nDNA -- the Semantic Helix of Artificial Cognition
Abstract
Neural DNA (nDNA) represents a novel approach to understanding AI foundation models' internal identity through latent geometric properties, enabling tracking of semantic inheritance and evolutionary changes across model modifications.
As AI foundation models grow in capability, a deeper question emerges: What shapes their internal cognitive identity -- beyond fluency and output? Benchmarks measure behavior, but the soul of a model resides in its latent geometry. In this work, we propose Neural DNA (nDNA) as a semantic-genotypic representation that captures this latent identity through the intrinsic geometry of belief. At its core, nDNA is synthesized from three principled and indispensable dimensions of latent geometry: spectral curvature, which reveals the curvature of conceptual flow across layers; thermodynamic length, which quantifies the semantic effort required to traverse representational transitions through layers; and belief vector field, which delineates the semantic torsion fields that guide a model's belief directional orientations. Like biological DNA, it encodes ancestry, mutation, and semantic inheritance, found in finetuning and alignment scars, cultural imprints, and architectural drift. In naming it, we open a new field: Neural Genomics, where models are not just tools, but digital semantic organisms with traceable inner cognition. Modeling statement. We read AI foundation models as semantic fluid dynamics: meaning is transported through layers like fluid in a shaped conduit; nDNA is the physics-grade readout of that flow -- a geometry-first measure of how meaning is bent, paid for, and pushed -- yielding a stable, coordinate-free neural DNA fingerprint tied to on-input behavior; with this fingerprint we cross into biology: tracing lineages across pretraining, fine-tuning, alignment, pruning, distillation, and merges; measuring inheritance between checkpoints; detecting drift as traits shift under new data or objectives; and, ultimately, studying the evolution of artificial cognition to compare models, diagnose risks, and govern change over time.
Models citing this paper 2
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper