--- license: gemma library_name: mlx pipeline_tag: text-generation tags: - transformers - mlx - translation language: - ar - bg - zh - cs - da - nl - en - fi - fr - de - el - gu - he - hi - hu - id - it - ja - ko - fa - pl - pt - ro - ru - sk - es - sv - tl - th - tr - uk - vi base_model: - yanolja/YanoljaNEXT-Rosetta-27B-2511 --- # mlx-community/YanoljaNEXT-Rosetta-27B-2511-mlx-8bit-gs32 This model [mlx-community/YanoljaNEXT-Rosetta-27B-2511-mlx-8bit-gs32](https://huggingface.co/mlx-community/YanoljaNEXT-Rosetta-27B-2511-mlx-8bit-gs32) was converted to MLX format from [yanolja/YanoljaNEXT-Rosetta-27B-2511](https://huggingface.co/yanolja/YanoljaNEXT-Rosetta-27B-2511) using mlx-lm version **0.28.4**. You can find more similar translation-related MLX model quants for an Apple Mac Studio at https://huggingface.co/bibproj ## Recipe: * 8-bit * group-size 32 * 9 bits per weight (bpw) --- ## Model Description This model is a 27-billion parameter, decoder-only language model built on the Gemma3 27B architecture and fine-tuned by Yanolja NEXT. It is specifically designed to translate structured data (JSON format) while preserving the original data structure. The model was trained on a multilingual dataset covering the following languages equally: - Arabic - Bulgarian - Chinese - Czech - Danish - Dutch - English - Finnish - French - German - Greek - Gujarati - Hebrew - Hindi - Hungarian - Indonesian - Italian - Japanese - Korean - Persian - Polish - Portuguese - Romanian - Russian - Slovak - Spanish - Swedish - Tagalog - Thai - Turkish - Ukrainian - Vietnamese While optimized for these languages, it may also perform effectively on other languages supported by the base Gemma3 model. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("mlx-community/YanoljaNEXT-Rosetta-27B-2511-mlx-8bit-gs32") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```