Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeReJSHand: Efficient Real-Time Hand Pose Estimation and Mesh Reconstruction Using Refined Joint and Skeleton Features
Accurate hand pose estimation is vital in robotics, advancing dexterous manipulation in human-computer interaction. Toward this goal, this paper presents ReJSHand (which stands for Refined Joint and Skeleton Features), a cutting-edge network formulated for real-time hand pose estimation and mesh reconstruction. The proposed framework is designed to accurately predict 3D hand gestures under real-time constraints, which is essential for systems that demand agile and responsive hand motion tracking. The network's design prioritizes computational efficiency without compromising accuracy, a prerequisite for instantaneous robotic interactions. Specifically, ReJSHand comprises a 2D keypoint generator, a 3D keypoint generator, an expansion block, and a feature interaction block for meticulously reconstructing 3D hand poses from 2D imagery. In addition, the multi-head self-attention mechanism and a coordinate attention layer enhance feature representation, streamlining the creation of hand mesh vertices through sophisticated feature mapping and linear transformation. Regarding performance, comprehensive evaluations on the FreiHand dataset demonstrate ReJSHand's computational prowess. It achieves a frame rate of 72 frames per second while maintaining a PA-MPJPE (Position-Accurate Mean Per Joint Position Error) of 6.3 mm and a PA-MPVPE (Position-Accurate Mean Per Vertex Position Error) of 6.4 mm. Moreover, our model reaches scores of 0.756 for F@05 and 0.984 for F@15, surpassing modern pipelines and solidifying its position at the forefront of robotic hand pose estimators. To facilitate future studies, we provide our source code at ~https://github.com/daishipeng/ReJSHand.
E2S2: Encoding-Enhanced Sequence-to-Sequence Pretraining for Language Understanding and Generation
Sequence-to-sequence (seq2seq) learning is a popular fashion for large-scale pretraining language models. However, the prior seq2seq pretraining models generally focus on reconstructive objectives on the decoder side and neglect the effect of encoder-side supervision, which we argue may lead to sub-optimal performance. To verify our hypothesis, we first empirically study the functionalities of the encoder and decoder in seq2seq pretrained language models, and find that the encoder takes an important but under-exploitation role than the decoder regarding the downstream performance and neuron activation. Therefore, we propose an encoding-enhanced seq2seq pretraining strategy, namely E2S2, which improves the seq2seq models via integrating more efficient self-supervised information into the encoders. Specifically, E2S2 adopts two self-supervised objectives on the encoder side from two aspects: 1) locally denoising the corrupted sentence (denoising objective); and 2) globally learning better sentence representations (contrastive objective). With the help of both objectives, the encoder can effectively distinguish the noise tokens and capture high-level (i.e. syntactic and semantic) knowledge, thus strengthening the ability of seq2seq model to accurately achieve the conditional generation. On a large diversity of downstream natural language understanding and generation tasks, E2S2 dominantly improves the performance of its powerful backbone models, e.g. BART and T5. For example, upon BART backbone, we achieve +1.1% averaged gain on the general language understanding evaluation (GLUE) benchmark and +1.75% F_0.5 score improvement on CoNLL2014 dataset. We also provide in-depth analyses to show the improvement stems from better linguistic representation. We hope that our work will foster future self-supervision research on seq2seq language model pretraining.
Towards Arabic Sentence Simplification via Classification and Generative Approaches
This paper presents an attempt to build a Modern Standard Arabic (MSA) sentence-level simplification system. We experimented with sentence simplification using two approaches: (i) a classification approach leading to lexical simplification pipelines which use Arabic-BERT, a pre-trained contextualised model, as well as a model of fastText word embeddings; and (ii) a generative approach, a Seq2Seq technique by applying a multilingual Text-to-Text Transfer Transformer mT5. We developed our training corpus by aligning the original and simplified sentences from the internationally acclaimed Arabic novel "Saaq al-Bambuu". We evaluate effectiveness of these methods by comparing the generated simple sentences to the target simple sentences using the BERTScore evaluation metric. The simple sentences produced by the mT5 model achieve P 0.72, R 0.68 and F-1 0.70 via BERTScore, while, combining Arabic-BERT and fastText achieves P 0.97, R 0.97 and F-1 0.97. In addition, we report a manual error analysis for these experiments. https://github.com/Nouran-Khallaf/Lexical_Simplification
Causality and Renormalization in Finite-Time-Path Out-of-Equilibrium $φ^3$ QFT
Our aim is to contribute to quantum field theory (QFT) formalisms useful for descriptions of short time phenomena, dominant especially in heavy ion collisions. We formulate out-of-equilibrium QFT within the finite-time-path formalism (FTP) and renormalization theory (RT). The potential conflict of FTP and RT is investigated in g phi^3 QFT, by using the retarded/advanced (R/A) basis of Green functions and dimensional renormalization (DR). For example, vertices immediately after (in time) divergent self-energy loops do not conserve energy, as integrals diverge. We "repair" them, while keeping d<4, to obtain energy conservation at those vertices. Already in the S-matrix theory, the renormalized, finite part of Feynman self-energy Sigma_{F}(p_0) does not vanish when |p_0|rightarrowinfty and cannot be split to retarded and advanced parts. In the Glaser--Epstein approach, the causality is repaired in the composite object G_F(p_0)Sigma_{F}(p_0). In the FTP approach, after repairing the vertices, the corresponding composite objects are G_R(p_0)Sigma_{R}(p_0) and Sigma_{A}(p_0)G_A(p_0). In the limit drightarrow 4, one obtains causal QFT. The tadpole contribution splits into diverging and finite parts. The diverging, constant component is eliminated by the renormalization condition langle 0|phi|0rangle =0 of the S-matrix theory. The finite, oscillating energy-nonconserving tadpole contributions vanish in the limit trightarrow infty .
Faster Gradient-Free Algorithms for Nonsmooth Nonconvex Stochastic Optimization
We consider the optimization problem of the form min_{x in R^d} f(x) triangleq E_{xi} [F(x; xi)], where the component F(x;xi) is L-mean-squared Lipschitz but possibly nonconvex and nonsmooth. The recently proposed gradient-free method requires at most O( L^4 d^{3/2} epsilon^{-4} + Delta L^3 d^{3/2} delta^{-1} epsilon^{-4}) stochastic zeroth-order oracle complexity to find a (delta,epsilon)-Goldstein stationary point of objective function, where Delta = f(x_0) - inf_{x in R^d} f(x) and x_0 is the initial point of the algorithm. This paper proposes a more efficient algorithm using stochastic recursive gradient estimators, which improves the complexity to O(L^3 d^{3/2} epsilon^{-3}+ Delta L^2 d^{3/2} delta^{-1} epsilon^{-3}).
Training Models to Extract Treatment Plans from Clinical Notes Using Contents of Sections with Headings
Objective: Using natural language processing (NLP) to find sentences that state treatment plans in a clinical note, would automate plan extraction and would further enable their use in tools that help providers and care managers. However, as in the most NLP tasks on clinical text, creating gold standard to train and test NLP models is tedious and expensive. Fortuitously, sometimes but not always clinical notes contain sections with a heading that identifies the section as a plan. Leveraging contents of such labeled sections as a noisy training data, we assessed accuracy of NLP models trained with the data. Methods: We used common variations of plan headings and rule-based heuristics to find plan sections with headings in clinical notes, and we extracted sentences from them and formed a noisy training data of plan sentences. We trained Support Vector Machine (SVM) and Convolutional Neural Network (CNN) models with the data. We measured accuracy of the trained models on the noisy dataset using ten-fold cross validation and separately on a set-aside manually annotated dataset. Results: About 13% of 117,730 clinical notes contained treatment plans sections with recognizable headings in the 1001 longitudinal patient records that were obtained from Cleveland Clinic under an IRB approval. We were able to extract and create a noisy training data of 13,492 plan sentences from the clinical notes. CNN achieved best F measures, 0.91 and 0.97 in the cross-validation and set-aside evaluation experiments respectively. SVM slightly underperformed with F measures of 0.89 and 0.96 in the same experiments. Conclusion: Our study showed that the training supervised learning models using noisy plan sentences was effective in identifying them in all clinical notes. More broadly, sections with informal headings in clinical notes can be a good source for generating effective training data.
Evaluating the Performance of Some Local Optimizers for Variational Quantum Classifiers
In this paper, we have studied the performance and role of local optimizers in quantum variational circuits. We studied the performance of the two most popular optimizers and compared their results with some popular classical machine learning algorithms. The classical algorithms we used in our study are support vector machine (SVM), gradient boosting (GB), and random forest (RF). These were compared with a variational quantum classifier (VQC) using two sets of local optimizers viz AQGD and COBYLA. For experimenting with VQC, IBM Quantum Experience and IBM Qiskit was used while for classical machine learning models, sci-kit learn was used. The results show that machine learning on noisy immediate scale quantum machines can produce comparable results as on classical machines. For our experiments, we have used a popular restaurant sentiment analysis dataset. The extracted features from this dataset and then after applying PCA reduced the feature set into 5 features. Quantum ML models were trained using 100 epochs and 150 epochs on using EfficientSU2 variational circuit. Overall, four Quantum ML models were trained and three Classical ML models were trained. The performance of the trained models was evaluated using standard evaluation measures viz, Accuracy, Precision, Recall, F-Score. In all the cases AQGD optimizer-based model with 100 Epochs performed better than all other models. It produced an accuracy of 77% and an F-Score of 0.785 which were highest across all the trained models.
3rd Place Solution for MOSE Track in CVPR 2024 PVUW workshop: Complex Video Object Segmentation
Video Object Segmentation (VOS) is a vital task in computer vision, focusing on distinguishing foreground objects from the background across video frames. Our work draws inspiration from the Cutie model, and we investigate the effects of object memory, the total number of memory frames, and input resolution on segmentation performance. This report validates the effectiveness of our inference method on the coMplex video Object SEgmentation (MOSE) dataset, which features complex occlusions. Our experimental results demonstrate that our approach achieves a J\&F score of 0.8139 on the test set, securing the third position in the final ranking. These findings highlight the robustness and accuracy of our method in handling challenging VOS scenarios.
ZS-VCOS: Zero-Shot Video Camouflaged Object Segmentation By Optical Flow and Open Vocabulary Object Detection
Camouflaged object segmentation presents unique challenges compared to traditional segmentation tasks, primarily due to the high similarity in patterns and colors between camouflaged objects and their backgrounds. Effective solutions to this problem have significant implications in critical areas such as pest control, defect detection, and lesion segmentation in medical imaging. Prior research has predominantly emphasized supervised or unsupervised pre-training methods, leaving zero-shot approaches significantly underdeveloped. Existing zero-shot techniques commonly utilize the Segment Anything Model (SAM) in automatic mode or rely on vision-language models to generate cues for segmentation; however, their performances remain unsatisfactory, due to the similarity of the camouflaged object and the background. This work studies how to avoid training by integrating large pre-trained models like SAM-2 and Owl-v2 with temporal information into a modular pipeline. Evaluated on the MoCA-Mask dataset, our approach achieves outstanding performance improvements, significantly outperforming existing zero-shot methods by raising the F-measure (F_beta^w) from 0.296 to 0.628. Our approach also surpasses supervised methods, increasing the F-measure from 0.476 to 0.628. Additionally, evaluation on the MoCA-Filter dataset demonstrates an increase in the success rate from 0.628 to 0.697 when compared with FlowSAM, a supervised transfer method. A thorough ablation study further validates the individual contributions of each component. Besides our main contributions, we also highlight inconsistencies in previous work regarding metrics and settings. Code can be found in https://github.com/weathon/vcos.
Logically at Factify 2022: Multimodal Fact Verification
This paper describes our participant system for the multi-modal fact verification (Factify) challenge at AAAI 2022. Despite the recent advance in text based verification techniques and large pre-trained multimodal models cross vision and language, very limited work has been done in applying multimodal techniques to automate fact checking process, particularly considering the increasing prevalence of claims and fake news about images and videos on social media. In our work, the challenge is treated as multimodal entailment task and framed as multi-class classification. Two baseline approaches are proposed and explored including an ensemble model (combining two uni-modal models) and a multi-modal attention network (modeling the interaction between image and text pair from claim and evidence document). We conduct several experiments investigating and benchmarking different SoTA pre-trained transformers and vision models in this work. Our best model is ranked first in leaderboard which obtains a weighted average F-measure of 0.77 on both validation and test set. Exploratory analysis of dataset is also carried out on the Factify data set and uncovers salient patterns and issues (e.g., word overlapping, visual entailment correlation, source bias) that motivates our hypothesis. Finally, we highlight challenges of the task and multimodal dataset for future research.
EAST: An Efficient and Accurate Scene Text Detector
Previous approaches for scene text detection have already achieved promising performances across various benchmarks. However, they usually fall short when dealing with challenging scenarios, even when equipped with deep neural network models, because the overall performance is determined by the interplay of multiple stages and components in the pipelines. In this work, we propose a simple yet powerful pipeline that yields fast and accurate text detection in natural scenes. The pipeline directly predicts words or text lines of arbitrary orientations and quadrilateral shapes in full images, eliminating unnecessary intermediate steps (e.g., candidate aggregation and word partitioning), with a single neural network. The simplicity of our pipeline allows concentrating efforts on designing loss functions and neural network architecture. Experiments on standard datasets including ICDAR 2015, COCO-Text and MSRA-TD500 demonstrate that the proposed algorithm significantly outperforms state-of-the-art methods in terms of both accuracy and efficiency. On the ICDAR 2015 dataset, the proposed algorithm achieves an F-score of 0.7820 at 13.2fps at 720p resolution.
A New Data Representation Based on Training Data Characteristics to Extract Drug Named-Entity in Medical Text
One essential task in information extraction from the medical corpus is drug name recognition. Compared with text sources come from other domains, the medical text is special and has unique characteristics. In addition, the medical text mining poses more challenges, e.g., more unstructured text, the fast growing of new terms addition, a wide range of name variation for the same drug. The mining is even more challenging due to the lack of labeled dataset sources and external knowledge, as well as multiple token representations for a single drug name that is more common in the real application setting. Although many approaches have been proposed to overwhelm the task, some problems remained with poor F-score performance (less than 0.75). This paper presents a new treatment in data representation techniques to overcome some of those challenges. We propose three data representation techniques based on the characteristics of word distribution and word similarities as a result of word embedding training. The first technique is evaluated with the standard NN model, i.e., MLP (Multi-Layer Perceptrons). The second technique involves two deep network classifiers, i.e., DBN (Deep Belief Networks), and SAE (Stacked Denoising Encoders). The third technique represents the sentence as a sequence that is evaluated with a recurrent NN model, i.e., LSTM (Long Short Term Memory). In extracting the drug name entities, the third technique gives the best F-score performance compared to the state of the art, with its average F-score being 0.8645.
Cross-Domain Keyword Extraction with Keyness Patterns
Domain dependence and annotation subjectivity pose challenges for supervised keyword extraction. Based on the premises that second-order keyness patterns are existent at the community level and learnable from annotated keyword extraction datasets, this paper proposes a supervised ranking approach to keyword extraction that ranks keywords with keyness patterns consisting of independent features (such as sublanguage domain and term length) and three categories of dependent features -- heuristic features, specificity features, and representavity features. The approach uses two convolutional-neural-network based models to learn keyness patterns from keyword datasets and overcomes annotation subjectivity by training the two models with bootstrap sampling strategy. Experiments demonstrate that the approach not only achieves state-of-the-art performance on ten keyword datasets in general supervised keyword extraction with an average top-10-F-measure of 0.316 , but also robust cross-domain performance with an average top-10-F-measure of 0.346 on four datasets that are excluded in the training process. Such cross-domain robustness is attributed to the fact that community-level keyness patterns are limited in number and temperately independent of language domains, the distinction between independent features and dependent features, and the sampling training strategy that balances excess risk and lack of negative training data.
WikiContradict: A Benchmark for Evaluating LLMs on Real-World Knowledge Conflicts from Wikipedia
Retrieval-augmented generation (RAG) has emerged as a promising solution to mitigate the limitations of large language models (LLMs), such as hallucinations and outdated information. However, it remains unclear how LLMs handle knowledge conflicts arising from different augmented retrieved passages, especially when these passages originate from the same source and have equal trustworthiness. In this work, we conduct a comprehensive evaluation of LLM-generated answers to questions that have varying answers based on contradictory passages from Wikipedia, a dataset widely regarded as a high-quality pre-training resource for most LLMs. Specifically, we introduce WikiContradict, a benchmark consisting of 253 high-quality, human-annotated instances designed to assess LLM performance when augmented with retrieved passages containing real-world knowledge conflicts. We benchmark a diverse range of both closed and open-source LLMs under different QA scenarios, including RAG with a single passage, and RAG with 2 contradictory passages. Through rigorous human evaluations on a subset of WikiContradict instances involving 5 LLMs and over 3,500 judgements, we shed light on the behaviour and limitations of these models. For instance, when provided with two passages containing contradictory facts, all models struggle to generate answers that accurately reflect the conflicting nature of the context, especially for implicit conflicts requiring reasoning. Since human evaluation is costly, we also introduce an automated model that estimates LLM performance using a strong open-source language model, achieving an F-score of 0.8. Using this automated metric, we evaluate more than 1,500 answers from seven LLMs across all WikiContradict instances. To facilitate future work, we release WikiContradict on: https://ibm.biz/wikicontradict.
Phishing URL Detection: A Network-based Approach Robust to Evasion
Many cyberattacks start with disseminating phishing URLs. When clicking these phishing URLs, the victim's private information is leaked to the attacker. There have been proposed several machine learning methods to detect phishing URLs. However, it still remains under-explored to detect phishing URLs with evasion, i.e., phishing URLs that pretend to be benign by manipulating patterns. In many cases, the attacker i) reuses prepared phishing web pages because making a completely brand-new set costs non-trivial expenses, ii) prefers hosting companies that do not require private information and are cheaper than others, iii) prefers shared hosting for cost efficiency, and iv) sometimes uses benign domains, IP addresses, and URL string patterns to evade existing detection methods. Inspired by those behavioral characteristics, we present a network-based inference method to accurately detect phishing URLs camouflaged with legitimate patterns, i.e., robust to evasion. In the network approach, a phishing URL will be still identified as phishy even after evasion unless a majority of its neighbors in the network are evaded at the same time. Our method consistently shows better detection performance throughout various experimental tests than state-of-the-art methods, e.g., F-1 of 0.89 for our method vs. 0.84 for the best feature-based method.
Being-0: A Humanoid Robotic Agent with Vision-Language Models and Modular Skills
Building autonomous robotic agents capable of achieving human-level performance in real-world embodied tasks is an ultimate goal in humanoid robot research. Recent advances have made significant progress in high-level cognition with Foundation Models (FMs) and low-level skill development for humanoid robots. However, directly combining these components often results in poor robustness and efficiency due to compounding errors in long-horizon tasks and the varied latency of different modules. We introduce Being-0, a hierarchical agent framework that integrates an FM with a modular skill library. The FM handles high-level cognitive tasks such as instruction understanding, task planning, and reasoning, while the skill library provides stable locomotion and dexterous manipulation for low-level control. To bridge the gap between these levels, we propose a novel Connector module, powered by a lightweight vision-language model (VLM). The Connector enhances the FM's embodied capabilities by translating language-based plans into actionable skill commands and dynamically coordinating locomotion and manipulation to improve task success. With all components, except the FM, deployable on low-cost onboard computation devices, Being-0 achieves efficient, real-time performance on a full-sized humanoid robot equipped with dexterous hands and active vision. Extensive experiments in large indoor environments demonstrate Being-0's effectiveness in solving complex, long-horizon tasks that require challenging navigation and manipulation subtasks. For further details and videos, visit https://beingbeyond.github.io/being-0.
Unveiling two deeply embedded young protostars in the S68N Class 0 protostellar core with JWST/NIRSpec
The near-infrared (NIR) emission of the youngest protostars still needs to be characterized to better understand the evolution of their accretion and ejection activity. We analyze James Webb Space Telescope NIRSpec 1.7 -- 5.3 mum observations of two deeply embedded sources in the S68N protostellar core in Serpens. The North Central (NC) source exhibits a highly obscured spectrum (A_K ~ 4.8 mag) that is modeled with a pre-main-sequence photosphere and a hot disk component. The photospheric parameters are consistent with a young, low-mass photosphere, as suggested by the low surface gravity, log g of 1.95 pm 0.15 cm s^{-2}. The hot disk suggests that accretion onto the central protostellar embryo is ongoing, although prototypical accretion-tracing emission lines HI are not detected. The South Central (SC) source, which is even more embedded (A_K ~ 8 mag; no continuum is detected shortward of 3.6 mum) appears to be driving the large-scale S68N protostellar outflow, and launches a collimated hot molecular jet detected in \Ht and CO ro-vibrational lines. Shock modeling of the \Ht (ro)vibrational lines establishes that fast C-type shocks (geq 30 km s^{-1}), with high pre-shock density (geq 10^7 cm^{-3}), and strong magnetic field (b ~ 3--10, where B = b,times,textrm{n_{H} (cm^{-3})},muG) best match the data. The bright CO fundamental line forest suggests energetic excitation, with the contribution of non-LTE effects, ie irradiation pumping. Detected OH and CH^{+} ro-vibrational lines support this hypothesis. These two Class 0 protostars seem to be in very young evolutionary stages and still have to acquire the bulk of their final stellar masses. These results demonstrate that JWST enables unprecedented diagnostics of these first stages of the protostellar evolutionary phase.
An Updated Line List for Spectroscopic Investigation of G Stars II: Refined Solar Abundances via Extended Wavelength Coverage to 10 000 Å
This study introduces a line list for the abundance analysis of F and G type stars across the 4080-9675 A wavelength range. A systematic search employing lower excitation potentials, accurate log gf values, and an updated multiplet table led to the identification of 592 lines across 33 species (25 elements), including C, O, Mg (ionized), Al, P, S, Cu, Zr (neutral), and La. To determine the uncertainties in log gf values, we assessed solar abundance using a very high-resolution (R=1000000) disk-integrated solar spectrum. These lines were confirmed to be blend-free in the solar spectrum. The line list was further validated by analyzing the metal-poor star HD 218209 (G6V), which is notable for its well-documented and reliable abundance in literature. The abundances were obtained using the equivalent width (EW) method and further refined by applying the spectrum synthesis method. A comparative analysis with the Gaia ESO line list v.6, provided by the Gaia ESO collaboration, revealed additional neutral and ionized Fe lines. This extensively refined line list will facilitate precise stellar parameter determinations and accurate abundance analyses of spectra within the PolarBASE spectral library.
IXPE Observation of the Low-Synchrotron Peaked Blazar S4 0954+65 During An Optical-X-ray Flare
The X-ray polarization observations made possible with the Imaging X-ray Polarimetry Explorer (IXPE) offer new ways of probing high-energy emission processes in astrophysical jets from blazars. Here we report on the first X-ray polarization observation of the blazar S4 0954+65 in a high optical and X-ray state. During our multi-wavelength campaign on the source, we detected an optical flare whose peak coincided with the peak of an X-ray flare. This optical-X-ray flare most likely took place in a feature moving along the parsec-scale jet, imaged at 43 GHz by the Very Long Baseline Array. The 43 GHz polarization angle of the moving component underwent a rotation near the time of the flare. In the optical band, prior to the IXPE observation, we measured the polarization angle to be aligned with the jet axis. In contrast, during the optical flare the optical polarization angle was perpendicular to the jet axis; after the flare, it reverted to being parallel to the jet axis. Due to the smooth behavior of the optical polarization angle during the flare, we favor shocks as the main acceleration mechanism. We also infer that the ambient magnetic field lines in the jet were parallel to the jet position angle. The average degree of optical polarization during the IXPE observation was (14.3pm4.1)%. Despite the flare, we only detected an upper limit of 14% (at 3sigma level) on the X-ray polarization degree; although a reasonable assumption on the X-ray polarization angle results in an upper limit of 8.8% (3sigma). We model the spectral energy distribution (SED) and spectral polarization distribution (SPD) of S4 0954+65 with leptonic (synchrotron self-Compton) and hadronic (proton and pair synchrotron) models. The constraints we obtain with our combined multi-wavelength polarization observations and SED modeling tentatively disfavor hadronic models for the X-ray emission in S4 0954+65.
Observation of the open-charm tetraquark state $T_{cs 0}^{*}(2870)^0$ in the $B^- \rightarrow D^- D^0 K_\mathrm{S}^0$ decay
An amplitude analysis of B^-rightarrow D^- D^0 K_S^0 decays is performed using proton-proton collision data, corresponding to an integrated luminosity of 9,fb^{-1}, collected with the LHCb detector at center-of-mass energies of 7, 8, and 13,Tekern -0.1em V. A resonant structure of spin-parity 0^+ is observed in the D^0 K_S^0 invariant-mass spectrum with a significance of 5.3,sigma. The mass and width of the state, modeled with a Breit-Wigner lineshape, are determined to be 2883pm11pm6,Mekern -0.1em V!/c^2 and 87_{-47}^{+22}pm6,Mekern -0.1em V respectively, where the first uncertainties are statistical and the second systematic. These properties and the quark content are consistent with those of the open-charm tetraquark state T_{cs 0}^{*}(2870)^0 observed previously in the D^+ K^- final state of the B^-rightarrow D^- D^+ K^- decay. This result confirms the existence of the T_{cs 0}^{*}(2870)^0 state in a new decay mode. The T_{cs1}^{*}(2900)^0 state, reported in the B^-rightarrow D^- D^+ K^- decay, is also searched for in the D^0 K_S^0 invariant-mass spectrum of the B^- rightarrow D^- D^0 K_S^0 decay, without finding evidence for it.
Addendum to Research MMMCV; A Man/Microbio/Megabio/Computer Vision
In October 2007, a Research Proposal for the University of Sydney, Australia, the author suggested that biovie-physical phenomenon as `electrodynamic dependant biological vision', is governed by relativistic quantum laws and biovision. The phenomenon on the basis of `biovielectroluminescence', satisfies man/microbio/megabio/computer vision (MMMCV), as a robust candidate for physical and visual sciences. The general aim of this addendum is to present a refined text of Sections 1-3 of that proposal and highlighting the contents of its Appendix in form of a `Mechanisms' Section. We then briefly remind in an article aimed for December 2007, by appending two more equations into Section 3, a theoretical II-time scenario as a time model well-proposed for the phenomenon. The time model within the core of the proposal, plays a significant role in emphasizing the principle points on Objectives no. 1-8, Sub-hypothesis 3.1.2, mentioned in Article [arXiv:0710.0410]. It also expresses the time concept in terms of causing quantized energy f(|E|) of time |t|, emit in regard to shortening the probability of particle loci as predictable patterns of particle's un-occurred motion, a solution to Heisenberg's uncertainty principle (HUP) into a simplistic manner. We conclude that, practical frames via a time algorithm to this model, fixates such predictable patterns of motion of scenery bodies onto recordable observation points of a MMMCV system. It even suppresses/predicts superposition phenomena coming from a human subject and/or other bio-subjects for any decision making event, e.g., brainwave quantum patterns based on vision. Maintaining the existential probability of Riemann surfaces of II-time scenarios in the context of biovielectroluminescence, makes motion-prediction a possibility.
Towards strange metallic holography
We initiate a holographic model building approach to `strange metallic' phenomenology. Our model couples a neutral Lifshitz-invariant quantum critical theory, dual to a bulk gravitational background, to a finite density of gapped probe charge carriers, dually described by D-branes. In the physical regime of temperature much lower than the charge density and gap, we exhibit anomalous scalings of the temperature and frequency dependent conductivity. Choosing the dynamical critical exponent z appropriately we can match the non-Fermi liquid scalings, such as linear resistivity, observed in strange metal regimes. As part of our investigation we outline three distinct string theory realizations of Lifshitz geometries: from F theory, from polarised branes, and from a gravitating charged Fermi gas. We also identify general features of renormalisation group flow in Lifshitz theories, such as the appearance of relevant charge-charge interactions when z geq 2. We outline a program to extend this model building approach to other anomalous observables of interest such as the Hall conductivity.
Zero Sound from Holography
Quantum liquids are characterized by the distinctive properties such as the low temperature behavior of heat capacity and the spectrum of low-energy quasiparticle excitations. In particular, at low temperature, Fermi liquids exhibit the zero sound, predicted by L. D. Landau in 1957 and subsequently observed in liquid He-3. In this paper, we ask a question whether such a characteristic behavior is present in theories with holographically dual description. We consider a class of gauge theories with fundamental matter fields whose holographic dual in the appropriate limit is given in terms of the Dirac-Born-Infeld action in AdS_{p+1} space. An example of such a system is the N=4 SU(N_c) supersymmetric Yang-Mills theory with N_f massless N=2 hypermultiplets at strong coupling, finite baryon number density, and low temperature. We find that these systems exhibit a zero sound mode despite having a non-Fermi liquid type behavior of the specific heat. These properties suggest that holography identifies a new type of quantum liquids.
Unveiling the Human-like Similarities of Automatic Facial Expression Recognition: An Empirical Exploration through Explainable AI
Facial expression recognition is vital for human behavior analysis, and deep learning has enabled models that can outperform humans. However, it is unclear how closely they mimic human processing. This study aims to explore the similarity between deep neural networks and human perception by comparing twelve different networks, including both general object classifiers and FER-specific models. We employ an innovative global explainable AI method to generate heatmaps, revealing crucial facial regions for the twelve networks trained on six facial expressions. We assess these results both quantitatively and qualitatively, comparing them to ground truth masks based on Friesen and Ekman's description and among them. We use Intersection over Union (IoU) and normalized correlation coefficients for comparisons. We generate 72 heatmaps to highlight critical regions for each expression and architecture. Qualitatively, models with pre-trained weights show more similarity in heatmaps compared to those without pre-training. Specifically, eye and nose areas influence certain facial expressions, while the mouth is consistently important across all models and expressions. Quantitatively, we find low average IoU values (avg. 0.2702) across all expressions and architectures. The best-performing architecture averages 0.3269, while the worst-performing one averages 0.2066. Dendrograms, built with the normalized correlation coefficient, reveal two main clusters for most expressions: models with pre-training and models without pre-training. Findings suggest limited alignment between human and AI facial expression recognition, with network architectures influencing the similarity, as similar architectures prioritize similar facial regions.
Continuous Convolutional Neural Networks for Disruption Prediction in Nuclear Fusion Plasmas
Grid decarbonization for climate change requires dispatchable carbon-free energy like nuclear fusion. The tokamak concept offers a promising path for fusion, but one of the foremost challenges in implementation is the occurrence of energetic plasma disruptions. In this study, we delve into Machine Learning approaches to predict plasma state outcomes. Our contributions are twofold: (1) We present a novel application of Continuous Convolutional Neural Networks for disruption prediction and (2) We examine the advantages and disadvantages of continuous models over discrete models for disruption prediction by comparing our model with the previous, discrete state of the art, and show that continuous models offer significantly better performance (Area Under the Receiver Operating Characteristic Curve = 0.974 v.s. 0.799) with fewer parameters
Graphlets correct for the topological information missed by random walks
Random walks are widely used for mining networks due to the computational efficiency of computing them. For instance, graph representation learning learns a d-dimensional embedding space, so that the nodes that tend to co-occur on random walks (a proxy of being in the same network neighborhood) are close in the embedding space. Specific local network topology (i.e., structure) influences the co-occurrence of nodes on random walks, so random walks of limited length capture only partial topological information, hence diminishing the performance of downstream methods. We explicitly capture all topological neighborhood information and improve performance by introducing orbit adjacencies that quantify the adjacencies of two nodes as co-occurring on a given pair of graphlet orbits, which are symmetric positions on graphlets (small, connected, non-isomorphic, induced subgraphs of a large network). Importantly, we mathematically prove that random walks on up to k nodes capture only a subset of all the possible orbit adjacencies for up to k-node graphlets. Furthermore, we enable orbit adjacency-based analysis of networks by developing an efficient GRaphlet-orbit ADjacency COunter (GRADCO), which exhaustively computes all 28 orbit adjacency matrices for up to four-node graphlets. Note that four-node graphlets suffice, because real networks are usually small-world. In large networks on around 20,000 nodes, GRADCOcomputesthe28matricesinminutes. Onsixrealnetworksfromvarious domains, we compare the performance of node-label predictors obtained by using the network embeddings based on our orbit adjacencies to those based on random walks. We find that orbit adjacencies, which include those unseen by random walks, outperform random walk-based adjacencies, demonstrating the importance of the inclusion of the topological neighborhood information that is unseen by random walks.
Multifrequency Radio Observations of the Magnetar Swift J1818.0--1607
We report on Green Bank Telescope observations of the radio magnetar Swift J1818.0--1607 between 820 MHz and 35 GHz, taken from six to nine months after its 2020 March outburst. We obtained multi-hour observations at six frequencies, recording polarimetric, spectral, and single-pulse information. The spectrum peaks at a frequency of 5.4 pm 0.6 GHz, making Swift J1818.0--1607 one of many radio magnetars which exhibit a gigahertz-peaked spectrum (GPS). The radio flux decays steeply above the peak frequency, with in-band spectral indices alpha < -2.3 above 9 GHz. The emission is highly (> 50%) linearly polarized, with a lower degree (< 30%) of circular polarization which can change handedness between single pulses. Across the frequency range of our observations, the time-integrated radio profiles share a common shape: a narrow ``pulsar-like'' central component flanked by ``magnetar-like'' components comprised of bright, spiky subpulses. The outer profile components exhibit larger degrees of flux modulation and flatter spectral indices when compared to the central pulse component.
Aioli: A Unified Optimization Framework for Language Model Data Mixing
Language model performance depends on identifying the optimal mixture of data groups to train on (e.g., law, code, math). Prior work has proposed a diverse set of methods to efficiently learn mixture proportions, ranging from fitting regression models over training runs to dynamically updating proportions throughout training. Surprisingly, we find that no existing method consistently outperforms a simple stratified sampling baseline in terms of average test perplexity. To understand this inconsistency, we unify existing methods into a standard framework, showing they are equivalent to solving a common optimization problem: minimize average loss subject to a method-specific mixing law -- an implicit assumption on the relationship between loss and mixture proportions. This framework suggests that measuring the fidelity of a method's mixing law can offer insights into its performance. Empirically, we find that existing methods set their mixing law parameters inaccurately, resulting in the inconsistent mixing performance we observe. Using this insight, we derive a new online method named Aioli, which directly estimates the mixing law parameters throughout training and uses them to dynamically adjust proportions. Aioli outperforms stratified sampling on 6 out of 6 datasets by an average of 0.27 test perplexity points, whereas existing methods fail to consistently beat stratified sampling, doing up to 6.9 points worse. Moreover, in a practical setting where proportions are learned on shorter runs due to computational constraints, Aioli can dynamically adjust these proportions over the full training run, consistently improving performance over existing methods by up to 12.012 test perplexity points.
Temporal Attack Pattern Detection in Multi-Agent AI Workflows: An Open Framework for Training Trace-Based Security Models
We present an openly documented methodology for fine-tuning language models to detect temporal attack patterns in multi-agent AI workflows using OpenTelemetry trace analysis. We curate a dataset of 80,851 examples from 18 public cybersecurity sources and 35,026 synthetic OpenTelemetry traces. We apply iterative QLoRA fine-tuning on resource-constrained ARM64 hardware (NVIDIA DGX Spark) through three training iterations with strategic augmentation. Our custom benchmark accuracy improves from 42.86% to 74.29%, a statistically significant 31.4-point gain. Targeted examples addressing specific knowledge gaps outperform indiscriminate scaling. Key contributions include: (1) synthetic trace generation methodology for multi-agent coordination attacks and regulatory violations, (2) empirical evidence that training data composition fundamentally determines behavior, and (3) complete open release of datasets, training scripts, and evaluation benchmarks on HuggingFace. While practical deployment requires human oversight due to false positive rates, this work establishes the first reproducible framework enabling practitioners to build custom agentic security models adapted to their threat landscapes.
The Population of the Galactic Center Filaments: Position Angle Distribution Reveal a Degree-scale Collimated Outflow from Sgr A* along the Galactic Plane
We have examined the distribution of the position angle (PA) of the Galactic center filaments with lengths L > 66'' and < 66'' as well as their length distribution as a function of PA. We find bimodal PA distributions of the filaments, long and short populations of radio filaments. Our PA study shows the evidence for a distinct population of short filaments with PA close to the Galactic plane. Mainly thermal short radio filaments (<66'') have PAs concentrated close to the Galactic plane within 60^circ < rm PA <120^circ. Remarkably, the short filament PAs are radial with respect to the Galactic center at l <0^circ, and extend in the direction toward Sgr A*. On a smaller scale, the prominent Sgr E HII complex G358.7-0.0 provides a vivid example of the nearly radial distribution of short filaments. The bimodal PA distribution suggests different origin for two distinct filament populations. We argue that alignment of the short filament population results from the ram pressure of a degree-scale outflow from Sgr A* that exceeds the internal filament pressure, and aligns them along the Galactic plane. The ram pressure is estimated to be 2times10^6, cm^{-3}, K at a distance of 300pc, requiring biconical mass outflow rate 10^{-4} \msol\, yr^{-1} with an opening angle of sim40^circ. This outflow aligns not only the magnetized filaments along the Galactic plane but also accelerates thermal material associated with embedded or partially embedded clouds. This places an estimate of sim6 Myr as the age of the outflow.
Trends in AI Supercomputers
Frontier AI development relies on powerful AI supercomputers, yet analysis of these systems is limited. We create a dataset of 500 AI supercomputers from 2019 to 2025 and analyze key trends in performance, power needs, hardware cost, ownership, and global distribution. We find that the computational performance of AI supercomputers has doubled every nine months, while hardware acquisition cost and power needs both doubled every year. The leading system in March 2025, xAI's Colossus, used 200,000 AI chips, had a hardware cost of \7B, and required 300 MW of power, as much as 250,000 households. As AI supercomputers evolved from tools for science to industrial machines, companies rapidly expanded their share of total AI supercomputer performance, while the share of governments and academia diminished. Globally, the United States accounts for about 75% of total performance in our dataset, with China in second place at 15%. If the observed trends continue, the leading AI supercomputer in 2030 will achieve 2\times10^{22} 16-bit FLOP/s, use two million AI chips, have a hardware cost of 200 billion, and require 9 GW of power. Our analysis provides visibility into the AI supercomputer landscape, allowing policymakers to assess key AI trends like resource needs, ownership, and national competitiveness.
Radio study of the Arc and the Sgr A complex near the Galactic center
Radio continuum and radio recombination line observations of the inner degree of the galactic center reveal a rich collection of thermal and nonthermal radio structures: (a) A network of linear filaments that are oriented perpendicular to the galactic plane constitute the major portion of the radio Arc at l~ 0.2{\deg}. These filaments have nonthermal characteristics, show polarized emission at 6, 3 and 2 cm, are organized over a 100 pc scale, and have a flat spectrum. (b) A number of thread-like filaments are situated asymmetrical with respect to the galactic plane and appear to be isolated unlike the linear filaments which are grouped together. The polarization and spectra of these so called "threads" are not yet known. (c) A network of arched filamentary structures that is disorganized in its appearance constitutes the curved portion of the Arc. Radio recombination line emission from these filaments indicates a thermal character for the emission. (d) A very steep-spectrum ridge of emission is seen to emerge from Sgr A. (e) The relative location of Sgr A East, West, a cluster of HII regions and the 50 km/s molecular cloud are discussed. Comparisons of the low and high-frequency maps show clearly that Sgr A East lies behind Sgr A West.
Recent global temperature surge amplified by record-low planetary albedo
In 2023, the global mean temperature soared to 1.48K above the pre-industrial level, surpassing the previous record by 0.17K. Previous best-guess estimates of known drivers including anthropogenic warming and the El Nino onset fall short by about 0.2K in explaining the temperature rise. Utilizing satellite and reanalysis data, we identify a record-low planetary albedo as the primary factor bridging this gap. The decline is caused largely by a reduced low-cloud cover in the northern mid-latitudes and tropics, in continuation of a multi-annual trend. Understanding how much of the low-cloud trend is due to internal variability, reduced aerosol concentrations, or a possibly emerging low-cloud feedback will be crucial for assessing the current and expected future warming.
LLMs Reproduce Human Purchase Intent via Semantic Similarity Elicitation of Likert Ratings
Consumer research costs companies billions annually yet suffers from panel biases and limited scale. Large language models (LLMs) offer an alternative by simulating synthetic consumers, but produce unrealistic response distributions when asked directly for numerical ratings. We present semantic similarity rating (SSR), a method that elicits textual responses from LLMs and maps these to Likert distributions using embedding similarity to reference statements. Testing on an extensive dataset comprising 57 personal care product surveys conducted by a leading corporation in that market (9,300 human responses), SSR achieves 90% of human test-retest reliability while maintaining realistic response distributions (KS similarity > 0.85). Additionally, these synthetic respondents provide rich qualitative feedback explaining their ratings. This framework enables scalable consumer research simulations while preserving traditional survey metrics and interpretability.
InkubaLM: A small language model for low-resource African languages
High-resource language models often fall short in the African context, where there is a critical need for models that are efficient, accessible, and locally relevant, even amidst significant computing and data constraints. This paper introduces InkubaLM, a small language model with 0.4 billion parameters, which achieves performance comparable to models with significantly larger parameter counts and more extensive training data on tasks such as machine translation, question-answering, AfriMMLU, and the AfriXnli task. Notably, InkubaLM outperforms many larger models in sentiment analysis and demonstrates remarkable consistency across multiple languages. This work represents a pivotal advancement in challenging the conventional paradigm that effective language models must rely on substantial resources. Our model and datasets are publicly available \url{https://huggingface.co/lelapa} to encourage research and development on low-resource languages.
RAVEN: RAnking and Validation of ExoplaNets
We present RAVEN, a newly developed vetting and validation pipeline for TESS exoplanet candidates. The pipeline employs a Bayesian framework to derive the posterior probability of a candidate being a planet against a set of False Positive (FP) scenarios, through the use of a Gradient Boosted Decision Tree and a Gaussian Process classifier, trained on comprehensive synthetic training sets of simulated planets and 8 astrophysical FP scenarios injected into TESS lightcurves. These training sets allow large scale candidate vetting and performance verification against individual FP scenarios. A Non-Simulated FP training set consisting of real TESS candidates caused primarily by stellar variability and systematic noise is also included. The machine learning derived probabilities are combined with scenario specific prior probabilities, including the candidates' positional probabilities, to compute the final posterior probabilities. Candidates with a planetary posterior probability greater than 99% against each FP scenario and whose implied planetary radius is less than 8R_{oplus} are considered to be statistically validated by the pipeline. In this first version, the pipeline has been developed for candidates with a lightcurve released from the TESS Science Processing Operations Centre, an orbital period between 0.5 and 16 days and a transit depth greater than 300ppm. The pipeline obtained area-under-curve (AUC) scores > 97% on all FP scenarios and > 99% on all but one. Testing on an independent external sample of 1361 pre-classified TOIs, the pipeline achieved an overall accuracy of 91%, demonstrating its effectiveness for automated ranking of TESS candidates. For a probability threshold of 0.9 the pipeline reached a precision of 97% with a recall score of 66% on these TOIs. The RAVEN pipeline is publicly released as a cloud-hosted app, making it easily accessible to the community.
Real-Time Cell Sorting with Scalable In Situ FPGA-Accelerated Deep Learning
Precise cell classification is essential in biomedical diagnostics and therapeutic monitoring, particularly for identifying diverse cell types involved in various diseases. Traditional cell classification methods such as flow cytometry depend on molecular labeling which is often costly, time-intensive, and can alter cell integrity. To overcome these limitations, we present a label-free machine learning framework for cell classification, designed for real-time sorting applications using bright-field microscopy images. This approach leverages a teacher-student model architecture enhanced by knowledge distillation, achieving high efficiency and scalability across different cell types. Demonstrated through a use case of classifying lymphocyte subsets, our framework accurately classifies T4, T8, and B cell types with a dataset of 80,000 preprocessed images, accessible via an open-source Python package for easy adaptation. Our teacher model attained 98\% accuracy in differentiating T4 cells from B cells and 93\% accuracy in zero-shot classification between T8 and B cells. Remarkably, our student model operates with only 0.02\% of the teacher model's parameters, enabling field-programmable gate array (FPGA) deployment. Our FPGA-accelerated student model achieves an ultra-low inference latency of just 14.5~μs and a complete cell detection-to-sorting trigger time of 24.7~μs, delivering 12x and 40x improvements over the previous state-of-the-art real-time cell analysis algorithm in inference and total latency, respectively, while preserving accuracy comparable to the teacher model. This framework provides a scalable, cost-effective solution for lymphocyte classification, as well as a new SOTA real-time cell sorting implementation for rapid identification of subsets using in situ deep learning on off-the-shelf computing hardware.
AfriQA: Cross-lingual Open-Retrieval Question Answering for African Languages
African languages have far less in-language content available digitally, making it challenging for question answering systems to satisfy the information needs of users. Cross-lingual open-retrieval question answering (XOR QA) systems -- those that retrieve answer content from other languages while serving people in their native language -- offer a means of filling this gap. To this end, we create AfriQA, the first cross-lingual QA dataset with a focus on African languages. AfriQA includes 12,000+ XOR QA examples across 10 African languages. While previous datasets have focused primarily on languages where cross-lingual QA augments coverage from the target language, AfriQA focuses on languages where cross-lingual answer content is the only high-coverage source of answer content. Because of this, we argue that African languages are one of the most important and realistic use cases for XOR QA. Our experiments demonstrate the poor performance of automatic translation and multilingual retrieval methods. Overall, AfriQA proves challenging for state-of-the-art QA models. We hope that the dataset enables the development of more equitable QA technology.
Disentangling Dense Embeddings with Sparse Autoencoders
Sparse autoencoders (SAEs) have shown promise in extracting interpretable features from complex neural networks. We present one of the first applications of SAEs to dense text embeddings from large language models, demonstrating their effectiveness in disentangling semantic concepts. By training SAEs on embeddings of over 420,000 scientific paper abstracts from computer science and astronomy, we show that the resulting sparse representations maintain semantic fidelity while offering interpretability. We analyse these learned features, exploring their behaviour across different model capacities and introducing a novel method for identifying ``feature families'' that represent related concepts at varying levels of abstraction. To demonstrate the practical utility of our approach, we show how these interpretable features can be used to precisely steer semantic search, allowing for fine-grained control over query semantics. This work bridges the gap between the semantic richness of dense embeddings and the interpretability of sparse representations. We open source our embeddings, trained sparse autoencoders, and interpreted features, as well as a web app for exploring them.
1FLAT: a Firmamento-based catalog of AGN in Fermi-LAT high Galactic latitude γ-ray sources
We present a systematic reassessment of 5,062 high-Galactic latitude gamma-ray sources from the Fermi-LAT 4FGL-DR4 catalog using Firmamento, a web-based platform for multi-frequency source discovery and analysis. Our goal is to provide an independent evaluation of LAT gamma-ray source associations through alternative spectral and spatial methods that combine recent and legacy survey data, supplemented by human supervision of spectral energy distributions (SEDs), source morphology, flux variability, and template-based comparisons. Firmamento confirms the 4FGL-DR4 and 4LAC-DR3 counterparts or unassociated sources in 4,493 cases (88.8%), demonstrating the robustness of both approaches. Beyond this general agreement, we identify 421 new blazar counterparts among previously unassociated sources, thereby reducing the fraction of unidentified extragalactic Fermi-LAT sources from 25% to 17%. In addition, in 64 cases we find alternative blazar associations, while in 49 instances we do not confirm the 4FGL-DR4 association. For all confirmed blazar counterparts we provide homogeneous estimates of synchrotron peak frequency and peak flux using machine-learning and template-based methods; these agree with 4LAC-DR3 values in most cases, though significant discrepancies appear for a few dozen sources, often due to improved X-ray coverage. The primary outcome of this work is the 1st Firmamento LAT AGN table (1FLAT), made publicly available through the Firmamento platform (https://firmamento.nyuad.nyu.edu), where all related multi-wavelength data and images are available. The project involved extensive manual validation and benefited from the active participation of graduate and undergraduate students, highlighting the platform's value for both research and education.
VeriCoder: Enhancing LLM-Based RTL Code Generation through Functional Correctness Validation
Recent advances in Large Language Models (LLMs) have sparked growing interest in applying them to Electronic Design Automation (EDA) tasks, particularly Register Transfer Level (RTL) code generation. While several RTL datasets have been introduced, most focus on syntactic validity rather than functional validation with tests, leading to training examples that compile but may not implement the intended behavior. We present VERICODER, a model for RTL code generation fine-tuned on a dataset validated for functional correctness. This fine-tuning dataset is constructed using a novel methodology that combines unit test generation with feedback-directed refinement. Given a natural language specification and an initial RTL design, we prompt a teacher model (GPT-4o-mini) to generate unit tests and iteratively revise the RTL design based on its simulation results using the generated tests. If necessary, the teacher model also updates the tests to ensure they comply with the natural language specification. As a result of this process, every example in our dataset is functionally validated, consisting of a natural language description, an RTL implementation, and passing tests. Fine-tuned on this dataset of over 125,000 examples, VERICODER achieves state-of-the-art metrics in functional correctness on VerilogEval and RTLLM, with relative gains of up to 71.7% and 27.4% respectively. An ablation study further shows that models trained on our functionally validated dataset outperform those trained on functionally non-validated datasets, underscoring the importance of high-quality datasets in RTL code generation.
The emergence of the Star Formation Main Sequence with redshift unfolded by JWST
We investigate the correlation between stellar mass (M*) and star formation rate (SFR) across the stellar mass range log10(M*/Msun)~6-11. We consider almost 50,000 star-forming galaxies at z~3-7, leveraging data from COSMOS/SMUVS, JADES/GOODS-SOUTH, and MIDIS/XDF. This is the first study spanning such a wide stellar mass range without relying on gravitational lensing effects. We locate our galaxies on the SFR-M* plane to assess how the location of galaxies in the star-formation main sequence (MS) and starburst (SB) region evolves with stellar mass and redshift. We find that the two star-forming modes tend to converge at log10(M*/Msun) < 7, with all galaxies found in the SB mode. However, deeper observations will be instrumental for reaching lower SFRs and Msun to further validate this scenario. By dissecting our galaxy sample in stellar mass and redshift, we show that the emergence of the star-formation MS is stellar-mass dependent: while in galaxies with log10(M*/Msun) > 9 the MS is already well in place at z = 5-7, for galaxies with log10(M*/Msun)~7-8 it only becomes significant at z<4. Overall, our results are in line with previous findings that the SB mode dominates amongst low stellar-mass galaxies. The earlier emergence of the MS for massive galaxies is consistent with galaxy downsizing.
Gaia Data Release 3: Summary of the content and survey properties
We present the third data release of the European Space Agency's Gaia mission, GDR3. The GDR3 catalogue is the outcome of the processing of raw data collected with the Gaia instruments during the first 34 months of the mission by the Gaia Data Processing and Analysis Consortium. The GDR3 catalogue contains the same source list, celestial positions, proper motions, parallaxes, and broad band photometry in the G, G_{BP}, and G_{RP} pass-bands already present in the Early Third Data Release. GDR3 introduces an impressive wealth of new data products. More than 33 million objects in the ranges G_{rvs} < 14 and 3100 <T_{eff} <14500 , have new determinations of their mean radial velocities based on data collected by Gaia. We provide G_{rvs} magnitudes for most sources with radial velocities, and a line broadening parameter is listed for a subset of these. Mean Gaia spectra are made available to the community. The GDR3 catalogue includes about 1 million mean spectra from the radial velocity spectrometer, and about 220 million low-resolution blue and red prism photometer BPRP mean spectra. The results of the analysis of epoch photometry are provided for some 10 million sources across 24 variability types. GDR3 includes astrophysical parameters and source class probabilities for about 470 million and 1500 million sources, respectively, including stars, galaxies, and quasars. Orbital elements and trend parameters are provided for some 800,000 astrometric, spectroscopic and eclipsing binaries. More than 150,000 Solar System objects, including new discoveries, with preliminary orbital solutions and individual epoch observations are part of this release. Reflectance spectra derived from the epoch BPRP spectral data are published for about 60\,000 asteroids. Finally, an additional data set is provided, namely the Gaia Andromeda Photometric Survey (abridged)
WASP-180Ab: Doppler tomography of an hot Jupiter orbiting the primary star in a visual binary
We report the discovery and characterisation of WASP-180Ab, a hot Jupiter confirmed by the detection of its Doppler shadow and by measuring its mass using radial velocities. We find the 0.9 pm 0.1 M_{rm Jup}, 1.24 pm 0.04 R_{rm Jup} planet to be in a misaligned, retrograde orbit around an F7 star with T_{rm eff} = 6500K and a moderate rotation speed of vsini = 19.9 km s^{-1}. The host star is the primary of a V = 10.7 binary, where a secondary separated by 5'' (sim1200 AU) contributes sim30% of the light. WASP-180Ab therefore adds to a small sample of transiting hot Jupiters known in binary systems. A 4.6-day modulation seen in the WASP data is likely to be the rotational modulation of the companion star, WASP-180B.
Invited Article: miniTimeCube
We present the development of the miniTimeCube (mTC), a novel compact neutrino detector. The mTC is a multipurpose detector, aiming to detect not only neutrinos but also fast/thermal neutrons. Potential applications include the counterproliferation of nuclear materials and the investigation of antineutrino short-baseline effects. The mTC is a plastic 0.2% ^{10}B - doped scintillator (13 cm)^3 cube surrounded by 24 Micro-Channel Plate (MCP) photon detectors, each with an 8times8 anode totaling 1536 individual channels/pixels viewing the scintillator. It uses custom-made electronics modules which mount on top of the MCPs, making our detector compact and able to both distinguish different types of events and reject noise in real time. The detector is currently deployed and being tested at the National Institute of Standards and Technology (NIST) Center for Neutron Research (NCNR) nuclear reactor (20 MW_th) in Gaithersburg, MD. A shield for further tests is being constructed, and calibration and upgrades are ongoing. The mTC's improved spatiotemporal resolution will allow for determination of incident particle directions beyond previous capabilities.
Neural network emulator to constrain the high-$z$ IGM thermal state from Lyman-$α$ forest flux auto-correlation function
We present a neural network emulator to constrain the thermal parameters of the intergalactic medium (IGM) at 5.4z6.0 using the Lyman-displaystylealpha (Lydisplaystylealpha) forest flux auto-correlation function. Our auto-differentiable JAX-based framework accelerates the surrogate model generation process using approximately 100 sparsely sampled Nyx hydrodynamical simulations with varying combinations of thermal parameters, i.e., the temperature at mean density T_{{0}}, the slope of the temperaturedisplaystyle-density relation displaystylegamma, and the mean transmission flux langle{F}{rangle}. We show that this emulator has a typical accuracy of 1.0% across the specified redshift range. Bayesian inference of the IGM thermal parameters, incorporating emulator uncertainty propagation, is further expedited using NumPyro Hamiltonian Monte Carlo. We compare both the inference results and computational cost of our framework with the traditional nearest-neighbor interpolation approach applied to the same set of mock Lyalpha flux. By examining the credibility contours of the marginalized posteriors for T_{{0}},gamma,and{langle}{F}{rangle} obtained using the emulator, the statistical reliability of measurements is established through inference on 100 realistic mock data sets of the auto-correlation function.
Mask-to-Height: A YOLOv11-Based Architecture for Joint Building Instance Segmentation and Height Classification from Satellite Imagery
Accurate building instance segmentation and height classification are critical for urban planning, 3D city modeling, and infrastructure monitoring. This paper presents a detailed analysis of YOLOv11, the recent advancement in the YOLO series of deep learning models, focusing on its application to joint building extraction and discrete height classification from satellite imagery. YOLOv11 builds on the strengths of earlier YOLO models by introducing a more efficient architecture that better combines features at different scales, improves object localization accuracy, and enhances performance in complex urban scenes. Using the DFC2023 Track 2 dataset -- which includes over 125,000 annotated buildings across 12 cities -- we evaluate YOLOv11's performance using metrics such as precision, recall, F1 score, and mean average precision (mAP). Our findings demonstrate that YOLOv11 achieves strong instance segmentation performance with 60.4\% mAP@50 and 38.3\% mAP@50--95 while maintaining robust classification accuracy across five predefined height tiers. The model excels in handling occlusions, complex building shapes, and class imbalance, particularly for rare high-rise structures. Comparative analysis confirms that YOLOv11 outperforms earlier multitask frameworks in both detection accuracy and inference speed, making it well-suited for real-time, large-scale urban mapping. This research highlights YOLOv11's potential to advance semantic urban reconstruction through streamlined categorical height modeling, offering actionable insights for future developments in remote sensing and geospatial intelligence.
A search for periodic activity in multi-peaked long gamma-ray bursts
A sizeable fraction of gamma-ray burst (GRB) light curves (LCs) features a sequence of peaks, which holds information on the unknown way energy is dissipated into gamma-rays over time. Traditional searches for periodic signals in GRB LCs turned out to be inconclusive, partly because they are challenging as a consequence of the short-lived, coloured-noise, and non-stationary nature of the LCs themselves. Yet, recent claims have revived the issue. We searched for periodic components in GRB LCs through a new approach to GRBs, that avoids most of the issues faced by traditional techniques. We identified peaks through a well tested algorithm and selected GRBs with at least 10 peaks out of 5 GRB catalogues (Swift/BAT, CGRO/BATSE, Fermi/GBM, Insight-HXMT, BeppoSAX/GRBM). Each GRB was simply treated as a discrete point process, whose realisation coincides with the sequence of peak times. We searched for possible periodic recurrences based on the multinomial distribution, after accounting for the clustering of peaks due to the non-stationarity of the GRB signals. The best candidate has a p-value of 3e-4 that there is no periodic recurrence. However, accounting for the multiple trials of 555 searched GRBs, its statistical significance is demoted to 17%. The overall distribution of the p-values obtained for all GRBs is compatible with a uniform distribution in [0,1]. We found no robust evidence for multi-peaked GRBs with periodic recurrences. We can exclude that a sizeable fraction (>~ 0.75) of peaks of each GRB with at least 10 peaks are periodic. While our result does not necessarily clash with claimed periodicities based on Fourier techniques, it constrains the putative recurrent behaviour, which would not manifest itself through the sequence of peaks, but, evidently, in a more elusive way.
BRIDGES: Bridging Graph Modality and Large Language Models within EDA Tasks
While many EDA tasks already involve graph-based data, existing LLMs in EDA primarily either represent graphs as sequential text, or simply ignore graph-structured data that might be beneficial like dataflow graphs of RTL code. Recent studies have found that LLM performance suffers when graphs are represented as sequential text, and using additional graph information significantly boosts performance. To address these challenges, we introduce BRIDGES, a framework designed to incorporate graph modality into LLMs for EDA tasks. BRIDGES integrates an automated data generation workflow, a solution that combines graph modality with LLM, and a comprehensive evaluation suite. First, we establish an LLM-driven workflow to generate RTL and netlist-level data, converting them into dataflow and netlist graphs with function descriptions. This workflow yields a large-scale dataset comprising over 500,000 graph instances and more than 1.5 billion tokens. Second, we propose a lightweight cross-modal projector that encodes graph representations into text-compatible prompts, enabling LLMs to effectively utilize graph data without architectural modifications. Experimental results demonstrate 2x to 10x improvements across multiple tasks compared to text-only baselines, including accuracy in design retrieval, type prediction and perplexity in function description, with negligible computational overhead (<1% model weights increase and <30% additional runtime overhead). Even without additional LLM finetuning, our results outperform text-only by a large margin. We plan to release BRIDGES, including the dataset, models, and training flow.
Euclid Quick Data Release (Q1): First visual morphology catalogue
We present a detailed visual morphology catalogue for Euclid's Quick Release 1 (Q1). Our catalogue includes galaxy features such as bars, spiral arms, and ongoing mergers, for the 378000 bright (IE < 20.5) or extended (area geq 700,pixels) galaxies in Q1. The catalogue was created by finetuning the Zoobot galaxy foundation models on annotations from an intensive one month campaign by Galaxy Zoo volunteers. Our measurements are fully automated and hence fully scaleable. This catalogue is the first 0.4% of the approximately 100 million galaxies where Euclid will ultimately resolve detailed morphology.
Precision measurement of the last bound states in H$_2$ and determination of the H + H scattering length
The binding energies of the five bound rotational levels J=0-4 in the highest vibrational level v=14 in the X^1Sigma_g^+ ground electronic state of H_2 were measured in a three-step ultraviolet-laser experiment. Two-photon UV-photolysis of H_2S produced population in these high-lying bound states, that were subsequently interrogated at high precision via Doppler-free spectroscopy of the F^1Sigma_g^+ - X^1Sigma_g^+ system. A third UV-laser was used for detection through auto-ionizing resonances. The experimentally determined binding energies were found to be in excellent agreement with calculations based on non-adiabatic perturbation theory, also including relativistic and quantum electrodynamical contributions. The s-wave scattering length of the H + H system is derived from the binding energy of the last bound J=0 level via a direct semi-empirical approach, yielding a value of a_s = 0.2724(5) a_0, in good agreement with a result from a previously followed theoretical approach. The subtle effect of the malpha^4 relativity contribution to a_s was found to be significant. In a similar manner a value for the p-wave scattering volume is determined via the J=1 binding energy yielding a_p = -134.0000(6) a_0^3. The binding energy of the last bound state in H_2, the (v=14, J=4) level, is determined at 0.023(4) cm^{-1}, in good agreement with calculation. The effect of the hyperfine substructure caused by the two hydrogen atoms at large internuclear separation, giving rise to three distinct dissociation limits, is discussed.
The JWST EXCELS survey: direct estimates of C, N, and O abundances in two relatively metal-rich galaxies at $\mathbf{z\simeq5}$
We present a spectroscopic analysis of two star-forming galaxies at z~5 observed with JWST/NIRSpec as part of the Early eXtragalactic Continuum and Emission Line Science (EXCELS) survey. The detection of the C III]lambdalambda1906,09, [O II]lambdalambda3726,29, [O III]lambdalambda4363,5007, and [N II]lambda6584 nebular emission lines enables investigation of the C/O, N/O, and C/N abundance ratios using the temperature-sensitive method. The two galaxies have stellar masses of log(M_{star}/M_{odot} ) = 8.13pm0.09 and log(M_{star}/M_{odot} )=8.52pm0.13 and corresponding metallicities of Z~0.2Z_{odot} and Z~0.3Z_{odot}. These metallicities are somewhat higher than is typical for other z>5 galaxies with similar stellar mass and are in fact comparable to high-redshift analogue galaxies at z~0. Both galaxies display evidence for N/O enhancement with respect to the z~0 sample, with log(N/O)=-1.07pm0.17 and log(N/O)=-0.86pm0.15 respectively. In contrast, we find low C abundances, with log(C/O)=-0.82pm0.22 and log(C/O)=-1.02pm0.22, consistent with the predicted yields of core-collapse supernovae. Following the trend observed in other high-redshift sources, we find that the C/N ratios are lower at fixed O/H compared to the majority of local galaxies. In contrast to the top-heavy IMF invoked in some studies to explain low C/N ratios in metal-poor galaxies, we find, via comparison to chemical evolution models, that a standard or bottom-heavy IMF better explains the observed abundance ratios in more enriched systems due to an increase in N-enrichment from intermediate mass (4-7M_{odot}) stars. Our results demonstrate that robust measurements of CNO abundances with JWST can reveal unique enrichment pathways in galaxies as a function of both metallicity and redshift.
BitMoD: Bit-serial Mixture-of-Datatype LLM Acceleration
Large language models (LLMs) have demonstrated remarkable performance across various machine learning tasks. Yet the substantial memory footprint of LLMs significantly hinders their deployment. In this paper, we improve the accessibility of LLMs through BitMoD, an algorithm-hardware co-design solution that enables efficient LLM acceleration at low weight precision. On the algorithm side, BitMoD introduces fine-grained data type adaptation that uses a different numerical data type to quantize a group of (e.g., 128) weights. Through the careful design of these new data types, BitMoD is able to quantize LLM weights to very low precision (e.g., 4 bits and 3 bits) while maintaining high accuracy. On the hardware side, BitMoD employs a bit-serial processing element to easily support multiple numerical precisions and data types; our hardware design includes two key innovations: First, it employs a unified representation to process different weight data types, thus reducing the hardware cost. Second, it adopts a bit-serial dequantization unit to rescale the per-group partial sum with minimal hardware overhead. Our evaluation on six representative LLMs demonstrates that BitMoD significantly outperforms state-of-the-art LLM quantization and acceleration methods. For discriminative tasks, BitMoD can quantize LLM weights to 4-bit with <!0.5% accuracy loss on average. For generative tasks, BitMoD is able to quantize LLM weights to 3-bit while achieving better perplexity than prior LLM quantization scheme. Combining the superior model performance with an efficient accelerator design, BitMoD achieves an average of 1.69times and 1.48times speedups compared to prior LLM accelerators ANT and OliVe, respectively.
MedImageInsight: An Open-Source Embedding Model for General Domain Medical Imaging
In this work, we present MedImageInsight, an open-source medical imaging embedding model. MedImageInsight is trained on medical images with associated text and labels across a diverse collection of domains, including X-Ray, CT, MRI, dermoscopy, OCT, fundus photography, ultrasound, histopathology, and mammography. Rigorous evaluations demonstrate MedImageInsight's ability to achieve state-of-the-art (SOTA) or human expert level performance across classification, image-image search, and fine-tuning tasks. Specifically, on public datasets, MedImageInsight achieves SOTA in CT 3D medical image retrieval, as well as SOTA in disease classification and search for chest X-ray, dermatology, and OCT imaging. Furthermore, MedImageInsight achieves human expert performance in bone age estimation (on both public and partner data), as well as AUC above 0.9 in most other domains. When paired with a text decoder, MedImageInsight achieves near SOTA level single image report findings generation with less than 10\% the parameters of other models. Compared to fine-tuning GPT-4o with only MIMIC-CXR data for the same task, MedImageInsight outperforms in clinical metrics, but underperforms on lexical metrics where GPT-4o sets a new SOTA. Importantly for regulatory purposes, MedImageInsight can generate ROC curves, adjust sensitivity and specificity based on clinical need, and provide evidence-based decision support through image-image search (which can also enable retrieval augmented generation). In an independent clinical evaluation of image-image search in chest X-ray, MedImageInsight outperformed every other publicly available foundation model evaluated by large margins (over 6 points AUC), and significantly outperformed other models in terms of AI fairness (across age and gender). We hope releasing MedImageInsight will help enhance collective progress in medical imaging AI research and development.
Probabilistic 3D Multi-Object Cooperative Tracking for Autonomous Driving via Differentiable Multi-Sensor Kalman Filter
Current state-of-the-art autonomous driving vehicles mainly rely on each individual sensor system to perform perception tasks. Such a framework's reliability could be limited by occlusion or sensor failure. To address this issue, more recent research proposes using vehicle-to-vehicle (V2V) communication to share perception information with others. However, most relevant works focus only on cooperative detection and leave cooperative tracking an underexplored research field. A few recent datasets, such as V2V4Real, provide 3D multi-object cooperative tracking benchmarks. However, their proposed methods mainly use cooperative detection results as input to a standard single-sensor Kalman Filter-based tracking algorithm. In their approach, the measurement uncertainty of different sensors from different connected autonomous vehicles (CAVs) may not be properly estimated to utilize the theoretical optimality property of Kalman Filter-based tracking algorithms. In this paper, we propose a novel 3D multi-object cooperative tracking algorithm for autonomous driving via a differentiable multi-sensor Kalman Filter. Our algorithm learns to estimate measurement uncertainty for each detection that can better utilize the theoretical property of Kalman Filter-based tracking methods. The experiment results show that our algorithm improves the tracking accuracy by 17% with only 0.037x communication costs compared with the state-of-the-art method in V2V4Real. Our code and videos are available at https://github.com/eddyhkchiu/DMSTrack/ and https://eddyhkchiu.github.io/dmstrack.github.io/ .
The GRACE project: Hard X-ray giant radio galaxies and their duty cycle
The advent of new generation radio telescopes is opening new possibilities on the classification and study of extragalactic high-energy sources, specially the underrepresented ones like radio galaxies. Among these, Giant Radio Galaxies (GRG, larger than 0.7 Mpc) are among the most extreme manifestations of the accretion/ejection processes on supermassive black holes. Our recent studies have shown that GRG can be up to four times more abundant in hard X-ray selected (i.e. from INTEGRAL/IBIS and Swift/BAT at >20 keV) samples and, most interestingly, the majority of them present signs of restarted radio activity. This makes them the ideal test-bed to study the so far unknown duty cycle of jets in active galactic nuclei. Open questions in the field include: How and when jets are restarted? How jets evolve and what's their dynamic? What is the jet's duty cycle and what triggers them? Our group has recently collected a wealth of radio data on these high-energy selected GRGs, allowing us to study their jet formation and evolution from the pc to kpc scales, across different activity epochs. In particular, thanks to our EVN large programme, we were able to probe the new radio phase in the core of these giants. Furthermore, we are devoting an effort to the exploitation of new radio surveys data for the discovery of new classes of counterparts of Fermi/LAT catalogues. In particular, we are unveiling the hidden population of radio galaxies associated with gamma-ray sources.
A region-wide, multi-year set of crop field boundary labels for Africa
African agriculture is undergoing rapid transformation. Annual maps of crop fields are key to understanding the nature of this transformation, but such maps are currently lacking and must be developed using advanced machine learning models trained on high resolution remote sensing imagery. To enable the development of such models, we delineated field boundaries in 33,746 Planet images captured between 2017 and 2023 across the continent using a custom labeling platform with built-in procedures for assessing and mitigating label error. We collected 42,403 labels, including 7,204 labels arising from tasks dedicated to assessing label quality (Class 1 labels), 32,167 from sites mapped once by a single labeller (Class 2) and 3,032 labels from sites where 3 or more labellers were tasked to map the same location (Class 4). Class 1 labels were used to calculate labeller-specific quality scores, while Class 1 and 4 sites mapped by at least 3 labellers were used to further evaluate label uncertainty using a Bayesian risk metric. Quality metrics showed that label quality was moderately high (0.75) for measures of total field extent, but low regarding the number of individual fields delineated (0.33), and the position of field edges (0.05). These values are expected when delineating small-scale fields in 3-5 m resolution imagery, which can be too coarse to reliably distinguish smaller fields, particularly in dense croplands, and therefore requires substantial labeller judgement. Nevertheless, previous work shows that such labels can train effective field mapping models. Furthermore, this large, probabilistic sample on its own provides valuable insight into regional agricultural characteristics, highlighting variations in the median field size and density. The imagery and vectorized labels along with quality information is available for download from two public repositories.
Self-Supervised Pre-Training with Joint-Embedding Predictive Architecture Boosts ECG Classification Performance
Accurate diagnosis of heart arrhythmias requires the interpretation of electrocardiograms (ECG), which capture the electrical activity of the heart. Automating this process through machine learning is challenging due to the need for large annotated datasets, which are difficult and costly to collect. To address this issue, transfer learning is often employed, where models are pre-trained on large datasets and fine-tuned for specific ECG classification tasks with limited labeled data. Self-supervised learning has become a widely adopted pre-training method, enabling models to learn meaningful representations from unlabeled datasets. In this work, we explore the joint-embedding predictive architecture (JEPA) for self-supervised learning from ECG data. Unlike invariance-based methods, JEPA does not rely on hand-crafted data augmentations, and unlike generative methods, it predicts latent features rather than reconstructing input data. We create a large unsupervised pre-training dataset by combining ten public ECG databases, amounting to over one million records. We pre-train Vision Transformers using JEPA on this dataset and fine-tune them on various PTB-XL benchmarks. Our results show that JEPA outperforms existing invariance-based and generative approaches, achieving an AUC of 0.945 on the PTB-XL all statements task. JEPA consistently learns the highest quality representations, as demonstrated in linear evaluations, and proves advantageous for pre-training even in the absence of additional data.
Aircrew rostering workload patterns and associated fatigue and sleepiness scores in short/medium haul flights under RBAC 117 rules in Brazil
The relationships between workload and fatigue or sleepiness are investigated through the analysis of rosters and responses to questionnaires from Brazilian aircrews, taken from Fadig\^ometro database. The approach includes temporal markers - coinciding with Samn-Perelli (SP) and Karolinska Sleepiness Scale (KSS) responses - where SAFTE-FAST model outcomes are calculated. The model results follow the increase of fatigue and sleepiness perceptions during the dawn (0h00 to 05h59), but underestimate the self-rated scores during the evening (18h00 to 23h59). On the other hand, the KSS scores fit the relative risk of pilot errors, representing a reasonable proxy for risk assessment. Linear relationships obtained between workload metrics, computed within 168-hours prior to the responses, and self-rated SP and KSS scores provide a consistent method to estimate accumulated fatigue and sleepiness. Considering 7149 rosters of 2023, the duty time (DT), the number of flight sectors (N_{CREW}) and the sum of flight sectors with sit periods longer than one hour (N_{CREW}+N_{SIT}) are associated with 70.1%/60.6% of the highest predicted scores of SP/KSS. Applying the mitigations DTleq44h, N_{CREW}leq15 and N_{CREW}+N_{SIT}leq19 for every 168-hour interval yields a significant decrease in the higher values of SP/KSS with minimal impact on aircrew productivity.
BaitBuster-Bangla: A Comprehensive Dataset for Clickbait Detection in Bangla with Multi-Feature and Multi-Modal Analysis
This study presents a large multi-modal Bangla YouTube clickbait dataset consisting of 253,070 data points collected through an automated process using the YouTube API and Python web automation frameworks. The dataset contains 18 diverse features categorized into metadata, primary content, engagement statistics, and labels for individual videos from 58 Bangla YouTube channels. A rigorous preprocessing step has been applied to denoise, deduplicate, and remove bias from the features, ensuring unbiased and reliable analysis. As the largest and most robust clickbait corpus in Bangla to date, this dataset provides significant value for natural language processing and data science researchers seeking to advance modeling of clickbait phenomena in low-resource languages. Its multi-modal nature allows for comprehensive analyses of clickbait across content, user interactions, and linguistic dimensions to develop more sophisticated detection methods with cross-linguistic applications.
SEACrowd: A Multilingual Multimodal Data Hub and Benchmark Suite for Southeast Asian Languages
Southeast Asia (SEA) is a region rich in linguistic diversity and cultural variety, with over 1,300 indigenous languages and a population of 671 million people. However, prevailing AI models suffer from a significant lack of representation of texts, images, and audio datasets from SEA, compromising the quality of AI models for SEA languages. Evaluating models for SEA languages is challenging due to the scarcity of high-quality datasets, compounded by the dominance of English training data, raising concerns about potential cultural misrepresentation. To address these challenges, we introduce SEACrowd, a collaborative initiative that consolidates a comprehensive resource hub that fills the resource gap by providing standardized corpora in nearly 1,000 SEA languages across three modalities. Through our SEACrowd benchmarks, we assess the quality of AI models on 36 indigenous languages across 13 tasks, offering valuable insights into the current AI landscape in SEA. Furthermore, we propose strategies to facilitate greater AI advancements, maximizing potential utility and resource equity for the future of AI in SEA.
pathfinder: A Semantic Framework for Literature Review and Knowledge Discovery in Astronomy
The exponential growth of astronomical literature poses significant challenges for researchers navigating and synthesizing general insights or even domain-specific knowledge. We present Pathfinder, a machine learning framework designed to enable literature review and knowledge discovery in astronomy, focusing on semantic searching with natural language instead of syntactic searches with keywords. Utilizing state-of-the-art large language models (LLMs) and a corpus of 350,000 peer-reviewed papers from the Astrophysics Data System (ADS), Pathfinder offers an innovative approach to scientific inquiry and literature exploration. Our framework couples advanced retrieval techniques with LLM-based synthesis to search astronomical literature by semantic context as a complement to currently existing methods that use keywords or citation graphs. It addresses complexities of jargon, named entities, and temporal aspects through time-based and citation-based weighting schemes. We demonstrate the tool's versatility through case studies, showcasing its application in various research scenarios. The system's performance is evaluated using custom benchmarks, including single-paper and multi-paper tasks. Beyond literature review, Pathfinder offers unique capabilities for reformatting answers in ways that are accessible to various audiences (e.g. in a different language or as simplified text), visualizing research landscapes, and tracking the impact of observatories and methodologies. This tool represents a significant advancement in applying AI to astronomical research, aiding researchers at all career stages in navigating modern astronomy literature.
Brain Imaging Generation with Latent Diffusion Models
Deep neural networks have brought remarkable breakthroughs in medical image analysis. However, due to their data-hungry nature, the modest dataset sizes in medical imaging projects might be hindering their full potential. Generating synthetic data provides a promising alternative, allowing to complement training datasets and conducting medical image research at a larger scale. Diffusion models recently have caught the attention of the computer vision community by producing photorealistic synthetic images. In this study, we explore using Latent Diffusion Models to generate synthetic images from high-resolution 3D brain images. We used T1w MRI images from the UK Biobank dataset (N=31,740) to train our models to learn about the probabilistic distribution of brain images, conditioned on covariables, such as age, sex, and brain structure volumes. We found that our models created realistic data, and we could use the conditioning variables to control the data generation effectively. Besides that, we created a synthetic dataset with 100,000 brain images and made it openly available to the scientific community.
The Carnegie Supernova Project I: Third Photometry Data Release of Low-Redshift Type Ia Supernovae and Other White Dwarf Explosions
We present final natural system optical (ugriBV) and near-infrared (YJH) photometry of 134 supernovae (SNe) with probable white dwarf progenitors that were observed in 2004-2009 as part of the first stage of the Carnegie Supernova Project (CSP-I). The sample consists of 123 Type Ia SNe, 5 Type Iax SNe, 2 super-Chandrasekhar SN candidates, 2 Type Ia SNe interacting with circumstellar matter, and 2 SN 2006bt-like events. The redshifts of the objects range from z = 0.0037 to 0.0835; the median redshift is 0.0241. For 120 (90%) of these SNe, near-infrared photometry was obtained. Average optical extinction coefficients and color terms are derived and demonstrated to be stable during the five CSP-I observing campaigns. Measurements of the CSP-I near-infrared bandpasses are also described, and near-infrared color terms are estimated through synthetic photometry of stellar atmosphere models. Optical and near-infrared magnitudes of local sequences of tertiary standard stars for each supernova are given, and a new calibration of Y-band magnitudes of the Persson et al. (1998) standards in the CSP-I natural system is presented.
A Foundation Chemical Language Model for Comprehensive Fragment-Based Drug Discovery
We introduce FragAtlas-62M, a specialized foundation model trained on the largest fragment dataset to date. Built on the complete ZINC-22 fragment subset comprising over 62 million molecules, it achieves unprecedented coverage of fragment chemical space. Our GPT-2 based model (42.7M parameters) generates 99.90% chemically valid fragments. Validation across 12 descriptors and three fingerprint methods shows generated fragments closely match the training distribution (all effect sizes < 0.4). The model retains 53.6% of known ZINC fragments while producing 22% novel structures with practical relevance. We release FragAtlas-62M with training code, preprocessed data, documentation, and model weights to accelerate adoption.
ImmunoDiff: A Diffusion Model for Immunotherapy Response Prediction in Lung Cancer
Accurately predicting immunotherapy response in Non-Small Cell Lung Cancer (NSCLC) remains a critical unmet need. Existing radiomics and deep learning-based predictive models rely primarily on pre-treatment imaging to predict categorical response outcomes, limiting their ability to capture the complex morphological and textural transformations induced by immunotherapy. This study introduces ImmunoDiff, an anatomy-aware diffusion model designed to synthesize post-treatment CT scans from baseline imaging while incorporating clinically relevant constraints. The proposed framework integrates anatomical priors, specifically lobar and vascular structures, to enhance fidelity in CT synthesis. Additionally, we introduce a novel cbi-Adapter, a conditioning module that ensures pairwise-consistent multimodal integration of imaging and clinical data embeddings, to refine the generative process. Additionally, a clinical variable conditioning mechanism is introduced, leveraging demographic data, blood-based biomarkers, and PD-L1 expression to refine the generative process. Evaluations on an in-house NSCLC cohort treated with immune checkpoint inhibitors demonstrate a 21.24% improvement in balanced accuracy for response prediction and a 0.03 increase in c-index for survival prediction. Code will be released soon.
Radii, masses, and transit-timing variations of the three-planet system orbiting the naked-eye star TOI-396
TOI-396 is an F6V star (Vapprox6.4) orbited by three transiting planets. The orbital periods of the two innermost planets are close to the 5:3 commensurability (P_b sim3.6 d and P_c sim6.0 d). To measure the masses of the three planets, refine their radii, and investigate whether planets b and c are in MMR, we carried out HARPS RV observations and retrieved photometric data from TESS. We extracted the RVs via a skew-normal fit onto the HARPS CCFs and performed an MCMC joint analysis of the Doppler measurements and transit photometry, while employing the breakpoint method to remove stellar activity from the RV time series. We also performed a thorough TTV dynamical analysis of the system. Our analysis confirms that the three planets have similar sizes: R_b=2.004_{-0.047}^{+0.045}R_{oplus}; R_c=1.979_{-0.051}^{+0.054}R_{oplus}; R_d=2.001_{-0.064}^{+0.063}R_{oplus}. For the first time, we have determined the RV masses for TOI-396b and d: M_b=3.55_{-0.96}^{+0.94}M_{oplus} (rho_b=2.44_{-0.68}^{+0.69} g cm^{-3}) and M_d=7.1pm1.6M_{oplus} (rho_d=4.9_{-1.1}^{+1.2} g cm^{-3}). Our results suggest a quite unusual system architecture, with the outermost planet being the densest. The Doppler reflex motion induced by TOI-396c remains undetected in our RV time series, likely due to the proximity of P_c to the star's rotation period (P_{rot}=6.7pm1.3 d). We also discovered that TOI-396b and c display significant TTVs. While the TTV dynamical analysis returns a formally precise mass for TOI-396c (M_{c,dyn}=2.24^{+0.13}_{-0.67}M_{oplus}), the result might not be accurate owing to the poor sampling of the TTV phase. We also conclude that TOI-396b and c are close to but out of the 5:3 MMR. Our numerical simulation suggests TTV semi-amplitudes of up to 5 hours over a temporal baseline of sim5.2 years.
ALMA Lensing Cluster Survey: Physical characterization of near-infrared-dark intrinsically faint ALMA sources at z=2-4
We present results from Atacama Large Millimeter/submillimeter Array (ALMA) spectral line-scan observations at 3-mm and 2-mm bands of three near-infrared-dark (NIR-dark) galaxies behind two massive lensing clusters MACS J0417.5-1154 and RXC J0032.1+1808. Each of these three sources is a faint (de-lensed S_{1.2 mm} < 1 mJy) triply lensed system originally discovered in the ALMA Lensing Cluster Survey. We have successfully detected CO and [C I] emission lines and confirmed that their spectroscopic redshifts are z=3.652, 2.391, and 2.985. By utilizing a rich multi-wavelength data set, we find that the NIR-dark galaxies are located on the star formation main sequence in the intrinsic stellar mass range of log (M_*/M_odot) = 9.8 - 10.4, which is about one order of magnitude lower than that of typical submillimeter galaxies (SMGs). These NIR-dark galaxies show a variety in gas depletion times and spatial extent of dust emission. One of the three is a normal star-forming galaxy with gas depletion time consistent with a scaling relation, and its infrared surface brightness is an order of magnitude smaller than that of typical SMGs. Since this galaxy has an elongated axis ratio of sim 0.17, we argue that normal star-forming galaxies in an edge-on configuration can be heavily dust-obscured. This implies that existing deep WFC3/F160W surveys may miss a fraction of typical star-forming main-sequence galaxies due to their edge-on orientation.
Euclid. II. The VIS Instrument
This paper presents the specification, design, and development of the Visible Camera (VIS) on the ESA Euclid mission. VIS is a large optical-band imager with a field of view of 0.54 deg^2 sampled at 0.1" with an array of 609 Megapixels and spatial resolution of 0.18". It will be used to survey approximately 14,000 deg^2 of extragalactic sky to measure the distortion of galaxies in the redshift range z=0.1-1.5 resulting from weak gravitational lensing, one of the two principal cosmology probes of Euclid. With photometric redshifts, the distribution of dark matter can be mapped in three dimensions, and, from how this has changed with look-back time, the nature of dark energy and theories of gravity can be constrained. The entire VIS focal plane will be transmitted to provide the largest images of the Universe from space to date, reaching m_AB>24.5 with S/N >10 in a single broad I_E~(r+i+z) band over a six year survey. The particularly challenging aspects of the instrument are the control and calibration of observational biases, which lead to stringent performance requirements and calibration regimes. With its combination of spatial resolution, calibration knowledge, depth, and area covering most of the extra-Galactic sky, VIS will also provide a legacy data set for many other fields. This paper discusses the rationale behind the VIS concept and describes the instrument design and development before reporting the pre-launch performance derived from ground calibrations and brief results from the in-orbit commissioning. VIS should reach fainter than m_AB=25 with S/N>10 for galaxies of full-width half-maximum of 0.3" in a 1.3" diameter aperture over the Wide Survey, and m_AB>26.4 for a Deep Survey that will cover more than 50 deg^2. The paper also describes how VIS works with the other Euclid components of survey, telescope, and science data processing to extract the cosmological information.
A 23 MW data centre is all you need
The field of machine learning has achieved striking progress in recent years, witnessing breakthrough results on language modelling, protein folding and nitpickingly fine-grained dog breed classification. Some even succeeded at playing computer games and board games, a feat both of engineering and of setting their employers' expectations. The central contribution of this work is to carefully examine whether this progress, and technology more broadly, can be expected to continue indefinitely. Through a rigorous application of statistical theory and failure to extrapolate beyond the training data, we answer firmly in the negative and provide details: technology will peak at 3:07 am (BST) on 20th July, 2032. We then explore the implications of this finding, discovering that individuals awake at this ungodly hour with access to a sufficiently powerful computer possess an opportunity for myriad forms of long-term linguistic 'lock in'. All we need is a large (>> 1W) data centre to seize this pivotal moment. By setting our analogue alarm clocks, we propose a tractable algorithm to ensure that, for the future of humanity, the British spelling of colour becomes the default spelling across more than 80% of the global word processing software market.
Planck 2018 results. VI. Cosmological parameters
We present cosmological parameter results from the final full-mission Planck measurements of the CMB anisotropies. We find good consistency with the standard spatially-flat 6-parameter LambdaCDM cosmology having a power-law spectrum of adiabatic scalar perturbations (denoted "base LambdaCDM" in this paper), from polarization, temperature, and lensing, separately and in combination. A combined analysis gives dark matter density Omega_c h^2 = 0.120pm 0.001, baryon density Omega_b h^2 = 0.0224pm 0.0001, scalar spectral index n_s = 0.965pm 0.004, and optical depth tau = 0.054pm 0.007 (in this abstract we quote 68,% confidence regions on measured parameters and 95,% on upper limits). The angular acoustic scale is measured to 0.03,% precision, with 100theta_*=1.0411pm 0.0003. These results are only weakly dependent on the cosmological model and remain stable, with somewhat increased errors, in many commonly considered extensions. Assuming the base-LambdaCDM cosmology, the inferred late-Universe parameters are: Hubble constant H_0 = (67.4pm 0.5)km/s/Mpc; matter density parameter Omega_m = 0.315pm 0.007; and matter fluctuation amplitude sigma_8 = 0.811pm 0.006. We find no compelling evidence for extensions to the base-LambdaCDM model. Combining with BAO we constrain the effective extra relativistic degrees of freedom to be N_{rm eff} = 2.99pm 0.17, and the neutrino mass is tightly constrained to sum m_nu< 0.12eV. The CMB spectra continue to prefer higher lensing amplitudes than predicted in base -LambdaCDM at over 2,sigma, which pulls some parameters that affect the lensing amplitude away from the base-LambdaCDM model; however, this is not supported by the lensing reconstruction or (in models that also change the background geometry) BAO data. (Abridged)
AGM2015: Antineutrino Global Map 2015
Every second greater than 10^{25} antineutrinos radiate to space from Earth, shining like a faint antineutrino star. Underground antineutrino detectors have revealed the rapidly decaying fission products inside nuclear reactors, verified the long-lived radioactivity inside our planet, and informed sensitive experiments for probing fundamental physics. Mapping the anisotropic antineutrino flux and energy spectrum advance geoscience by defining the amount and distribution of radioactive power within Earth while critically evaluating competing compositional models of the planet. We present the Antineutrino Global Map 2015 (AGM2015), an experimentally informed model of Earth's surface antineutrino flux over the 0 to 11 MeV energy spectrum, along with an assessment of systematic errors. The open source AGM2015 provides fundamental predictions for experiments, assists in strategic detector placement to determine neutrino mass hierarchy, and aids in identifying undeclared nuclear reactors. We use cosmochemically and seismologically informed models of the radiogenic lithosphere/mantle combined with the estimated antineutrino flux, as measured by KamLAND and Borexino, to determine the Earth's total antineutrino luminosity at 3.4^{+2.3}_{-2.2} times 10^{25} nu_e. We find a dominant flux of geo-neutrinos, predict sub-equal crust and mantle contributions, with sim1% of the total flux from man-made nuclear reactors.
Should We Still Pretrain Encoders with Masked Language Modeling?
Learning high-quality text representations is fundamental to a wide range of NLP tasks. While encoder pretraining has traditionally relied on Masked Language Modeling (MLM), recent evidence suggests that decoder models pretrained with Causal Language Modeling (CLM) can be effectively repurposed as encoders, often surpassing traditional encoders on text representation benchmarks. However, it remains unclear whether these gains reflect an inherent advantage of the CLM objective or arise from confounding factors such as model and data scale. In this paper, we address this question through a series of large-scale, carefully controlled pretraining ablations, training a total of 30 models ranging from 210 million to 1 billion parameters, and conducting over 15,000 fine-tuning and evaluation runs. We find that while training with MLM generally yields better performance across text representation tasks, CLM-trained models are more data-efficient and demonstrate improved fine-tuning stability. Building on these findings, we experimentally show that a biphasic training strategy that sequentially applies CLM and then MLM, achieves optimal performance under a fixed computational training budget. Moreover, we demonstrate that this strategy becomes more appealing when initializing from readily available pretrained CLM models (from the existing LLM ecosystem), reducing the computational burden needed to train best-in-class encoder models. We release all project artifacts at https://hf.co/MLMvsCLM to foster further research.
3D-GRAND: A Million-Scale Dataset for 3D-LLMs with Better Grounding and Less Hallucination
The integration of language and 3D perception is crucial for developing embodied agents and robots that comprehend and interact with the physical world. While large language models (LLMs) have demonstrated impressive language understanding and generation capabilities, their adaptation to 3D environments (3D-LLMs) remains in its early stages. A primary challenge is the absence of large-scale datasets that provide dense grounding between language and 3D scenes. In this paper, we introduce 3D-GRAND, a pioneering large-scale dataset comprising 40,087 household scenes paired with 6.2 million densely-grounded scene-language instructions. Our results show that instruction tuning with 3D-GRAND significantly enhances grounding capabilities and reduces hallucinations in 3D-LLMs. As part of our contributions, we propose a comprehensive benchmark 3D-POPE to systematically evaluate hallucination in 3D-LLMs, enabling fair comparisons among future models. Our experiments highlight a scaling effect between dataset size and 3D-LLM performance, emphasizing the critical role of large-scale 3D-text datasets in advancing embodied AI research. Notably, our results demonstrate early signals for effective sim-to-real transfer, indicating that models trained on large synthetic data can perform well on real-world 3D scans. Through 3D-GRAND and 3D-POPE, we aim to equip the embodied AI community with essential resources and insights, setting the stage for more reliable and better-grounded 3D-LLMs. Project website: https://3d-grand.github.io
SMART: Shot-Aware Multimodal Video Moment Retrieval with Audio-Enhanced MLLM
Video Moment Retrieval is a task in video understanding that aims to localize a specific temporal segment in an untrimmed video based on a natural language query. Despite recent progress in moment retrieval from videos using both traditional techniques and Multimodal Large Language Models (MLLM), most existing methods still rely on coarse temporal understanding and a single visual modality, limiting performance on complex videos. To address this, we introduce Shot-aware Multimodal Audio-enhanced Retrieval of Temporal Segments (SMART), an MLLM-based framework that integrates audio cues and leverages shot-level temporal structure. SMART enriches multimodal representations by combining audio and visual features while applying Shot-aware Token Compression, which selectively retains high-information tokens within each shot to reduce redundancy and preserve fine-grained temporal details. We also refine prompt design to better utilize audio-visual cues. Evaluations on Charades-STA and QVHighlights show that SMART achieves significant improvements over state-of-the-art methods, including a 1.61\% increase in R1@0.5 and 2.59\% gain in R1@0.7 on Charades-STA.
ASTAR-NTU solution to AudioMOS Challenge 2025 Track1
Evaluation of text-to-music systems is constrained by the cost and availability of collecting experts for assessment. AudioMOS 2025 Challenge track 1 is created to automatically predict music impression (MI) as well as text alignment (TA) between the prompt and the generated musical piece. This paper reports our winning system, which uses a dual-branch architecture with pre-trained MuQ and RoBERTa models as audio and text encoders. A cross-attention mechanism fuses the audio and text representations. For training, we reframe the MI and TA prediction as a classification task. To incorporate the ordinal nature of MOS scores, one-hot labels are converted to a soft distribution using a Gaussian kernel. On the official test set, a single model trained with this method achieves a system-level Spearman's Rank Correlation Coefficient (SRCC) of 0.991 for MI and 0.952 for TA, corresponding to a relative improvement of 21.21\% in MI SRCC and 31.47\% in TA SRCC over the challenge baseline.
Euclid Quick Data Release (Q1): From images to multiwavelength catalogues: the Euclid MERge Processing Function
The Euclid satellite is an ESA mission that was launched in July 2023. \Euclid is working in its regular observing mode with the target of observing an area of 14,000~deg^2 with two instruments, the Visible Camera (VIS) and the Near IR Spectrometer and Photometer (NISP) down to I_{rm E} = 24.5~mag (10, sigma) in the Euclid Wide Survey. Ground-based imaging data in the ugriz bands complement the \Euclid data to enable photo-z determination and VIS PSF modeling for week lensing analysis. Euclid investigates the distance-redshift relation and the evolution of cosmic structures by measuring shapes and redshifts of galaxies and clusters of galaxies out to zsim 2. Generating the multi-wavelength catalogues from \Euclid and ground-based data is an essential part of the \Euclid data processing system. In the framework of the \Euclid Science Ground Segment (SGS), the aim of the MER Processing Function (PF) pipeline is to detect objects in the \Euclid imaging data, measure their properties, and MERge them into a single multi-wavelength catalogue. The MER PF pipeline performs source detection on both visible (VIS) and near-infrared (NIR) images and offers four different photometric measurements: Kron total flux, aperture photometry on PSF-matched images, template fitting photometry, and S\'ersic fitting photometry. Furthermore, the MER PF pipeline measures a set of ancillary quantities, spanning from morphology to quality flags, to better characterise all detected sources. In this paper, we show how the MER PF pipeline is designed, detailing its main steps, and we show that the pipeline products meet the tight requirements that Euclid aims to achieve on photometric accuracy. We also present the other measurements (e.g. morphology) that are included in the OU-MER output catalogues and we list all output products coming out of the MER PF pipeline.
The Atacama Cosmology Telescope: DR6 Constraints on Extended Cosmological Models
We use new cosmic microwave background (CMB) primary temperature and polarization anisotropy measurements from the Atacama Cosmology Telescope (ACT) Data Release 6 (DR6) to test foundational assumptions of the standard cosmological model and set constraints on extensions to it. We derive constraints from the ACT DR6 power spectra alone, as well as in combination with legacy data from Planck. To break geometric degeneracies, we include ACT and Planck CMB lensing data and baryon acoustic oscillation data from DESI Year-1, and further add supernovae measurements from Pantheon+ for models that affect the late-time expansion history. We verify the near-scale-invariance (running of the spectral index d n_s/dln k = 0.0062 pm 0.0052) and adiabaticity of the primordial perturbations. Neutrino properties are consistent with Standard Model predictions: we find no evidence for new light, relativistic species that are free-streaming (N_{rm eff} = 2.86 pm 0.13, which combined with external BBN data becomes N_{rm eff} = 2.89 pm 0.11), for non-zero neutrino masses (sum m_nu < 0.082 eV at 95% CL), or for neutrino self-interactions. We also find no evidence for self-interacting dark radiation (N_{rm idr} < 0.134), early-universe variation of fundamental constants, early dark energy, primordial magnetic fields, or modified recombination. Our data are consistent with standard BBN, the FIRAS-inferred CMB temperature, a dark matter component that is collisionless and with only a small fraction allowed as axion-like particles, a cosmological constant, and the late-time growth rate predicted by general relativity. We find no statistically significant preference for a departure from the baseline LambdaCDM model. In general, models introduced to increase the Hubble constant or to decrease the amplitude of density fluctuations inferred from the primary CMB are not favored by our data.
Orbits and Dynamical Masses for Six Binary Systems in the Hyades Cluster
We report long baseline interferometric observations with the CHARA Array that resolve six previously known double-lined spectroscopic binary systems in the Hyades cluster, with orbital periods ranging from 3 to 358 days: HD 27483, HD 283882, HD 26874, HD 27149, HD 30676, and HD 28545. We combine those observations with new and existing radial-velocity measurements, to infer the dynamical masses for the components as well as the orbital parallaxes. For most stars the masses are determined to better than 1%. Our work significantly increases the number of systems with mass determinations in the cluster. We find that while current models of stellar evolution for the age and metallicity of the Hyades are able to reproduce the overall shape of the empirical mass-luminosity relation, they overestimate the V-band fluxes by about 0.1 mag between 0.5 and 1.4 M_{odot}. The disagreement is smaller in H, and near zero in K, and depends somewhat on the model. We also make use of the TESS light curves to estimate rotation periods for our targets, and detect numerous flares in one of them (HD 283882), estimating an average flaring rate of 0.44 events per day.
A General-Purpose Self-Supervised Model for Computational Pathology
Tissue phenotyping is a fundamental computational pathology (CPath) task in learning objective characterizations of histopathologic biomarkers in anatomic pathology. However, whole-slide imaging (WSI) poses a complex computer vision problem in which the large-scale image resolutions of WSIs and the enormous diversity of morphological phenotypes preclude large-scale data annotation. Current efforts have proposed using pretrained image encoders with either transfer learning from natural image datasets or self-supervised pretraining on publicly-available histopathology datasets, but have not been extensively developed and evaluated across diverse tissue types at scale. We introduce UNI, a general-purpose self-supervised model for pathology, pretrained using over 100 million tissue patches from over 100,000 diagnostic haematoxylin and eosin-stained WSIs across 20 major tissue types, and evaluated on 33 representative CPath clinical tasks in CPath of varying diagnostic difficulties. In addition to outperforming previous state-of-the-art models, we demonstrate new modeling capabilities in CPath such as resolution-agnostic tissue classification, slide classification using few-shot class prototypes, and disease subtyping generalization in classifying up to 108 cancer types in the OncoTree code classification system. UNI advances unsupervised representation learning at scale in CPath in terms of both pretraining data and downstream evaluation, enabling data-efficient AI models that can generalize and transfer to a gamut of diagnostically-challenging tasks and clinical workflows in anatomic pathology.
Uncovering a Massive z~7.65 Galaxy Hosting a Heavily Obscured Radio-Loud QSO Candidate in COSMOS-Web
In this letter, we report the discovery of the highest redshift, heavily obscured, radio-loud QSO candidate selected using JWST NIRCam/MIRI, mid-IR, sub-mm, and radio imaging in the COSMOS-Web field. Using multi-frequency radio observations and mid-IR photometry, we identify a powerful, radio-loud (RL), growing supermassive black hole (SMBH) with significant spectral steepening of the radio SED (f_{1.32 GHz} sim 2 mJy, q_{24mu m} = -1.1, alpha_{1.32-3GHz}=-1.2, Delta alpha = -0.4). In conjunction with ALMA, deep ground-based observations, ancillary space-based data, and the unprecedented resolution and sensitivity of JWST, we find no evidence of QSO contribution to the UV/optical/NIR data and thus infer heavy amounts of obscuration (N_{H} > 10^{23} cm^{-2}). Using the wealth of deep UV to sub-mm photometric data, we report a singular solution photo-z of z_phot = 7.65^{+0.4}_{-0.3} and estimate an extremely massive host-galaxy (log M_{star} = 11.92 pm 0.06,M_{odot}). This source represents the furthest known obscured RL QSO candidate, and its level of obscuration aligns with the most representative but observationally scarce population of QSOs at these epochs.
Weak lensing in the blue: a counter-intuitive strategy for stratospheric observations
The statistical power of weak lensing measurements is principally driven by the number of high redshift galaxies whose shapes are resolved. Conventional wisdom and physical intuition suggest this is optimised by deep imaging at long (red or near IR) wavelengths, to avoid losing redshifted Balmer break and Lyman break galaxies. We use the synthetic Emission Line EL-COSMOS catalogue to simulate lensing observations using different filters, from various altitudes. Here were predict the number of exposures to achieve a target z > 0.3 source density, using off-the-shelf and custom filters. Ground-based observations are easily better at red wavelengths, as (more narrowly) are space-based observations. However, we find that SuperBIT, a diffraction-limited observatory operating in the stratosphere, should instead perform its lensing-quality observations at blue wavelengths.
Kosmos: An AI Scientist for Autonomous Discovery
Data-driven scientific discovery requires iterative cycles of literature search, hypothesis generation, and data analysis. Substantial progress has been made towards AI agents that can automate scientific research, but all such agents remain limited in the number of actions they can take before losing coherence, thus limiting the depth of their findings. Here we present Kosmos, an AI scientist that automates data-driven discovery. Given an open-ended objective and a dataset, Kosmos runs for up to 12 hours performing cycles of parallel data analysis, literature search, and hypothesis generation before synthesizing discoveries into scientific reports. Unlike prior systems, Kosmos uses a structured world model to share information between a data analysis agent and a literature search agent. The world model enables Kosmos to coherently pursue the specified objective over 200 agent rollouts, collectively executing an average of 42,000 lines of code and reading 1,500 papers per run. Kosmos cites all statements in its reports with code or primary literature, ensuring its reasoning is traceable. Independent scientists found 79.4% of statements in Kosmos reports to be accurate, and collaborators reported that a single 20-cycle Kosmos run performed the equivalent of 6 months of their own research time on average. Furthermore, collaborators reported that the number of valuable scientific findings generated scales linearly with Kosmos cycles (tested up to 20 cycles). We highlight seven discoveries made by Kosmos that span metabolomics, materials science, neuroscience, and statistical genetics. Three discoveries independently reproduce findings from preprinted or unpublished manuscripts that were not accessed by Kosmos at runtime, while four make novel contributions to the scientific literature.
AfriMed-QA: A Pan-African, Multi-Specialty, Medical Question-Answering Benchmark Dataset
Recent advancements in large language model(LLM) performance on medical multiple choice question (MCQ) benchmarks have stimulated interest from healthcare providers and patients globally. Particularly in low-and middle-income countries (LMICs) facing acute physician shortages and lack of specialists, LLMs offer a potentially scalable pathway to enhance healthcare access and reduce costs. However, their effectiveness in the Global South, especially across the African continent, remains to be established. In this work, we introduce AfriMed-QA, the first large scale Pan-African English multi-specialty medical Question-Answering (QA) dataset, 15,000 questions (open and closed-ended) sourced from over 60 medical schools across 16 countries, covering 32 medical specialties. We further evaluate 30 LLMs across multiple axes including correctness and demographic bias. Our findings show significant performance variation across specialties and geographies, MCQ performance clearly lags USMLE (MedQA). We find that biomedical LLMs underperform general models and smaller edge-friendly LLMs struggle to achieve a passing score. Interestingly, human evaluations show a consistent consumer preference for LLM answers and explanations when compared with clinician answers.
Euclid Quick Data Release (Q1) Exploring galaxy properties with a multi-modal foundation model
Modern astronomical surveys, such as the Euclid mission, produce high-dimensional, multi-modal data sets that include imaging and spectroscopic information for millions of galaxies. These data serve as an ideal benchmark for large, pre-trained multi-modal models, which can leverage vast amounts of unlabelled data. In this work, we present the first exploration of Euclid data with AstroPT, an autoregressive multi-modal foundation model trained on approximately 300 000 optical and infrared Euclid images and spectral energy distributions (SEDs) from the first Euclid Quick Data Release. We compare self-supervised pre-training with baseline fully supervised training across several tasks: galaxy morphology classification; redshift estimation; similarity searches; and outlier detection. Our results show that: (a) AstroPT embeddings are highly informative, correlating with morphology and effectively isolating outliers; (b) including infrared data helps to isolate stars, but degrades the identification of edge-on galaxies, which are better captured by optical images; (c) simple fine-tuning of these embeddings for photometric redshift and stellar mass estimation outperforms a fully supervised approach, even when using only 1% of the training labels; and (d) incorporating SED data into AstroPT via a straightforward multi-modal token-chaining method improves photo-z predictions, and allow us to identify potentially more interesting anomalies (such as ringed or interacting galaxies) compared to a model pre-trained solely on imaging data.
Extended Dark Energy analysis using DESI DR2 BAO measurements
We conduct an extended analysis of dark energy constraints, in support of the findings of the DESI DR2 cosmology key paper, including DESI data, Planck CMB observations, and three different supernova compilations. Using a broad range of parametric and non-parametric methods, we explore the dark energy phenomenology and find consistent trends across all approaches, in good agreement with the w_0w_aCDM key paper results. Even with the additional flexibility introduced by non-parametric approaches, such as binning and Gaussian Processes, we find that extending LambdaCDM to include a two-parameter w(z) is sufficient to capture the trends present in the data. Finally, we examine three dark energy classes with distinct dynamics, including quintessence scenarios satisfying w geq -1, to explore what underlying physics can explain such deviations. The current data indicate a clear preference for models that feature a phantom crossing; although alternatives lacking this feature are disfavored, they cannot yet be ruled out. Our analysis confirms that the evidence for dynamical dark energy, particularly at low redshift (z lesssim 0.3), is robust and stable under different modeling choices.
The $Hubble$ Missing Globular Cluster Survey. I. Survey overview and the first precise age estimate for ESO452-11 and 2MASS-GC01
We present the Hubble Missing Globular Cluster Survey (MGCS), a Hubble Space Telescope treasury programme dedicated to the observation of all the kinematically confirmed Milky Way globular clusters that missed previous Hubble imaging. After introducing the aims of the programme and describing its target clusters, we showcase the first results of the survey. These are related to two clusters, one located at the edge of the Milky Way Bulge and observed in optical bands, namely ESO452-11, and one located in the Galactic Disc observed in the near-IR, namely 2MASS-GC01. For both clusters, the deep colour-magnitude diagrams obtained from the MGCS observations reach several magnitudes below their main-sequence turn-off, and thus enable the first precise estimate of their age. By using the methods developed within the CARMA project, we find ESO452-11 to be an old, metal-intermediate globular cluster, with {rm [M/H]}simeq-0.80^{+0.08}_{-0.11} and an age of {rm t}=13.59^{+0.48}_{-0.69} Gyr. Its location on the age-metallicity relation makes it consistent with an in-situ origin, in agreement with its dynamical properties. On the other hand, the results for 2MASS-GC01 highlight it as a young, metal-intermediate cluster, with an age of {rm t}=7.22^{+0.93}_{-1.11} Gyr at {rm [M/H]}=-0.73^{+0.06}_{-0.06}. This is the first ever age estimate for this extremely extincted cluster, and indicates it either as the youngest globular known to date, or as a massive and compact open cluster, which is consistent with its almost circular, disc-like orbit.
DESI 2024 V: Full-Shape Galaxy Clustering from Galaxies and Quasars
We present the measurements and cosmological implications of the galaxy two-point clustering using over 4.7 million unique galaxy and quasar redshifts in the range 0.1<z<2.1 divided into six redshift bins over a sim 7,500 square degree footprint, from the first year of observations with the Dark Energy Spectroscopic Instrument (DESI Data Release 1). By fitting the full power spectrum, we extend previous DESI DR1 baryon acoustic oscillation (BAO) measurements to include redshift-space distortions and signals from the matter-radiation equality scale. For the first time, this Full-Shape analysis is blinded at the catalogue-level to avoid confirmation bias and the systematic errors are accounted for at the two-point clustering level, which automatically propagates them into any cosmological parameter. When analysing the data in terms of compressed model-agnostic variables, we obtain a combined precision of 4.7\% on the amplitude of the redshift space distortion signal reaching similar precision with just one year of DESI data than with 20 years of observation from previous generation surveys. We analyse the data to directly constrain the cosmological parameters within the LambdaCDM model using perturbation theory and combine this information with the reconstructed DESI DR1 galaxy BAO. Using a Big Bang Nucleosynthesis Gaussian prior on the baryon density parameter, and a Gaussian prior on the spectral index, we constrain the matter density is Omega_m=0.296pm 0.010 and the Hubble constant H_0=(68.63 pm 0.79)[{rm km, s^{-1}Mpc^{-1}}]. Additionally, we measure the amplitude of clustering sigma_8=0.841 pm 0.034. The DESI DR1 results are in agreement with the LambdaCDM model based on general relativity with parameters consistent with those from Planck. The cosmological interpretation of these results in combination with external datasets are presented in a companion paper.
Galaxy Spectra neural Network (GaSNet). II. Using Deep Learning for Spectral Classification and Redshift Predictions
Large sky spectroscopic surveys have reached the scale of photometric surveys in terms of sample sizes and data complexity. These huge datasets require efficient, accurate, and flexible automated tools for data analysis and science exploitation. We present the Galaxy Spectra Network/GaSNet-II, a supervised multi-network deep learning tool for spectra classification and redshift prediction. GaSNet-II can be trained to identify a customized number of classes and optimize the redshift predictions for classified objects in each of them. It also provides redshift errors, using a network-of-networks that reproduces a Monte Carlo test on each spectrum, by randomizing their weight initialization. As a demonstration of the capability of the deep learning pipeline, we use 260k Sloan Digital Sky Survey spectra from Data Release 16, separated into 13 classes including 140k galactic, and 120k extragalactic objects. GaSNet-II achieves 92.4% average classification accuracy over the 13 classes (larger than 90% for the majority of them), and an average redshift error of approximately 0.23% for galaxies and 2.1% for quasars. We further train/test the same pipeline to classify spectra and predict redshifts for a sample of 200k 4MOST mock spectra and 21k publicly released DESI spectra. On 4MOST mock data, we reach 93.4% accuracy in 10-class classification and an average redshift error of 0.55% for galaxies and 0.3% for active galactic nuclei. On DESI data, we reach 96% accuracy in (star/galaxy/quasar only) classification and an average redshift error of 2.8% for galaxies and 4.8% for quasars, despite the small sample size available. GaSNet-II can process ~40k spectra in less than one minute, on a normal Desktop GPU. This makes the pipeline particularly suitable for real-time analyses of Stage-IV survey observations and an ideal tool for feedback loops aimed at night-by-night survey strategy optimization.
Fair coins tend to land on the same side they started: Evidence from 350,757 flips
Many people have flipped coins but few have stopped to ponder the statistical and physical intricacies of the process. We collected 350{,}757 coin flips to test the counterintuitive prediction from a physics model of human coin tossing developed by Diaconis, Holmes, and Montgomery (DHM; 2007). The model asserts that when people flip an ordinary coin, it tends to land on the same side it started -- DHM estimated the probability of a same-side outcome to be about 51\%. Our data lend strong support to this precise prediction: the coins landed on the same side more often than not, Pr(same side) = 0.508, 95\% credible interval (CI) [0.506, 0.509], BF_{same-side bias} = 2359. Furthermore, the data revealed considerable between-people variation in the degree of this same-side bias. Our data also confirmed the generic prediction that when people flip an ordinary coin -- with the initial side-up randomly determined -- it is equally likely to land heads or tails: Pr(heads) = 0.500, 95\% CI [0.498, 0.502], BF_{heads-tails bias} = 0.182. Furthermore, this lack of heads-tails bias does not appear to vary across coins. Additional analyses revealed that the within-people same-side bias decreased as more coins were flipped, an effect that is consistent with the possibility that practice makes people flip coins in a less wobbly fashion. Our data therefore provide strong evidence that when some (but not all) people flip a fair coin, it tends to land on the same side it started.
The Seventeenth Data Release of the Sloan Digital Sky Surveys: Complete Release of MaNGA, MaStar and APOGEE-2 Data
This paper documents the seventeenth data release (DR17) from the Sloan Digital Sky Surveys; the fifth and final release from the fourth phase (SDSS-IV). DR17 contains the complete release of the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, which reached its goal of surveying over 10,000 nearby galaxies. The complete release of the MaNGA Stellar Library (MaStar) accompanies this data, providing observations of almost 30,000 stars through the MaNGA instrument during bright time. DR17 also contains the complete release of the Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) survey which publicly releases infra-red spectra of over 650,000 stars. The main sample from the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), as well as the sub-survey Time Domain Spectroscopic Survey (TDSS) data were fully released in DR16. New single-fiber optical spectroscopy released in DR17 is from the SPectroscipic IDentification of ERosita Survey (SPIDERS) sub-survey and the eBOSS-RM program. Along with the primary data sets, DR17 includes 25 new or updated Value Added Catalogs (VACs). This paper concludes the release of SDSS-IV survey data. SDSS continues into its fifth phase with observations already underway for the Milky Way Mapper (MWM), Local Volume Mapper (LVM) and Black Hole Mapper (BHM) surveys.
OrbNet Denali: A machine learning potential for biological and organic chemistry with semi-empirical cost and DFT accuracy
We present OrbNet Denali, a machine learning model for electronic structure that is designed as a drop-in replacement for ground-state density functional theory (DFT) energy calculations. The model is a message-passing neural network that uses symmetry-adapted atomic orbital features from a low-cost quantum calculation to predict the energy of a molecule. OrbNet Denali is trained on a vast dataset of 2.3 million DFT calculations on molecules and geometries. This dataset covers the most common elements in bio- and organic chemistry (H, Li, B, C, N, O, F, Na, Mg, Si, P, S, Cl, K, Ca, Br, I) as well as charged molecules. OrbNet Denali is demonstrated on several well-established benchmark datasets, and we find that it provides accuracy that is on par with modern DFT methods while offering a speedup of up to three orders of magnitude. For the GMTKN55 benchmark set, OrbNet Denali achieves WTMAD-1 and WTMAD-2 scores of 7.19 and 9.84, on par with modern DFT functionals. For several GMTKN55 subsets, which contain chemical problems that are not present in the training set, OrbNet Denali produces a mean absolute error comparable to those of DFT methods. For the Hutchison conformers benchmark set, OrbNet Denali has a median correlation coefficient of R^2=0.90 compared to the reference DLPNO-CCSD(T) calculation, and R^2=0.97 compared to the method used to generate the training data (wB97X-D3/def2-TZVP), exceeding the performance of any other method with a similar cost. Similarly, the model reaches chemical accuracy for non-covalent interactions in the S66x10 dataset. For torsional profiles, OrbNet Denali reproduces the torsion profiles of wB97X-D3/def2-TZVP with an average MAE of 0.12 kcal/mol for the potential energy surfaces of the diverse fragments in the TorsionNet500 dataset.
Models and Simulations for the Photometric LSST Astronomical Time Series Classification Challenge (PLAsTiCC)
We describe the simulated data sample for the "Photometric LSST Astronomical Time Series Classification Challenge" (PLAsTiCC), a publicly available challenge to classify transient and variable events that will be observed by the Large Synoptic Survey Telescope (LSST), a new facility expected to start in the early 2020s. The challenge was hosted by Kaggle, ran from 2018 September 28 to 2018 December 17, and included 1,094 teams competing for prizes. Here we provide details of the 18 transient and variable source models, which were not revealed until after the challenge, and release the model libraries at https://doi.org/10.5281/zenodo.2612896. We describe the LSST Operations Simulator used to predict realistic observing conditions, and we describe the publicly available SNANA simulation code used to transform the models into observed fluxes and uncertainties in the LSST passbands (ugrizy). Although PLAsTiCC has finished, the publicly available models and simulation tools are being used within the astronomy community to further improve classification, and to study contamination in photometrically identified samples of type Ia supernova used to measure properties of dark energy. Our simulation framework will continue serving as a platform to improve the PLAsTiCC models, and to develop new models.
Deep SNP: An End-to-end Deep Neural Network with Attention-based Localization for Break-point Detection in SNP Array Genomic data
Diagnosis and risk stratification of cancer and many other diseases require the detection of genomic breakpoints as a prerequisite of calling copy number alterations (CNA). This, however, is still challenging and requires time-consuming manual curation. As deep-learning methods outperformed classical state-of-the-art algorithms in various domains and have also been successfully applied to life science problems including medicine and biology, we here propose Deep SNP, a novel Deep Neural Network to learn from genomic data. Specifically, we used a manually curated dataset from 12 genomic single nucleotide polymorphism array (SNPa) profiles as truth-set and aimed at predicting the presence or absence of genomic breakpoints, an indicator of structural chromosomal variations, in windows of 40,000 probes. We compare our results with well-known neural network models as well as Rawcopy though this tool is designed to predict breakpoints and in addition genomic segments with high sensitivity. We show, that Deep SNP is capable of successfully predicting the presence or absence of a breakpoint in large genomic windows and outperforms state-of-the-art neural network models. Qualitative examples suggest that integration of a localization unit may enable breakpoint detection and prediction of genomic segments, even if the breakpoint coordinates were not provided for network training. These results warrant further evaluation of DeepSNP for breakpoint localization and subsequent calling of genomic segments.
Overview of the DESI Legacy Imaging Surveys
The DESI Legacy Imaging Surveys are a combination of three public projects (the Dark Energy Camera Legacy Survey, the Beijing-Arizona Sky Survey, and the Mayall z-band Legacy Survey) that will jointly image approximately 14,000 deg^2 of the extragalactic sky visible from the northern hemisphere in three optical bands (g, r, and z) using telescopes at the Kitt Peak National Observatory and the Cerro Tololo Inter-American Observatory. The combined survey footprint is split into two contiguous areas by the Galactic plane. The optical imaging is conducted using a unique strategy of dynamically adjusting the exposure times and pointing selection during observing that results in a survey of nearly uniform depth. In addition to calibrated images, the project is delivering a catalog, constructed by using a probabilistic inference-based approach to estimate source shapes and brightnesses. The catalog includes photometry from the grz optical bands and from four mid-infrared bands (at 3.4, 4.6, 12 and 22 micorons) observed by the Wide-field Infrared Survey Explorer (WISE) satellite during its full operational lifetime. The project plans two public data releases each year. All the software used to generate the catalogs is also released with the data. This paper provides an overview of the Legacy Surveys project.
Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe
We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratio in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially-resolved spectroscopy for thousands of nearby galaxies (median redshift of z = 0.03). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between redshifts z = 0.6 and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGN and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5-meter Sloan Foundation Telescope at Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5-meter du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in July 2016.
Overview of the SDSS-IV MaNGA Survey: Mapping Nearby Galaxies at Apache Point Observatory
We present an overview of a new integral field spectroscopic survey called MaNGA (Mapping Nearby Galaxies at Apache Point Observatory), one of three core programs in the fourth-generation Sloan Digital Sky Survey (SDSS-IV) that began on 2014 July 1. MaNGA will investigate the internal kinematic structure and composition of gas and stars in an unprecedented sample of 10,000 nearby galaxies. We summarize essential characteristics of the instrument and survey design in the context of MaNGA's key science goals and present prototype observations to demonstrate MaNGA's scientific potential. MaNGA employs dithered observations with 17 fiber-bundle integral field units that vary in diameter from 12" (19 fibers) to 32" (127 fibers). Two dual-channel spectrographs provide simultaneous wavelength coverage over 3600-10300 A at R~2000. With a typical integration time of 3 hr, MaNGA reaches a target r-band signal-to-noise ratio of 4-8 (per A, per 2" fiber) at 23 AB mag per sq. arcsec, which is typical for the outskirts of MaNGA galaxies. Targets are selected with stellar mass greater than 1e9 Msun using SDSS-I redshifts and i-band luminosity to achieve uniform radial coverage in terms of the effective radius, an approximately flat distribution in stellar mass, and a sample spanning a wide range of environments. Analysis of our prototype observations demonstrates MaNGA's ability to probe gas ionization, shed light on recent star formation and quenching, enable dynamical modeling, decompose constituent components, and map the composition of stellar populations. MaNGA's spatially resolved spectra will enable an unprecedented study of the astrophysics of nearby galaxies in the coming 6 yr.
Surprising Variation of Gamma Rays from the Sun over the Solar Cycle Revealed with Fermi-LAT
The steady-state gamma-ray emission from the Sun is thought to consist of two emission components due to interactions with Galactic cosmic rays: (1) a hadronic component covering the solar disk, and (2) a leptonic component peaking at the solar edge and extending into the heliosphere. The flux of these components is expected to vary with the 11-year solar cycle, being highest during solar minimum and lowest during solar maximum, because it is correlated with the cosmic-ray flux. No study has yet analyzed the flux variation of the two components separately over solar cycles. In this work, we measure the temporal variations of the flux of each component over 15 years of Fermi Large Area Telescope observations and compare them with the sunspot number and Galactic cosmic-ray flux from AMS-02 near the Earth. We find that the flux variation of the disk anticorrelates with solar activity and correlates with cosmic-ray protons, confirming its emission mechanism. The flux variation of the extended component anticorrelates with solar activity only until mid 2012. After that, we no longer observe any correlation or anticorrelation, even with the CR electron flux. This most likely suggests that cosmic-ray transport and modulation in the inner heliosphere are unexpectedly complex and different for electrons and protons or, alternatively, the presence of an additional, unknown component of gamma rays or cosmic rays. These findings impact space weather research and emphasize the need for close monitoring of Cycle 25 and the ongoing polarity reversal.
MedShapeNet -- A Large-Scale Dataset of 3D Medical Shapes for Computer Vision
Prior to the deep learning era, shape was commonly used to describe the objects. Nowadays, state-of-the-art (SOTA) algorithms in medical imaging are predominantly diverging from computer vision, where voxel grids, meshes, point clouds, and implicit surface models are used. This is seen from numerous shape-related publications in premier vision conferences as well as the growing popularity of ShapeNet (about 51,300 models) and Princeton ModelNet (127,915 models). For the medical domain, we present a large collection of anatomical shapes (e.g., bones, organs, vessels) and 3D models of surgical instrument, called MedShapeNet, created to facilitate the translation of data-driven vision algorithms to medical applications and to adapt SOTA vision algorithms to medical problems. As a unique feature, we directly model the majority of shapes on the imaging data of real patients. As of today, MedShapeNet includes 23 dataset with more than 100,000 shapes that are paired with annotations (ground truth). Our data is freely accessible via a web interface and a Python application programming interface (API) and can be used for discriminative, reconstructive, and variational benchmarks as well as various applications in virtual, augmented, or mixed reality, and 3D printing. Exemplary, we present use cases in the fields of classification of brain tumors, facial and skull reconstructions, multi-class anatomy completion, education, and 3D printing. In future, we will extend the data and improve the interfaces. The project pages are: https://medshapenet.ikim.nrw/ and https://github.com/Jianningli/medshapenet-feedback
Lensing in the Blue II: Estimating the Sensitivity of Stratospheric Balloons to Weak Gravitational Lensing
The Superpressure Balloon-borne Imaging Telescope (SuperBIT) is a diffraction-limited, wide-field, 0.5 m, near-infrared to near-ultraviolet observatory designed to exploit the stratosphere's space-like conditions. SuperBIT's 2023 science flight will deliver deep, blue imaging of galaxy clusters for gravitational lensing analysis. In preparation, we have developed a weak lensing measurement pipeline with modern algorithms for PSF characterization, shape measurement, and shear calibration. We validate our pipeline and forecast SuperBIT survey properties with simulated galaxy cluster observations in SuperBIT's near-UV and blue bandpasses. We predict imaging depth, galaxy number (source) density, and redshift distribution for observations in SuperBIT's three bluest filters; the effect of lensing sample selections is also considered. We find that in three hours of on-sky integration, SuperBIT can attain a depth of b = 26 mag and a total source density exceeding 40 galaxies per square arcminute. Even with the application of lensing-analysis catalog selections, we find b-band source densities between 25 and 30 galaxies per square arcminute with a median redshift of z = 1.1. Our analysis confirms SuperBIT's capability for weak gravitational lensing measurements in the blue.
The Next Generation Deep Extragalactic Exploratory Public (NGDEEP) Survey
We present the Next Generation Deep Extragalactic Exploratory Public (NGDEEP) Survey, a deep slitless spectroscopic and imaging Cycle 1 JWST treasury survey designed to constrain feedback mechanisms in low-mass galaxies across cosmic time. NGDEEP targets the Hubble Ultra Deep Field (HUDF) with NIRISS slitless spectroscopy (f~1.2e-18 erg/s/cm^2, 5sigma) to measure metallicities and star-formation rates (SFRs) for low-mass galaxies through the peak of the cosmic SFR density (0.5<z<4). In parallel, NGDEEP targets the HUDF-Par2 parallel field with NIRCam (m=30.6-30.9, 5sigma) to discover galaxies to z>12, constraining the slope of the faint-end of the rest-ultraviolet luminosity function. NGDEEP overlaps with the deepest HST ACS optical imaging in the sky: F435W in the HUDF (m=29.6), and F814W in HUDF-Par2 (m=30), making this a premier HST+JWST Deep Field. As a treasury survey, NGDEEP data is public immediately, and we will rapidly release data products and catalogs in the spirit of previous deep field initiatives. In this paper we present the NGDEEP survey design, summarize the science goals, and detail plans for the public release of NGDEEP reduced data products.
Size and Shape Constraints of (486958) Arrokoth from Stellar Occultations
We present the results from four stellar occultations by (486958) Arrokoth, the flyby target of the New Horizons extended mission. Three of the four efforts led to positive detections of the body, and all constrained the presence of rings and other debris, finding none. Twenty-five mobile stations were deployed for 2017 June 3 and augmented by fixed telescopes. There were no positive detections from this effort. The event on 2017 July 10 was observed by SOFIA with one very short chord. Twenty-four deployed stations on 2017 July 17 resulted in five chords that clearly showed a complicated shape consistent with a contact binary with rough dimensions of 20 by 30 km for the overall outline. A visible albedo of 10% was derived from these data. Twenty-two systems were deployed for the fourth event on 2018 Aug 4 and resulted in two chords. The combination of the occultation data and the flyby results provides a significant refinement of the rotation period, now estimated to be 15.9380 pm 0.0005 hours. The occultation data also provided high-precision astrometric constraints on the position of the object that were crucial for supporting the navigation for the New Horizons flyby. This work demonstrates an effective method for obtaining detailed size and shape information and probing for rings and dust on distant Kuiper Belt objects as well as being an important source of positional data that can aid in spacecraft navigation that is particularly useful for small and distant bodies.
Planck 2018 results. V. CMB power spectra and likelihoods
This paper describes the 2018 Planck CMB likelihoods, following a hybrid approach similar to the 2015 one, with different approximations at low and high multipoles, and implementing several methodological and analysis refinements. With more realistic simulations, and better correction and modelling of systematics, we can now make full use of the High Frequency Instrument polarization data. The low-multipole 100x143 GHz EE cross-spectrum constrains the reionization optical-depth parameter tau to better than 15% (in combination with with the other low- and high-ell likelihoods). We also update the 2015 baseline low-ell joint TEB likelihood based on the Low Frequency Instrument data, which provides a weaker tau constraint. At high multipoles, a better model of the temperature-to-polarization leakage and corrections for the effective calibrations of the polarization channels (polarization efficiency or PE) allow us to fully use the polarization spectra, improving the constraints on the LambdaCDM parameters by 20 to 30% compared to TT-only constraints. Tests on the modelling of the polarization demonstrate good consistency, with some residual modelling uncertainties, the accuracy of the PE modelling being the main limitation. Using our various tests, simulations, and comparison between different high-ell implementations, we estimate the consistency of the results to be better than the 0.5sigma level. Minor curiosities already present before (differences between ell<800 and ell>800 parameters or the preference for more smoothing of the C_ell peaks) are shown to be driven by the TT power spectrum and are not significantly modified by the inclusion of polarization. Overall, the legacy Planck CMB likelihoods provide a robust tool for constraining the cosmological model and represent a reference for future CMB observations. (Abridged)
The Apache Point Observatory Galactic Evolution Experiment (APOGEE)
The Apache Point Observatory Galactic Evolution Experiment (APOGEE), one of the programs in the Sloan Digital Sky Survey III (SDSS-III), has now completed its systematic, homogeneous spectroscopic survey sampling all major populations of the Milky Way. After a three year observing campaign on the Sloan 2.5-m Telescope, APOGEE has collected a half million high resolution (R~22,500), high S/N (>100), infrared (1.51-1.70 microns) spectra for 146,000 stars, with time series information via repeat visits to most of these stars. This paper describes the motivations for the survey and its overall design---hardware, field placement, target selection, operations---and gives an overview of these aspects as well as the data reduction, analysis and products. An index is also given to the complement of technical papers that describe various critical survey components in detail. Finally, we discuss the achieved survey performance and illustrate the variety of potential uses of the data products by way of a number of science demonstrations, which span from time series analysis of stellar spectral variations and radial velocity variations from stellar companions, to spatial maps of kinematics, metallicity and abundance patterns across the Galaxy and as a function of age, to new views of the interstellar medium, the chemistry of star clusters, and the discovery of rare stellar species. As part of SDSS-III Data Release 12, all of the APOGEE data products are now publicly available.
Sound event detection using weakly labeled dataset with stacked convolutional and recurrent neural network
This paper proposes a neural network architecture and training scheme to learn the start and end time of sound events (strong labels) in an audio recording given just the list of sound events existing in the audio without time information (weak labels). We achieve this by using a stacked convolutional and recurrent neural network with two prediction layers in sequence one for the strong followed by the weak label. The network is trained using frame-wise log mel-band energy as the input audio feature, and weak labels provided in the dataset as labels for the weak label prediction layer. Strong labels are generated by replicating the weak labels as many number of times as the frames in the input audio feature, and used for strong label layer during training. We propose to control what the network learns from the weak and strong labels by different weighting for the loss computed in the two prediction layers. The proposed method is evaluated on a publicly available dataset of 155 hours with 17 sound event classes. The method achieves the best error rate of 0.84 for strong labels and F-score of 43.3% for weak labels on the unseen test split.
Holistically-Nested Edge Detection
We develop a new edge detection algorithm that tackles two important issues in this long-standing vision problem: (1) holistic image training and prediction; and (2) multi-scale and multi-level feature learning. Our proposed method, holistically-nested edge detection (HED), performs image-to-image prediction by means of a deep learning model that leverages fully convolutional neural networks and deeply-supervised nets. HED automatically learns rich hierarchical representations (guided by deep supervision on side responses) that are important in order to approach the human ability resolve the challenging ambiguity in edge and object boundary detection. We significantly advance the state-of-the-art on the BSD500 dataset (ODS F-score of .782) and the NYU Depth dataset (ODS F-score of .746), and do so with an improved speed (0.4 second per image) that is orders of magnitude faster than some recent CNN-based edge detection algorithms.
Privacy-preserving Pedestrian Tracking using Distributed 3D LiDARs
The growing demand for intelligent environments unleashes an extraordinary cycle of privacy-aware applications that makes individuals' life more comfortable and safe. Examples of these applications include pedestrian tracking systems in large areas. Although the ubiquity of camera-based systems, they are not a preferable solution due to the vulnerability of leaking the privacy of pedestrians. In this paper, we introduce a novel privacy-preserving system for pedestrian tracking in smart environments using multiple distributed LiDARs of non-overlapping views. The system is designed to leverage LiDAR devices to track pedestrians in partially covered areas due to practical constraints, e.g., occlusion or cost. Therefore, the system uses the point cloud captured by different LiDARs to extract discriminative features that are used to train a metric learning model for pedestrian matching purposes. To boost the system's robustness, we leverage a probabilistic approach to model and adapt the dynamic mobility patterns of individuals and thus connect their sub-trajectories. We deployed the system in a large-scale testbed with 70 colorless LiDARs and conducted three different experiments. The evaluation result at the entrance hall confirms the system's ability to accurately track the pedestrians with a 0.98 F-measure even with zero-covered areas. This result highlights the promise of the proposed system as the next generation of privacy-preserving tracking means in smart environments.
End-to-End Semi-Supervised Learning for Video Action Detection
In this work, we focus on semi-supervised learning for video action detection which utilizes both labeled as well as unlabeled data. We propose a simple end-to-end consistency based approach which effectively utilizes the unlabeled data. Video action detection requires both, action class prediction as well as a spatio-temporal localization of actions. Therefore, we investigate two types of constraints, classification consistency, and spatio-temporal consistency. The presence of predominant background and static regions in a video makes it challenging to utilize spatio-temporal consistency for action detection. To address this, we propose two novel regularization constraints for spatio-temporal consistency; 1) temporal coherency, and 2) gradient smoothness. Both these aspects exploit the temporal continuity of action in videos and are found to be effective for utilizing unlabeled videos for action detection. We demonstrate the effectiveness of the proposed approach on two different action detection benchmark datasets, UCF101-24 and JHMDB-21. In addition, we also show the effectiveness of the proposed approach for video object segmentation on the Youtube-VOS which demonstrates its generalization capability The proposed approach achieves competitive performance by using merely 20% of annotations on UCF101-24 when compared with recent fully supervised methods. On UCF101-24, it improves the score by +8.9% and +11% at 0.5 f-mAP and v-mAP respectively, compared to supervised approach.
Talagrand's convolution conjecture up to loglog via perturbed reverse heat
We prove that under the heat semigroup (P_τ) on the Boolean hypercube, any nonnegative function f: {-1,1}^n to R_+ exhibits a uniform tail bound that is better than that by Markov's inequality. Specifically, for any η> e^3 and τ> 0, align* P_{X \sim μ}\left( P_τf(X) > η\int f dμ\right) \leq c_τ \log \log η{η\log η}, align* where μ is the uniform measure on the Boolean hypercube {-1,1}^n and c_τ is a constant that only depends on τ. This resolves Talagrand's convolution conjecture up to a dimension-free loglog η factor. Its proof relies on properties of the reverse heat process on the Boolean hypercube and a coupling construction based on carefully engineered perturbations of this reverse heat process.
BN-HTRd: A Benchmark Dataset for Document Level Offline Bangla Handwritten Text Recognition (HTR) and Line Segmentation
We introduce a new dataset for offline Handwritten Text Recognition (HTR) from images of Bangla scripts comprising words, lines, and document-level annotations. The BN-HTRd dataset is based on the BBC Bangla News corpus, meant to act as ground truth texts. These texts were subsequently used to generate the annotations that were filled out by people with their handwriting. Our dataset includes 788 images of handwritten pages produced by approximately 150 different writers. It can be adopted as a basis for various handwriting classification tasks such as end-to-end document recognition, word-spotting, word or line segmentation, and so on. We also propose a scheme to segment Bangla handwritten document images into corresponding lines in an unsupervised manner. Our line segmentation approach takes care of the variability involved in different writing styles, accurately segmenting complex handwritten text lines of curvilinear nature. Along with a bunch of pre-processing and morphological operations, both Hough line and circle transforms were employed to distinguish different linear components. In order to arrange those components into their corresponding lines, we followed an unsupervised clustering approach. The average success rate of our segmentation technique is 81.57% in terms of FM metrics (similar to F-measure) with a mean Average Precision (mAP) of 0.547.
Concentrating solutions of the fractional $(p,q)$-Choquard equation with exponential growth
This article deals with the following fractional (p,q)-Choquard equation with exponential growth of the form: $varepsilon^{ps}(-Delta)_{p}^{s}u+varepsilon^{qs}(-Delta)_q^su+ Z(x)(|u|^{p-2}u+|u|^{q-2}u)=varepsilon^{mu-N}[|x|^{-mu}*F(u)]f(u) in R^N, where s\in (0,1), \varepsilon>0 is a parameter, 2\leq p=N{s}<q, and 0<\mu<N. The nonlinear function f has an exponential growth at infinity and the continuous potential function Z satisfies suitable natural conditions. With the help of the Ljusternik-Schnirelmann category theory and variational methods, the multiplicity and concentration of positive solutions are obtained for \varepsilon>0$ small enough. In a certain sense, we generalize some previously known results.
On Signs of eigenvalues of Modular forms satisfying Ramanujan Conjecture
Let F in S_{k_1}(Gamma^{(2)}(N_1)) and G in S_{k_2}(Gamma^{(2)}(N_2)) be two Siegel cusp forms over the congruence subgroups Gamma^{(2)}(N_1) and Gamma^{(2)}(N_2) respectively. Assume that they are Hecke eigenforms in different eigenspaces and satisfy the Generalized Ramanujan Conjecture. Let lambda_F(p) denote the eigenvalue of F with respect to the Hecke operator T(p). In this article, we compute a lower bound for the density of the set of primes, { p : lambda_F(p) lambda_G(p) < 0 }.
A New Bound on the Cumulant Generating Function of Dirichlet Processes
In this paper, we introduce a novel approach for bounding the cumulant generating function (CGF) of a Dirichlet process (DP) X sim DP(αν_0), using superadditivity. In particular, our key technical contribution is the demonstration of the superadditivity of αmapsto log E_{X sim DP(αν_0)}[exp( E_X[αf])], where E_X[f] = int f dX. This result, combined with Fekete's lemma and Varadhan's integral lemma, converts the known asymptotic large deviation principle into a practical upper bound on the CGF logE_{Xsim DP(αν_0)}{exp(E_{X}{[f]})} for any α> 0. The bound is given by the convex conjugate of the scaled reversed Kullback-Leibler divergence αKL(ν_0Vert cdot). This new bound provides particularly effective confidence regions for sums of independent DPs, making it applicable across various fields.
AIMI: Leveraging Future Knowledge and Personalization in Sparse Event Forecasting for Treatment Adherence
Adherence to prescribed treatments is crucial for individuals with chronic conditions to avoid costly or adverse health outcomes. For certain patient groups, intensive lifestyle interventions are vital for enhancing medication adherence. Accurate forecasting of treatment adherence can open pathways to developing an on-demand intervention tool, enabling timely and personalized support. With the increasing popularity of smartphones and wearables, it is now easier than ever to develop and deploy smart activity monitoring systems. However, effective forecasting systems for treatment adherence based on wearable sensors are still not widely available. We close this gap by proposing Adherence Forecasting and Intervention with Machine Intelligence (AIMI). AIMI is a knowledge-guided adherence forecasting system that leverages smartphone sensors and previous medication history to estimate the likelihood of forgetting to take a prescribed medication. A user study was conducted with 27 participants who took daily medications to manage their cardiovascular diseases. We designed and developed CNN and LSTM-based forecasting models with various combinations of input features and found that LSTM models can forecast medication adherence with an accuracy of 0.932 and an F-1 score of 0.936. Moreover, through a series of ablation studies involving convolutional and recurrent neural network architectures, we demonstrate that leveraging known knowledge about future and personalized training enhances the accuracy of medication adherence forecasting. Code available: https://github.com/ab9mamun/AIMI.
A multiplicative inequality of Riesz transform type on general Riemannian manifolds
Given any complete Riemannian manifold M, we prove that for every p in (1, 2] and every ε> 0, $ | nabla f |_p^2 le C_ε| Δ^{1{2} + ε} f |_{p}| Δ^{1{2} - ε} f |_{p}.$The estimate is dimension free. This inequality is even proved in the abstract setting of generators of sub-Markov semigroups.
Robots Can Feel: LLM-based Framework for Robot Ethical Reasoning
This paper presents the development of a novel ethical reasoning framework for robots. "Robots Can Feel" is the first system for robots that utilizes a combination of logic and human-like emotion simulation to make decisions in morally complex situations akin to humans. The key feature of the approach is the management of the Emotion Weight Coefficient - a customizable parameter to assign the role of emotions in robot decision-making. The system aims to serve as a tool that can equip robots of any form and purpose with ethical behavior close to human standards. Besides the platform, the system is independent of the choice of the base model. During the evaluation, the system was tested on 8 top up-to-date LLMs (Large Language Models). This list included both commercial and open-source models developed by various companies and countries. The research demonstrated that regardless of the model choice, the Emotions Weight Coefficient influences the robot's decision similarly. According to ANOVA analysis, the use of different Emotion Weight Coefficients influenced the final decision in a range of situations, such as in a request for a dietary violation F(4, 35) = 11.2, p = 0.0001 and in an animal compassion situation F(4, 35) = 8.5441, p = 0.0001. A demonstration code repository is provided at: https://github.com/TemaLykov/robots_can_feel
LOCR: Location-Guided Transformer for Optical Character Recognition
Academic documents are packed with texts, equations, tables, and figures, requiring comprehensive understanding for accurate Optical Character Recognition (OCR). While end-to-end OCR methods offer improved accuracy over layout-based approaches, they often grapple with significant repetition issues, especially with complex layouts in Out-Of-Domain (OOD) documents.To tackle this issue, we propose LOCR, a model that integrates location guiding into the transformer architecture during autoregression. We train the model on a dataset comprising over 77M text-location pairs from 125K academic document pages, including bounding boxes for words, tables and mathematical symbols. LOCR adeptly handles various formatting elements and generates content in Markdown language. It outperforms all existing methods in our test set constructed from arXiv, as measured by edit distance, BLEU, METEOR and F-measure.LOCR also reduces repetition frequency from 4.4% of pages to 0.5% in the arXiv dataset, from 13.2% to 1.3% in OOD quantum physics documents and from 8.1% to 1.8% in OOD marketing documents. Additionally, LOCR features an interactive OCR mode, facilitating the generation of complex documents through a few location prompts from human.
Regularized Contrastive Pre-training for Few-shot Bioacoustic Sound Detection
Bioacoustic sound event detection allows for better understanding of animal behavior and for better monitoring biodiversity using audio. Deep learning systems can help achieve this goal, however it is difficult to acquire sufficient annotated data to train these systems from scratch. To address this limitation, the Detection and Classification of Acoustic Scenes and Events (DCASE) community has recasted the problem within the framework of few-shot learning and organize an annual challenge for learning to detect animal sounds from only five annotated examples. In this work, we regularize supervised contrastive pre-training to learn features that can transfer well on new target tasks with animal sounds unseen during training, achieving a high F-score of 61.52%(0.48) when no feature adaptation is applied, and an F-score of 68.19%(0.75) when we further adapt the learned features for each new target task. This work aims to lower the entry bar to few-shot bioacoustic sound event detection by proposing a simple and yet effective framework for this task, by also providing open-source code.
Grape detection, segmentation and tracking using deep neural networks and three-dimensional association
Agricultural applications such as yield prediction, precision agriculture and automated harvesting need systems able to infer the crop state from low-cost sensing devices. Proximal sensing using affordable cameras combined with computer vision has seen a promising alternative, strengthened after the advent of convolutional neural networks (CNNs) as an alternative for challenging pattern recognition problems in natural images. Considering fruit growing monitoring and automation, a fundamental problem is the detection, segmentation and counting of individual fruits in orchards. Here we show that for wine grapes, a crop presenting large variability in shape, color, size and compactness, grape clusters can be successfully detected, segmented and tracked using state-of-the-art CNNs. In a test set containing 408 grape clusters from images taken on a trellis-system based vineyard, we have reached an F 1 -score up to 0.91 for instance segmentation, a fine separation of each cluster from other structures in the image that allows a more accurate assessment of fruit size and shape. We have also shown as clusters can be identified and tracked along video sequences recording orchard rows. We also present a public dataset containing grape clusters properly annotated in 300 images and a novel annotation methodology for segmentation of complex objects in natural images. The presented pipeline for annotation, training, evaluation and tracking of agricultural patterns in images can be replicated for different crops and production systems. It can be employed in the development of sensing components for several agricultural and environmental applications.
