|
|
from typing import Optional, Tuple, Union |
|
|
|
|
|
import torch |
|
|
import torch.nn as nn |
|
|
|
|
|
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling |
|
|
from transformers.modeling_utils import PreTrainedModel |
|
|
from transformers.models.siglip.modeling_siglip import SiglipMLP |
|
|
from transformers.utils import ( |
|
|
add_start_docstrings, |
|
|
add_start_docstrings_to_model_forward, |
|
|
logging, |
|
|
replace_return_docstrings, |
|
|
) |
|
|
|
|
|
from .configuration_onevision_encoder import OneVisionEncoderConfig |
|
|
|
|
|
|
|
|
try: |
|
|
from flash_attn import flash_attn_func |
|
|
|
|
|
_flash_attn_available = True |
|
|
except ImportError: |
|
|
_flash_attn_available = False |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ONEVISION_ENCODER_START_DOCSTRING = r""" |
|
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the |
|
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads |
|
|
etc.) |
|
|
|
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. |
|
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage |
|
|
and behavior. |
|
|
|
|
|
Parameters: |
|
|
config ([`OneVisionEncoderConfig`]): Model configuration class with all the parameters of the model. |
|
|
Initializing with a config file does not load the weights associated with the model, only the |
|
|
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
|
""" |
|
|
|
|
|
ONEVISION_ENCODER_INPUTS_DOCSTRING = r""" |
|
|
Args: |
|
|
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch_size, num_channels, num_frames, height, width)`): |
|
|
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. |
|
|
visible_indices (`torch.Tensor`, *optional*): |
|
|
Indices of visible patches for masking. Used in MAE-style pretraining or inference. |
|
|
output_attentions (`bool`, *optional*): |
|
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
|
tensors for more detail. |
|
|
output_hidden_states (`bool`, *optional*): |
|
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
|
more detail. |
|
|
return_dict (`bool`, *optional*): |
|
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_norm_layer(config): |
|
|
if config.layer_norm_type == "rms_norm": |
|
|
return nn.RMSNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
|
else: |
|
|
return nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
|
|
|
|
|
|
|
def rotate_half(x): |
|
|
""" |
|
|
Interleaved rotation to match Source model's implementation. |
|
|
(x1, x2, x3, x4) -> (-x2, x1, -x4, x3) |
|
|
""" |
|
|
x_even = x[..., ::2] |
|
|
x_odd = x[..., 1::2] |
|
|
return torch.stack((-x_odd, x_even), dim=-1).flatten(-2) |
|
|
|
|
|
|
|
|
def apply_rotary_pos_emb(q, k, freqs): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cos = freqs.cos().unsqueeze(1).to(q.dtype) |
|
|
sin = freqs.sin().unsqueeze(1).to(q.dtype) |
|
|
|
|
|
q_embed = (q * cos) + (rotate_half(q) * sin) |
|
|
k_embed = (k * cos) + (rotate_half(k) * sin) |
|
|
return q_embed, k_embed |
|
|
|
|
|
|
|
|
class VideoRotaryEmbeddingSplit466(nn.Module): |
|
|
""" |
|
|
3D (T,H,W) Rotary frequency constructor with 4:6:6 split. |
|
|
""" |
|
|
|
|
|
def __init__(self, config: OneVisionEncoderConfig): |
|
|
super().__init__() |
|
|
head_dim = config.hidden_size // config.num_attention_heads |
|
|
base = config.rope_theta |
|
|
|
|
|
assert head_dim % 2 == 0, "head_dim must be even for rotary." |
|
|
assert head_dim % 16 == 0, "head_dim must be divisible by 16." |
|
|
half = head_dim // 2 |
|
|
assert half % 16 == 0, "head_dim//2 must also be divisible by 16 to split into 4:6:6." |
|
|
|
|
|
self.head_dim = head_dim |
|
|
self.half = half |
|
|
|
|
|
unit = half // 16 |
|
|
self.t_size = 4 * unit |
|
|
self.h_size = 6 * unit |
|
|
self.w_size = 6 * unit |
|
|
|
|
|
self.register_buffer( |
|
|
"inv_freq_t", |
|
|
1.0 / (base ** (torch.arange(self.t_size, dtype=torch.float32) / self.t_size)), |
|
|
persistent=False, |
|
|
) |
|
|
self.register_buffer( |
|
|
"inv_freq_h", |
|
|
1.0 / (base ** (torch.arange(self.h_size, dtype=torch.float32) / self.h_size)), |
|
|
persistent=False, |
|
|
) |
|
|
self.register_buffer( |
|
|
"inv_freq_w", |
|
|
1.0 / (base ** (torch.arange(self.w_size, dtype=torch.float32) / self.w_size)), |
|
|
persistent=False, |
|
|
) |
|
|
|
|
|
def forward(self, t: int, h: int, w: int, device=None): |
|
|
if device is None: |
|
|
device = self.inv_freq_t.device |
|
|
|
|
|
inv_t = self.inv_freq_t.to(device=device) |
|
|
inv_h = self.inv_freq_h.to(device=device) |
|
|
inv_w = self.inv_freq_w.to(device=device) |
|
|
|
|
|
ft = torch.outer(torch.arange(t, device=device, dtype=torch.float32), inv_t) |
|
|
fh = torch.outer(torch.arange(h, device=device, dtype=torch.float32), inv_h) |
|
|
fw = torch.outer(torch.arange(w, device=device, dtype=torch.float32), inv_w) |
|
|
|
|
|
t_ids = torch.arange(t, device=device).repeat_interleave(h * w) |
|
|
h_ids = torch.arange(h, device=device).repeat_interleave(w).repeat(t) |
|
|
w_ids = torch.arange(w, device=device).repeat(h).repeat(t) |
|
|
|
|
|
freqs = torch.cat([ft[t_ids], fh[h_ids], fw[w_ids]], dim=-1) |
|
|
return freqs |
|
|
|
|
|
def forward_from_positions(self, patch_positions: torch.Tensor) -> torch.Tensor: |
|
|
""" |
|
|
Compute rotary position embeddings from explicit patch positions. |
|
|
|
|
|
Args: |
|
|
patch_positions: [batch_size, seq_len, 3] tensor with [t, h, w] positions for each patch |
|
|
|
|
|
Returns: |
|
|
freqs: [batch_size, seq_len, half] tensor of position frequencies |
|
|
""" |
|
|
device = patch_positions.device |
|
|
inv_t = self.inv_freq_t.to(device=device) |
|
|
inv_h = self.inv_freq_h.to(device=device) |
|
|
inv_w = self.inv_freq_w.to(device=device) |
|
|
|
|
|
t_pos = patch_positions[..., 0].float() |
|
|
h_pos = patch_positions[..., 1].float() |
|
|
w_pos = patch_positions[..., 2].float() |
|
|
|
|
|
|
|
|
ft = torch.einsum("bs,d->bsd", t_pos, inv_t) |
|
|
fh = torch.einsum("bs,d->bsd", h_pos, inv_h) |
|
|
fw = torch.einsum("bs,d->bsd", w_pos, inv_w) |
|
|
|
|
|
return torch.cat([ft, fh, fw], dim=-1) |
|
|
|
|
|
|
|
|
class Siglip2MultiheadAttentionPoolingHead(nn.Module): |
|
|
""" |
|
|
Multi-Head Attention Pooling with a learned probe (PMA-style). |
|
|
""" |
|
|
|
|
|
def __init__(self, config: OneVisionEncoderConfig): |
|
|
super().__init__() |
|
|
self.embed_dim = config.hidden_size |
|
|
self.probe = nn.Parameter(torch.randn(1, 1, config.hidden_size)) |
|
|
self.attention = nn.MultiheadAttention(config.hidden_size, config.num_attention_heads, batch_first=True) |
|
|
self.norm = nn.RMSNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
|
self.mlp = SiglipMLP(config) |
|
|
|
|
|
def forward(self, hidden_states): |
|
|
batch_size = hidden_states.shape[0] |
|
|
probe = self.probe.repeat(batch_size, 1, 1) |
|
|
|
|
|
attn_output, _ = self.attention(probe, hidden_states, hidden_states) |
|
|
|
|
|
residual = attn_output |
|
|
attn_output = self.norm(attn_output) |
|
|
attn_output = residual + self.mlp(attn_output) |
|
|
|
|
|
return attn_output[:, 0] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class OneVisionEncoderEmbeddings(nn.Module): |
|
|
def __init__(self, config: OneVisionEncoderConfig): |
|
|
super().__init__() |
|
|
self.config = config |
|
|
self.embed_dim = config.hidden_size |
|
|
self.image_size = config.image_size |
|
|
self.patch_size = config.patch_size |
|
|
|
|
|
self.patch_embedding = nn.Conv2d( |
|
|
in_channels=config.num_channels, |
|
|
out_channels=self.embed_dim, |
|
|
kernel_size=self.patch_size, |
|
|
stride=self.patch_size, |
|
|
bias=False, |
|
|
) |
|
|
|
|
|
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor: |
|
|
|
|
|
if pixel_values.dim() == 4: |
|
|
pixel_values = pixel_values.unsqueeze(2) |
|
|
|
|
|
batch_size, channels, t_frames, height, width = pixel_values.shape |
|
|
|
|
|
|
|
|
x_2d = pixel_values.permute(0, 2, 1, 3, 4).reshape(batch_size * t_frames, channels, height, width) |
|
|
|
|
|
|
|
|
embeddings = self.patch_embedding(x_2d) |
|
|
embeddings = embeddings.flatten(2).transpose(1, 2) |
|
|
|
|
|
|
|
|
total_patches = t_frames * (height // self.patch_size) * (width // self.patch_size) |
|
|
embeddings = embeddings.reshape(batch_size, total_patches, self.embed_dim) |
|
|
|
|
|
return embeddings |
|
|
|
|
|
|
|
|
class OneVisionEncoderAttention(nn.Module): |
|
|
"""Multi-headed attention with RoPE support""" |
|
|
|
|
|
def __init__(self, config: OneVisionEncoderConfig): |
|
|
super().__init__() |
|
|
self.config = config |
|
|
self.embed_dim = config.hidden_size |
|
|
self.num_heads = config.num_attention_heads |
|
|
self.head_dim = self.embed_dim // self.num_heads |
|
|
if self.head_dim * self.num_heads != self.embed_dim: |
|
|
raise ValueError( |
|
|
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`: {self.num_heads})." |
|
|
) |
|
|
|
|
|
self.scale = self.head_dim**-0.5 |
|
|
self.dropout = config.attention_dropout |
|
|
|
|
|
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim) |
|
|
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim) |
|
|
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim) |
|
|
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim) |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
rotary_pos_emb: Optional[torch.Tensor] = None, |
|
|
output_attentions: bool = False, |
|
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: |
|
|
batch_size, q_len, _ = hidden_states.size() |
|
|
|
|
|
query_states = self.q_proj(hidden_states) |
|
|
key_states = self.k_proj(hidden_states) |
|
|
value_states = self.v_proj(hidden_states) |
|
|
|
|
|
|
|
|
query_states = query_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
|
key_states = key_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
|
value_states = value_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
|
|
|
|
if rotary_pos_emb is not None: |
|
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, rotary_pos_emb) |
|
|
|
|
|
|
|
|
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) * self.scale |
|
|
|
|
|
if attention_mask is not None: |
|
|
if attention_mask.size() != (batch_size, 1, q_len, q_len): |
|
|
if attention_mask.dim() == 3: |
|
|
attention_mask = attention_mask.unsqueeze(1) |
|
|
attn_weights = attn_weights + attention_mask |
|
|
|
|
|
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1) |
|
|
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) |
|
|
|
|
|
attn_output = torch.matmul(attn_weights, value_states) |
|
|
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
|
attn_output = attn_output.reshape(batch_size, q_len, self.embed_dim) |
|
|
|
|
|
attn_output = self.out_proj(attn_output) |
|
|
|
|
|
return attn_output, attn_weights if output_attentions else None |
|
|
|
|
|
|
|
|
class OneVisionEncoderFlashAttention2(nn.Module): |
|
|
""" |
|
|
Multi-headed attention with RoPE support using Flash Attention 2. |
|
|
This module implements the same attention mechanism as OneVisionEncoderAttention but uses |
|
|
Flash Attention for improved performance and memory efficiency. |
|
|
""" |
|
|
|
|
|
def __init__(self, config: OneVisionEncoderConfig): |
|
|
super().__init__() |
|
|
self.config = config |
|
|
self.embed_dim = config.hidden_size |
|
|
self.num_heads = config.num_attention_heads |
|
|
self.head_dim = self.embed_dim // self.num_heads |
|
|
if self.head_dim * self.num_heads != self.embed_dim: |
|
|
raise ValueError( |
|
|
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`: {self.num_heads})." |
|
|
) |
|
|
|
|
|
self.scale = self.head_dim**-0.5 |
|
|
self.dropout = config.attention_dropout |
|
|
|
|
|
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim) |
|
|
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim) |
|
|
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim) |
|
|
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim) |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
rotary_pos_emb: Optional[torch.Tensor] = None, |
|
|
output_attentions: bool = False, |
|
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: |
|
|
""" |
|
|
Forward pass using Flash Attention 2. |
|
|
""" |
|
|
batch_size, q_len, _ = hidden_states.size() |
|
|
|
|
|
query_states = self.q_proj(hidden_states) |
|
|
key_states = self.k_proj(hidden_states) |
|
|
value_states = self.v_proj(hidden_states) |
|
|
|
|
|
|
|
|
query_states = query_states.view(batch_size, q_len, self.num_heads, self.head_dim) |
|
|
key_states = key_states.view(batch_size, q_len, self.num_heads, self.head_dim) |
|
|
value_states = value_states.view(batch_size, q_len, self.num_heads, self.head_dim) |
|
|
|
|
|
|
|
|
if rotary_pos_emb is not None: |
|
|
|
|
|
query_states = query_states.transpose(1, 2) |
|
|
key_states = key_states.transpose(1, 2) |
|
|
|
|
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, rotary_pos_emb) |
|
|
|
|
|
query_states = query_states.transpose(1, 2) |
|
|
key_states = key_states.transpose(1, 2) |
|
|
|
|
|
|
|
|
if not _flash_attn_available: |
|
|
raise ImportError("flash_attn is not installed. Please install it to use OneVisionEncoderFlashAttention2.") |
|
|
|
|
|
attn_output = flash_attn_func( |
|
|
query_states, |
|
|
key_states, |
|
|
value_states, |
|
|
dropout_p=self.dropout if self.training else 0.0, |
|
|
softmax_scale=self.scale, |
|
|
causal=False, |
|
|
) |
|
|
|
|
|
|
|
|
attn_output = attn_output.reshape(batch_size, q_len, self.embed_dim) |
|
|
|
|
|
|
|
|
attn_output = self.out_proj(attn_output) |
|
|
|
|
|
return attn_output, None |
|
|
|
|
|
|
|
|
ONEVISION_ENCODER_ATTENTION_CLASSES = { |
|
|
"eager": OneVisionEncoderAttention, |
|
|
"flash_attention_2": OneVisionEncoderFlashAttention2, |
|
|
} |
|
|
|
|
|
|
|
|
class OneVisionEncoderEncoderLayer(nn.Module): |
|
|
def __init__(self, config: OneVisionEncoderConfig): |
|
|
super().__init__() |
|
|
self.embed_dim = config.hidden_size |
|
|
|
|
|
attn_implementation = getattr(config, "_attn_implementation", "flash_attention_2") |
|
|
if attn_implementation not in ONEVISION_ENCODER_ATTENTION_CLASSES: |
|
|
|
|
|
if not _flash_attn_available and attn_implementation == "flash_attention_2": |
|
|
attn_implementation = "eager" |
|
|
else: |
|
|
raise ValueError( |
|
|
f"Unknown attention implementation: {attn_implementation}. " |
|
|
f"Available implementations: {list(ONEVISION_ENCODER_ATTENTION_CLASSES.keys())}" |
|
|
) |
|
|
self.self_attn = ONEVISION_ENCODER_ATTENTION_CLASSES[attn_implementation](config) |
|
|
self.layer_norm1 = get_norm_layer(config) |
|
|
self.mlp = SiglipMLP(config) |
|
|
self.layer_norm2 = get_norm_layer(config) |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
rotary_pos_emb: Optional[torch.Tensor] = None, |
|
|
output_attentions: bool = False, |
|
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: |
|
|
residual = hidden_states |
|
|
hidden_states = self.layer_norm1(hidden_states) |
|
|
|
|
|
hidden_states, attn_weights = self.self_attn( |
|
|
hidden_states=hidden_states, |
|
|
attention_mask=attention_mask, |
|
|
rotary_pos_emb=rotary_pos_emb, |
|
|
output_attentions=output_attentions, |
|
|
) |
|
|
hidden_states = residual + hidden_states |
|
|
|
|
|
residual = hidden_states |
|
|
hidden_states = self.layer_norm2(hidden_states) |
|
|
hidden_states = self.mlp(hidden_states) |
|
|
hidden_states = residual + hidden_states |
|
|
|
|
|
outputs = (hidden_states, attn_weights) if output_attentions else (hidden_states,) |
|
|
return outputs |
|
|
|
|
|
|
|
|
class OneVisionEncoderEncoder(nn.Module): |
|
|
def __init__(self, config: OneVisionEncoderConfig): |
|
|
super().__init__() |
|
|
self.config = config |
|
|
self.layers = nn.ModuleList([OneVisionEncoderEncoderLayer(config) for _ in range(config.num_hidden_layers)]) |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
rotary_pos_emb: Optional[torch.Tensor] = None, |
|
|
output_attentions: bool = False, |
|
|
output_hidden_states: bool = False, |
|
|
return_dict: bool = True, |
|
|
) -> Union[tuple, BaseModelOutput]: |
|
|
all_hidden_states = () if output_hidden_states else None |
|
|
all_self_attentions = () if output_attentions else None |
|
|
|
|
|
for layer in self.layers: |
|
|
if output_hidden_states: |
|
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
|
|
layer_outputs = layer( |
|
|
hidden_states, |
|
|
attention_mask=attention_mask, |
|
|
rotary_pos_emb=rotary_pos_emb, |
|
|
output_attentions=output_attentions, |
|
|
) |
|
|
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
|
|
if output_attentions: |
|
|
all_self_attentions = all_self_attentions + (layer_outputs[1],) |
|
|
|
|
|
if output_hidden_states: |
|
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
|
|
if not return_dict: |
|
|
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) |
|
|
|
|
|
return BaseModelOutput( |
|
|
last_hidden_state=hidden_states, |
|
|
hidden_states=all_hidden_states, |
|
|
attentions=all_self_attentions, |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@add_start_docstrings( |
|
|
"The bare OneVision Encoder Model outputting raw hidden-states without any specific head on top.", |
|
|
ONEVISION_ENCODER_START_DOCSTRING, |
|
|
) |
|
|
class OneVisionEncoderPreTrainedModel(PreTrainedModel): |
|
|
config_class = OneVisionEncoderConfig |
|
|
base_model_prefix = "onevision_encoder" |
|
|
supports_gradient_checkpointing = True |
|
|
_no_split_modules = ["OneVisionEncoderEncoderLayer"] |
|
|
_supports_flash_attn_2 = True |
|
|
|
|
|
def _init_weights(self, module): |
|
|
"""Initialize the weights""" |
|
|
std = self.config.initializer_range |
|
|
if isinstance(module, (nn.Linear, nn.Conv2d)): |
|
|
module.weight.data.normal_(mean=0.0, std=std) |
|
|
if module.bias is not None: |
|
|
module.bias.data.zero_() |
|
|
elif isinstance(module, nn.Embedding): |
|
|
module.weight.data.normal_(mean=0.0, std=std) |
|
|
if module.padding_idx is not None: |
|
|
module.weight.data[module.padding_idx].zero_() |
|
|
elif isinstance(module, (nn.LayerNorm, nn.RMSNorm)): |
|
|
|
|
|
module.weight.data.fill_(1.0) |
|
|
if hasattr(module, "bias") and module.bias is not None: |
|
|
module.bias.data.zero_() |
|
|
|
|
|
|
|
|
@add_start_docstrings( |
|
|
"OneVision Encoder Model with a vision transformer encoder.", |
|
|
ONEVISION_ENCODER_START_DOCSTRING, |
|
|
) |
|
|
class OneVisionEncoderModel(OneVisionEncoderPreTrainedModel): |
|
|
def __init__(self, config: OneVisionEncoderConfig): |
|
|
super().__init__(config) |
|
|
self.config = config |
|
|
|
|
|
self.embeddings = OneVisionEncoderEmbeddings(config) |
|
|
self.layernorm_pre = get_norm_layer(config) |
|
|
self.encoder = OneVisionEncoderEncoder(config) |
|
|
self.video_rope = VideoRotaryEmbeddingSplit466(config) |
|
|
|
|
|
if config.use_head: |
|
|
self.layernorm_post = get_norm_layer(config) |
|
|
self.head = Siglip2MultiheadAttentionPoolingHead(config) |
|
|
else: |
|
|
self.layernorm_post = None |
|
|
self.head = None |
|
|
|
|
|
self.post_init() |
|
|
|
|
|
@add_start_docstrings_to_model_forward(ONEVISION_ENCODER_INPUTS_DOCSTRING) |
|
|
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=OneVisionEncoderConfig) |
|
|
def forward( |
|
|
self, |
|
|
pixel_values: torch.Tensor, |
|
|
patch_postions: Optional[torch.Tensor] = None, |
|
|
visible_indices: Optional[torch.Tensor] = None, |
|
|
output_attentions: Optional[bool] = None, |
|
|
output_hidden_states: Optional[bool] = None, |
|
|
return_dict: Optional[bool] = None, |
|
|
) -> Union[tuple, BaseModelOutputWithPooling]: |
|
|
r""" |
|
|
Returns: |
|
|
|
|
|
Examples: |
|
|
|
|
|
```python |
|
|
>>> from transformers import AutoModel, AutoImageProcessor |
|
|
>>> from PIL import Image |
|
|
|
|
|
>>> model = AutoModel.from_pretrained("lmms-lab-encoder/onevision-encoder-large", trust_remote_code=True) |
|
|
>>> preprocessor = AutoImageProcessor.from_pretrained("lmms-lab-encoder/onevision-encoder-large", trust_remote_code=True) |
|
|
>>> image = Image.open("path/to/your/image.jpg") # Replace with your image path |
|
|
>>> pixel_values = preprocessor(images=image, return_tensors="pt")["pixel_values"] |
|
|
>>> outputs = model(pixel_values) |
|
|
>>> last_hidden_states = outputs.last_hidden_state |
|
|
>>> pooled_output = outputs.pooler_output |
|
|
``` |
|
|
""" |
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
|
output_hidden_states = ( |
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
|
) |
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
|
|
|
|
|
|
if pixel_values.dim() == 5: |
|
|
|
|
|
t_frames = ( |
|
|
self.config.rope_temporal_size if self.config.rope_temporal_size is not None else pixel_values.shape[2] |
|
|
) |
|
|
height = pixel_values.shape[3] |
|
|
width = pixel_values.shape[4] |
|
|
else: |
|
|
t_frames = 1 |
|
|
height = pixel_values.shape[2] |
|
|
width = pixel_values.shape[3] |
|
|
|
|
|
|
|
|
hidden_states = self.embeddings(pixel_values) |
|
|
batch_size, total_patches, _ = hidden_states.shape |
|
|
|
|
|
|
|
|
if visible_indices is None: |
|
|
visible_indices = ( |
|
|
torch.arange(total_patches, device=pixel_values.device).unsqueeze(0).expand(batch_size, -1) |
|
|
) |
|
|
|
|
|
|
|
|
if patch_postions is not None: |
|
|
freqs_visible = self.video_rope.forward_from_positions(patch_postions) |
|
|
else: |
|
|
freqs_full = self.video_rope( |
|
|
t=t_frames, |
|
|
h=height // self.config.patch_size, |
|
|
w=width // self.config.patch_size, |
|
|
device=pixel_values.device, |
|
|
) |
|
|
freqs_visible = freqs_full[visible_indices] |
|
|
|
|
|
|
|
|
freqs_visible = torch.cat([freqs_visible, freqs_visible], dim=-1) |
|
|
|
|
|
|
|
|
hidden_states = self.layernorm_pre(hidden_states) |
|
|
|
|
|
|
|
|
num_visible = visible_indices.shape[1] |
|
|
if num_visible != total_patches: |
|
|
|
|
|
hidden_states = hidden_states.gather( |
|
|
1, visible_indices.unsqueeze(-1).expand(-1, -1, hidden_states.shape[-1]) |
|
|
) |
|
|
|
|
|
encoder_outputs = self.encoder( |
|
|
hidden_states, |
|
|
attention_mask=None, |
|
|
rotary_pos_emb=freqs_visible, |
|
|
output_attentions=output_attentions, |
|
|
output_hidden_states=output_hidden_states, |
|
|
return_dict=return_dict, |
|
|
) |
|
|
|
|
|
sequence_output = encoder_outputs[0] |
|
|
|
|
|
|
|
|
if self.layernorm_post is not None: |
|
|
sequence_output = self.layernorm_post(sequence_output) |
|
|
|
|
|
|
|
|
pooled_output = None |
|
|
if self.head is not None: |
|
|
pooled_output = self.head(sequence_output) |
|
|
|
|
|
if not return_dict: |
|
|
return (sequence_output, pooled_output) + encoder_outputs[1:] |
|
|
|
|
|
return BaseModelOutputWithPooling( |
|
|
last_hidden_state=sequence_output, |
|
|
pooler_output=pooled_output, |
|
|
hidden_states=encoder_outputs.hidden_states, |
|
|
attentions=encoder_outputs.attentions, |
|
|
) |
|
|
|