                dataformats=dataformat,
            )