new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 6

CamemBERT 2.0: A Smarter French Language Model Aged to Perfection

French language models, such as CamemBERT, have been widely adopted across industries for natural language processing (NLP) tasks, with models like CamemBERT seeing over 4 million downloads per month. However, these models face challenges due to temporal concept drift, where outdated training data leads to a decline in performance, especially when encountering new topics and terminology. This issue emphasizes the need for updated models that reflect current linguistic trends. In this paper, we introduce two new versions of the CamemBERT base model-CamemBERTav2 and CamemBERTv2-designed to address these challenges. CamemBERTav2 is based on the DeBERTaV3 architecture and makes use of the Replaced Token Detection (RTD) objective for better contextual understanding, while CamemBERTv2 is built on RoBERTa, which uses the Masked Language Modeling (MLM) objective. Both models are trained on a significantly larger and more recent dataset with longer context length and an updated tokenizer that enhances tokenization performance for French. We evaluate the performance of these models on both general-domain NLP tasks and domain-specific applications, such as medical field tasks, demonstrating their versatility and effectiveness across a range of use cases. Our results show that these updated models vastly outperform their predecessors, making them valuable tools for modern NLP systems. All our new models, as well as intermediate checkpoints, are made openly available on Huggingface.

  • 6 authors
·
Nov 13, 2024 9

Interpretable Long-Form Legal Question Answering with Retrieval-Augmented Large Language Models

Many individuals are likely to face a legal dispute at some point in their lives, but their lack of understanding of how to navigate these complex issues often renders them vulnerable. The advancement of natural language processing opens new avenues for bridging this legal literacy gap through the development of automated legal aid systems. However, existing legal question answering (LQA) approaches often suffer from a narrow scope, being either confined to specific legal domains or limited to brief, uninformative responses. In this work, we propose an end-to-end methodology designed to generate long-form answers to any statutory law questions, utilizing a "retrieve-then-read" pipeline. To support this approach, we introduce and release the Long-form Legal Question Answering (LLeQA) dataset, comprising 1,868 expert-annotated legal questions in the French language, complete with detailed answers rooted in pertinent legal provisions. Our experimental results demonstrate promising performance on automatic evaluation metrics, but a qualitative analysis uncovers areas for refinement. As one of the only comprehensive, expert-annotated long-form LQA dataset, LLeQA has the potential to not only accelerate research towards resolving a significant real-world issue, but also act as a rigorous benchmark for evaluating NLP models in specialized domains. We publicly release our code, data, and models.

  • 3 authors
·
Sep 29, 2023 1

Adaptive Machine Translation with Large Language Models

Consistency is a key requirement of high-quality translation. It is especially important to adhere to pre-approved terminology and adapt to corrected translations in domain-specific projects. Machine translation (MT) has achieved significant progress in the area of domain adaptation. However, real-time adaptation remains challenging. Large-scale language models (LLMs) have recently shown interesting capabilities of in-context learning, where they learn to replicate certain input-output text generation patterns, without further fine-tuning. By feeding an LLM at inference time with a prompt that consists of a list of translation pairs, it can then simulate the domain and style characteristics. This work aims to investigate how we can utilize in-context learning to improve real-time adaptive MT. Our extensive experiments show promising results at translation time. For example, LLMs can adapt to a set of in-domain sentence pairs and/or terminology while translating a new sentence. We observe that the translation quality with few-shot in-context learning can surpass that of strong encoder-decoder MT systems, especially for high-resource languages. Moreover, we investigate whether we can combine MT from strong encoder-decoder models with fuzzy matches, which can further improve translation quality, especially for less supported languages. We conduct our experiments across five diverse language pairs, namely English-to-Arabic (EN-AR), English-to-Chinese (EN-ZH), English-to-French (EN-FR), English-to-Kinyarwanda (EN-RW), and English-to-Spanish (EN-ES).

  • 4 authors
·
Jan 30, 2023

WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models

Large pretrained language models (LMs) have become the central building block of many NLP applications. Training these models requires ever more computational resources and most of the existing models are trained on English text only. It is exceedingly expensive to train these models in other languages. To alleviate this problem, we introduce a novel method -- called WECHSEL -- to efficiently and effectively transfer pretrained LMs to new languages. WECHSEL can be applied to any model which uses subword-based tokenization and learns an embedding for each subword. The tokenizer of the source model (in English) is replaced with a tokenizer in the target language and token embeddings are initialized such that they are semantically similar to the English tokens by utilizing multilingual static word embeddings covering English and the target language. We use WECHSEL to transfer the English RoBERTa and GPT-2 models to four languages (French, German, Chinese and Swahili). We also study the benefits of our method on very low-resource languages. WECHSEL improves over proposed methods for cross-lingual parameter transfer and outperforms models of comparable size trained from scratch with up to 64x less training effort. Our method makes training large language models for new languages more accessible and less damaging to the environment. We make our code and models publicly available.

  • 3 authors
·
Dec 13, 2021

IrokoBench: A New Benchmark for African Languages in the Age of Large Language Models

Despite the widespread adoption of Large language models (LLMs), their remarkable capabilities remain limited to a few high-resource languages. Additionally, many low-resource languages (e.g. African languages) are often evaluated only on basic text classification tasks due to the lack of appropriate or comprehensive benchmarks outside of high-resource languages. In this paper, we introduce IrokoBench -- a human-translated benchmark dataset for 16 typologically-diverse low-resource African languages covering three tasks: natural language inference~(AfriXNLI), mathematical reasoning~(AfriMGSM), and multi-choice knowledge-based QA~(AfriMMLU). We use IrokoBench to evaluate zero-shot, few-shot, and translate-test settings~(where test sets are translated into English) across 10 open and four proprietary LLMs. Our evaluation reveals a significant performance gap between high-resource languages~(such as English and French) and low-resource African languages. We observe a significant performance gap between open and proprietary models, with the highest performing open model, Aya-101 only at 58\% of the best-performing proprietary model GPT-4o performance. Machine translating the test set to English before evaluation helped to close the gap for larger models that are English-centric, like LLaMa 3 70B. These findings suggest that more efforts are needed to develop and adapt LLMs for African languages.

  • 26 authors
·
Jun 5, 2024

On the Usability of Transformers-based models for a French Question-Answering task

For many tasks, state-of-the-art results have been achieved with Transformer-based architectures, resulting in a paradigmatic shift in practices from the use of task-specific architectures to the fine-tuning of pre-trained language models. The ongoing trend consists in training models with an ever-increasing amount of data and parameters, which requires considerable resources. It leads to a strong search to improve resource efficiency based on algorithmic and hardware improvements evaluated only for English. This raises questions about their usability when applied to small-scale learning problems, for which a limited amount of training data is available, especially for under-resourced languages tasks. The lack of appropriately sized corpora is a hindrance to applying data-driven and transfer learning-based approaches with strong instability cases. In this paper, we establish a state-of-the-art of the efforts dedicated to the usability of Transformer-based models and propose to evaluate these improvements on the question-answering performances of French language which have few resources. We address the instability relating to data scarcity by investigating various training strategies with data augmentation, hyperparameters optimization and cross-lingual transfer. We also introduce a new compact model for French FrALBERT which proves to be competitive in low-resource settings.

  • 3 authors
·
Jul 19, 2022

The LLM Pro Finance Suite: Multilingual Large Language Models for Financial Applications

The financial industry's growing demand for advanced natural language processing (NLP) capabilities has highlighted the limitations of generalist large language models (LLMs) in handling domain-specific financial tasks. To address this gap, we introduce the LLM Pro Finance Suite, a collection of five instruction-tuned LLMs (ranging from 8B to 70B parameters) specifically designed for financial applications. Our approach focuses on enhancing generalist instruction-tuned models, leveraging their existing strengths in instruction following, reasoning, and toxicity control, while fine-tuning them on a curated, high-quality financial corpus comprising over 50% finance-related data in English, French, and German. We evaluate the LLM Pro Finance Suite on a comprehensive financial benchmark suite, demonstrating consistent improvement over state-of-the-art baselines in finance-oriented tasks and financial translation. Notably, our models maintain the strong general-domain capabilities of their base models, ensuring reliable performance across non-specialized tasks. This dual proficiency, enhanced financial expertise without compromise on general abilities, makes the LLM Pro Finance Suite an ideal drop-in replacement for existing LLMs in financial workflows, offering improved domain-specific performance while preserving overall versatility. We publicly release two 8B-parameters models to foster future research and development in financial NLP applications: https://huggingface.co/collections/DragonLLM/llm-open-finance.

  • 7 authors
·
Nov 7, 2025

Zero-shot Benchmarking: A Framework for Flexible and Scalable Automatic Evaluation of Language Models

As language models improve and become capable of performing more complex tasks across modalities, evaluating them automatically becomes increasingly challenging. Developing strong and robust task-specific automatic metrics gets harder, and human-annotated test sets -- which are expensive to create -- saturate more quickly. A compelling alternative is to design reliable strategies to automate the creation of test data and evaluation, but previous attempts either rely on pre-existing data, or focus solely on individual tasks. We present Zero-shot Benchmarking (ZSB), a framework for creating high-quality benchmarks for any task by leveraging language models for both synthetic test data creation and evaluation. ZSB is simple and flexible: it requires only the creation of a prompt for data generation and one for evaluation; it is scalable to tasks and languages where collecting real-world data is costly or impractical; it is model-agnostic, allowing the creation of increasingly challenging benchmarks as models improve. To assess the effectiveness of our framework, we create benchmarks for five text-only tasks and a multi-modal one: general capabilities in four languages (English, Chinese, French, and Korean), translation, and general vision-language capabilities in English. We then rank a broad range of open and closed systems on our benchmarks. ZSB rankings consistently correlate strongly with human rankings, outperforming widely-adopted standard benchmarks. Through ablations, we find that strong benchmarks can be created with open models, and that judge model size and dataset variety are crucial drivers of performance. We release all our benchmarks, and code to reproduce our experiments and to produce new benchmarks.

  • 4 authors
·
Apr 1, 2025

MME-SCI: A Comprehensive and Challenging Science Benchmark for Multimodal Large Language Models

Recently, multimodal large language models (MLLMs) have achieved significant advancements across various domains, and corresponding evaluation benchmarks have been continuously refined and improved. In this process, benchmarks in the scientific domain have played an important role in assessing the reasoning capabilities of MLLMs. However, existing benchmarks still face three key challenges: 1) Insufficient evaluation of models' reasoning abilities in multilingual scenarios; 2) Inadequate assessment of MLLMs' comprehensive modality coverage; 3) Lack of fine-grained annotation of scientific knowledge points. To address these gaps, we propose MME-SCI, a comprehensive and challenging benchmark. We carefully collected 1,019 high-quality question-answer pairs, which involve 3 distinct evaluation modes. These pairs cover four subjects, namely mathematics, physics, chemistry, and biology, and support five languages: Chinese, English, French, Spanish, and Japanese. We conducted extensive experiments on 16 open-source models and 4 closed-source models, and the results demonstrate that MME-SCI is widely challenging for existing MLLMs. For instance, under the Image-only evaluation mode, o4-mini achieved accuracy of only 52.11%, 24.73%, 36.57%, and 29.80% in mathematics, physics, chemistry, and biology, respectively, indicating a significantly higher difficulty level compared to existing benchmarks. More importantly, using MME-SCI's multilingual and fine-grained knowledge attributes, we analyzed existing models' performance in depth and identified their weaknesses in specific domains. The Data and Evaluation Code are available at https://github.com/JCruan519/MME-SCI.

  • 6 authors
·
Aug 19, 2025

Agent AI with LangGraph: A Modular Framework for Enhancing Machine Translation Using Large Language Models

This paper explores the transformative role of Agent AI and LangGraph in advancing the automation and effectiveness of machine translation (MT). Agents are modular components designed to perform specific tasks, such as translating between particular languages, with specializations like TranslateEnAgent, TranslateFrenchAgent, and TranslateJpAgent for English, French, and Japanese translations, respectively. These agents leverage the powerful semantic capabilities of large language models (LLMs), such as GPT-4o, to ensure accurate, contextually relevant translations while maintaining modularity, scalability, and context retention. LangGraph, a graph-based framework built on LangChain, simplifies the creation and management of these agents and their workflows. It supports dynamic state management, enabling agents to maintain dialogue context and automates complex workflows by linking agents and facilitating their collaboration. With flexibility, open-source community support, and seamless integration with LLMs, LangGraph empowers agents to deliver high-quality translations. Together, Agent AI and LangGraph create a cohesive system where LangGraph orchestrates agent interactions, ensuring that user inputs are analyzed, routed, and processed efficiently. Experimental results demonstrate the potential of this system to enhance multilingual translation accuracy and scalability. By highlighting modular design and automated workflows, this paper sets the stage for further innovations in intelligent machine translation services.

  • 2 authors
·
Dec 4, 2024

PISA-Bench: The PISA Index as a Multilingual and Multimodal Metric for the Evaluation of Vision-Language Models

Vision-language models (VLMs) have demonstrated remarkable progress in multimodal reasoning. However, existing benchmarks remain limited in terms of high-quality, human-verified examples. Many current datasets rely on synthetically generated content by large language models (LLMs). Furthermore, most datasets are limited to English, as manual quality assurance of translated samples is time-consuming and costly. To fill this gap, we introduce PISA-Bench, a multilingual benchmark derived from English examples of the expert-created PISA tests, a unified framework for the assessment of student competencies in over eighty countries. Each example consists of human-extracted instructions, questions, answer options, and images, enriched with question type categories, and has been translated from English into five additional languages (Spanish, German, Chinese, French, and Italian), resulting in a fully parallel corpus covering six languages. We evaluate state-of-the-art vision-language models on PISA-Bench and find that especially small models (<20B parameters) fail to achieve high test scores. We further find substantial performance degradation on non-English splits as well as high error-rates when models are tasked with spatial and geometric reasoning. By releasing the dataset and evaluation framework, we provide a resource for advancing research on multilingual multimodal reasoning.

  • 5 authors
·
Oct 27, 2025

FairTranslate: An English-French Dataset for Gender Bias Evaluation in Machine Translation by Overcoming Gender Binarity

Large Language Models (LLMs) are increasingly leveraged for translation tasks but often fall short when translating inclusive language -- such as texts containing the singular 'they' pronoun or otherwise reflecting fair linguistic protocols. Because these challenges span both computational and societal domains, it is imperative to critically evaluate how well LLMs handle inclusive translation with a well-founded framework. This paper presents FairTranslate, a novel, fully human-annotated dataset designed to evaluate non-binary gender biases in machine translation systems from English to French. FairTranslate includes 2418 English-French sentence pairs related to occupations, annotated with rich metadata such as the stereotypical alignment of the occupation, grammatical gender indicator ambiguity, and the ground-truth gender label (male, female, or inclusive). We evaluate four leading LLMs (Gemma2-2B, Mistral-7B, Llama3.1-8B, Llama3.3-70B) on this dataset under different prompting procedures. Our results reveal substantial biases in gender representation across LLMs, highlighting persistent challenges in achieving equitable outcomes in machine translation. These findings underscore the need for focused strategies and interventions aimed at ensuring fair and inclusive language usage in LLM-based translation systems. We make the FairTranslate dataset publicly available on Hugging Face, and disclose the code for all experiments on GitHub.

  • 3 authors
·
Apr 22, 2025

Pensez: Less Data, Better Reasoning -- Rethinking French LLM

Large language models (LLMs) have demonstrated remarkable capabilities in various natural language processing tasks. However, achieving strong performance in specialized domains like mathematical reasoning and non-English languages often requires extensive training on massive datasets. This paper investigates a contrasting approach: strategic fine-tuning on a small, high-quality, bilingual (English-French) dataset to enhance both the reasoning capabilities and French language proficiency of a large language model. Rather than relying on scale, we explore the hypothesis that targeted data curation and optimized training can achieve competitive, or even superior, performance. We demonstrate, through targeted supervised fine-tuning (SFT) on only 2,000 carefully selected samples, significant improvements in mathematical reasoning. Specifically, Pensez 7B exhibits an increase in accuracy of the base model up to 20% on the AIME25 and a 12% increase on a French MATH level 5 benchmark. These results challenge the prevailing assumption that massive datasets are aprerequisite for strong reasoning performance in LLMs, highlighting the potential of strategic data curation and optimized fine-tuning for enhancing both specialized skills and multilingual capabilities. Our findings have implications for the efficient development of high-performing, multilingual LLMs, especially in resource-constrained scenarios.

  • 1 authors
·
Mar 17, 2025 2

Multilingual LLMs Struggle to Link Orthography and Semantics in Bilingual Word Processing

Bilingual lexical processing is shaped by the complex interplay of phonological, orthographic, and semantic features of two languages within an integrated mental lexicon. In humans, this is evident in the ease with which cognate words - words similar in both orthographic form and meaning (e.g., blind, meaning "sightless" in both English and German) - are processed, compared to the challenges posed by interlingual homographs, which share orthographic form but differ in meaning (e.g., gift, meaning "present" in English but "poison" in German). We investigate how multilingual Large Language Models (LLMs) handle such phenomena, focusing on English-Spanish, English-French, and English-German cognates, non-cognate, and interlingual homographs. Specifically, we evaluate their ability to disambiguate meanings and make semantic judgments, both when these word types are presented in isolation or within sentence contexts. Our findings reveal that while certain LLMs demonstrate strong performance in recognizing cognates and non-cognates in isolation, they exhibit significant difficulty in disambiguating interlingual homographs, often performing below random baselines. This suggests LLMs tend to rely heavily on orthographic similarities rather than semantic understanding when interpreting interlingual homographs. Further, we find LLMs exhibit difficulty in retrieving word meanings, with performance in isolative disambiguation tasks having no correlation with semantic understanding. Finally, we study how the LLM processes interlingual homographs in incongruent sentences. We find models to opt for different strategies in understanding English and non-English homographs, highlighting a lack of a unified approach to handling cross-lingual ambiguities.

  • 3 authors
·
Jan 15, 2025

A Study of Gender Impact in Self-supervised Models for Speech-to-Text Systems

Self-supervised models for speech processing emerged recently as popular foundation blocks in speech processing pipelines. These models are pre-trained on unlabeled audio data and then used in speech processing downstream tasks such as automatic speech recognition (ASR) or speech translation (ST). Since these models are now used in research and industrial systems alike, it becomes necessary to understand the impact caused by some features such as gender distribution within pre-training data. Using French as our investigation language, we train and compare gender-specific wav2vec 2.0 models against models containing different degrees of gender balance in their pre-training data. The comparison is performed by applying these models to two speech-to-text downstream tasks: ASR and ST. Results show the type of downstream integration matters. We observe lower overall performance using gender-specific pre-training before fine-tuning an end-to-end ASR system. However, when self-supervised models are used as feature extractors, the overall ASR and ST results follow more complex patterns in which the balanced pre-trained model does not necessarily lead to the best results. Lastly, our crude 'fairness' metric, the relative performance difference measured between female and male test sets, does not display a strong variation from balanced to gender-specific pre-trained wav2vec 2.0 models.

  • 4 authors
·
Apr 4, 2022

Preserving In-Context Learning ability in Large Language Model Fine-tuning

Pretrained large language models (LLMs) are strong in-context learners that are able to perform few-shot learning without changing model parameters. However, as we show, fine-tuning an LLM on any specific task generally destroys its in-context ability. We discover an important cause of this loss, format specialization, where the model overfits to the format of the fine-tuned task and is unable to output anything beyond this format. We further show that format specialization happens at the beginning of fine-tuning. To solve this problem, we propose Prompt Tuning with MOdel Tuning (ProMoT), a simple yet effective two-stage fine-tuning framework that preserves in-context abilities of the pretrained model. ProMoT first trains a soft prompt for the fine-tuning target task, and then fine-tunes the model itself with this soft prompt attached. ProMoT offloads task-specific formats into the soft prompt that can be removed when doing other in-context tasks. We fine-tune mT5 XXL with ProMoT on natural language inference (NLI) and English-French translation and evaluate the in-context abilities of the resulting models on 8 different NLP tasks. ProMoT achieves similar performance on the fine-tuned tasks compared with vanilla fine-tuning, but with much less reduction of in-context learning performances across the board. More importantly, ProMoT shows remarkable generalization ability on tasks that have different formats, e.g. fine-tuning on a NLI binary classification task improves the model's in-context ability to do summarization (+0.53 Rouge-2 score compared to the pretrained model), making ProMoT a promising method to build general purpose capabilities such as grounding and reasoning into LLMs with small but high quality datasets. When extended to sequential or multi-task training, ProMoT can achieve even better out-of-domain generalization performance.

  • 8 authors
·
Nov 1, 2022 1

Pantagruel: Unified Self-Supervised Encoders for French Text and Speech

We release Pantagruel models, a new family of self-supervised encoder models for French text and speech. Instead of predicting modality-tailored targets such as textual tokens or speech units, Pantagruel learns contextualized target representations in the feature space, allowing modality-specific encoders to capture linguistic and acoustic regularities more effectively. Separate models are pre-trained on large-scale French corpora, including Wikipedia, OSCAR and CroissantLLM for text, together with MultilingualLibriSpeech, LeBenchmark, and INA-100k for speech. INA-100k is a newly introduced 100,000-hour corpus of French audio derived from the archives of the Institut National de l'Audiovisuel (INA), the national repository of French radio and television broadcasts, providing highly diverse audio data. We evaluate Pantagruel across a broad range of downstream tasks spanning both modalities, including those from the standard French benchmarks such as FLUE or LeBenchmark. Across these tasks, Pantagruel models show competitive or superior performance compared to strong French baselines such as CamemBERT, FlauBERT, and LeBenchmark2.0, while maintaining a shared architecture that can seamlessly handle either speech or text inputs. These results confirm the effectiveness of feature-space self-supervised objectives for French representation learning and highlight Pantagruel as a robust foundation for multimodal speech-text understanding.

  • 30 authors
·
Jan 9

Leveraging Large Language Models for Mobile App Review Feature Extraction

Mobile app review analysis presents unique challenges due to the low quality, subjective bias, and noisy content of user-generated documents. Extracting features from these reviews is essential for tasks such as feature prioritization and sentiment analysis, but it remains a challenging task. Meanwhile, encoder-only models based on the Transformer architecture have shown promising results for classification and information extraction tasks for multiple software engineering processes. This study explores the hypothesis that encoder-only large language models can enhance feature extraction from mobile app reviews. By leveraging crowdsourced annotations from an industrial context, we redefine feature extraction as a supervised token classification task. Our approach includes extending the pre-training of these models with a large corpus of user reviews to improve contextual understanding and employing instance selection techniques to optimize model fine-tuning. Empirical evaluations demonstrate that this method improves the precision and recall of extracted features and enhances performance efficiency. Key contributions include a novel approach to feature extraction, annotated datasets, extended pre-trained models, and an instance selection mechanism for cost-effective fine-tuning. This research provides practical methods and empirical evidence in applying large language models to natural language processing tasks within mobile app reviews, offering improved performance in feature extraction.

  • 5 authors
·
Aug 2, 2024

Pre-training A Neural Language Model Improves The Sample Efficiency of an Emergency Room Classification Model

To build a French national electronic injury surveillance system based on emergency room visits, we aim to develop a coding system to classify their causes from clinical notes in free-text. Supervised learning techniques have shown good results in this area but require a large amount of expert annotated dataset which is time consuming and costly to obtain. We hypothesize that the Natural Language Processing Transformer model incorporating a generative self-supervised pre-training step can significantly reduce the required number of annotated samples for supervised fine-tuning. In this preliminary study, we test our hypothesis in the simplified problem of predicting whether a visit is the consequence of a traumatic event or not from free-text clinical notes. Using fully re-trained GPT-2 models (without OpenAI pre-trained weights), we assess the gain of applying a self-supervised pre-training phase with unlabeled notes prior to the supervised learning task. Results show that the number of data required to achieve a ginve level of performance (AUC>0.95) was reduced by a factor of 10 when applying pre-training. Namely, for 16 times more data, the fully-supervised model achieved an improvement <1% in AUC. To conclude, it is possible to adapt a multi-purpose neural language model such as the GPT-2 to create a powerful tool for classification of free-text notes with only a small number of labeled samples.

  • 6 authors
·
Aug 30, 2019

Multiple Choice Questions and Large Languages Models: A Case Study with Fictional Medical Data

Large Language Models (LLMs) like ChatGPT demonstrate significant potential in the medical field, often evaluated using multiple-choice questions (MCQs) similar to those found on the USMLE. Despite their prevalence in medical education, MCQs have limitations that might be exacerbated when assessing LLMs. To evaluate the effectiveness of MCQs in assessing the performance of LLMs, we developed a fictional medical benchmark focused on a non-existent gland, the Glianorex. This approach allowed us to isolate the knowledge of the LLM from its test-taking abilities. We used GPT-4 to generate a comprehensive textbook on the Glianorex in both English and French and developed corresponding multiple-choice questions in both languages. We evaluated various open-source, proprietary, and domain-specific LLMs using these questions in a zero-shot setting. The models achieved average scores around 67%, with minor performance differences between larger and smaller models. Performance was slightly higher in English than in French. Fine-tuned medical models showed some improvement over their base versions in English but not in French. The uniformly high performance across models suggests that traditional MCQ-based benchmarks may not accurately measure LLMs' clinical knowledge and reasoning abilities, instead highlighting their pattern recognition skills. This study underscores the need for more robust evaluation methods to better assess the true capabilities of LLMs in medical contexts.

  • 4 authors
·
Jun 4, 2024

Augmentation Invariant Discrete Representation for Generative Spoken Language Modeling

Generative Spoken Language Modeling research focuses on optimizing speech Language Models (LMs) using raw audio recordings without accessing any textual supervision. Such speech LMs usually operate over discrete units obtained from quantizing internal representations of self-supervised models. Although such units show impressive modeling results, their robustness capabilities have not been extensively investigated. This work focuses on improving the robustness of discrete input representations for generative spoken language modeling. First, we formally define how to measure the robustness of such representations to various signal variations that do not alter the spoken information (e.g., time-stretch). Next, we empirically demonstrate how current state-of-the-art representation models lack robustness to such variations. To overcome this, we propose an effective and efficient method to learn robust discrete speech representation for generative spoken language modeling. The proposed approach is based on applying a set of signal transformations to the speech signal and optimizing the model using an iterative pseudo-labeling scheme. Our method significantly improves over the evaluated baselines when considering encoding and modeling metrics. We additionally evaluate our method on the speech-to-speech translation task, considering Spanish-English and French-English translations, and show the proposed approach outperforms the evaluated baselines.

  • 8 authors
·
Sep 30, 2022

Dolma: an Open Corpus of Three Trillion Tokens for Language Model Pretraining Research

Language models have become a critical technology to tackling a wide range of natural language processing tasks, yet many details about how the best-performing language models were developed are not reported. In particular, information about their pretraining corpora is seldom discussed: commercial language models rarely provide any information about their data; even open models rarely release datasets they are trained on, or an exact recipe to reproduce them. As a result, it is challenging to conduct certain threads of language modeling research, such as understanding how training data impacts model capabilities and shapes their limitations. To facilitate open research on language model pretraining, we release Dolma, a three trillion tokens English corpus, built from a diverse mixture of web content, scientific papers, code, public-domain books, social media, and encyclopedic materials. In addition, we open source our data curation toolkit to enable further experimentation and reproduction of our work. In this report, we document Dolma, including its design principles, details about its construction, and a summary of its contents. We interleave this report with analyses and experimental results from training language models on intermediate states of Dolma to share what we have learned about important data curation practices, including the role of content or quality filters, deduplication, and multi-source mixing. Dolma has been used to train OLMo, a state-of-the-art, open language model and framework designed to build and study the science of language modeling.

  • 36 authors
·
Jan 31, 2024 1

The Lucie-7B LLM and the Lucie Training Dataset: Open resources for multilingual language generation

We present both the Lucie Training Dataset and the Lucie-7B foundation model. The Lucie Training Dataset is a multilingual collection of textual corpora centered around French and designed to offset anglo-centric biases found in many datasets for large language model pretraining. Its French data is pulled not only from traditional web sources, but also from French cultural heritage documents, filling an important gap in modern datasets. Beyond French, which makes up the largest share of the data, we added documents to support several other European languages, including English, Spanish, German, and Italian. Apart from its value as a resource for French language and culture, an important feature of this dataset is that it prioritizes data rights by minimizing copyrighted material. In addition, building on the philosophy of past open projects, it is redistributed in the form used for training and its processing is described on Hugging Face and GitHub. The Lucie-7B foundation model is trained on equal amounts of data in French and English -- roughly 33% each -- in an effort to better represent cultural aspects of French-speaking communities. We also describe two instruction fine-tuned models, Lucie-7B-Instruct-v1.1 and Lucie-7B-Instruct-human-data, which we release as demonstrations of Lucie-7B in use. These models achieve promising results compared to state-of-the-art models, demonstrating that an open approach prioritizing data rights can still deliver strong performance. We see these models as an initial step toward developing more performant, aligned models in the near future. Model weights for Lucie-7B and the Lucie instruct models, along with intermediate checkpoints for the former, are published on Hugging Face, while model training and data preparation code is available on GitHub. This makes Lucie-7B one of the first OSI compliant language models according to the new OSI definition.

  • 9 authors
·
Mar 15, 2025 1

T-FREX: A Transformer-based Feature Extraction Method from Mobile App Reviews

Mobile app reviews are a large-scale data source for software-related knowledge generation activities, including software maintenance, evolution and feedback analysis. Effective extraction of features (i.e., functionalities or characteristics) from these reviews is key to support analysis on the acceptance of these features, identification of relevant new feature requests and prioritization of feature development, among others. Traditional methods focus on syntactic pattern-based approaches, typically context-agnostic, evaluated on a closed set of apps, difficult to replicate and limited to a reduced set and domain of apps. Meanwhile, the pervasiveness of Large Language Models (LLMs) based on the Transformer architecture in software engineering tasks lays the groundwork for empirical evaluation of the performance of these models to support feature extraction. In this study, we present T-FREX, a Transformer-based, fully automatic approach for mobile app review feature extraction. First, we collect a set of ground truth features from users in a real crowdsourced software recommendation platform and transfer them automatically into a dataset of app reviews. Then, we use this newly created dataset to fine-tune multiple LLMs on a named entity recognition task under different data configurations. We assess the performance of T-FREX with respect to this ground truth, and we complement our analysis by comparing T-FREX with a baseline method from the field. Finally, we assess the quality of new features predicted by T-FREX through an external human evaluation. Results show that T-FREX outperforms on average the traditional syntactic-based method, especially when discovering new features from a domain for which the model has been fine-tuned.

  • 5 authors
·
Jan 8, 2024

TunBERT: Pretrained Contextualized Text Representation for Tunisian Dialect

Pretrained contextualized text representation models learn an effective representation of a natural language to make it machine understandable. After the breakthrough of the attention mechanism, a new generation of pretrained models have been proposed achieving good performances since the introduction of the Transformer. Bidirectional Encoder Representations from Transformers (BERT) has become the state-of-the-art model for language understanding. Despite their success, most of the available models have been trained on Indo-European languages however similar research for under-represented languages and dialects remains sparse. In this paper, we investigate the feasibility of training monolingual Transformer-based language models for under represented languages, with a specific focus on the Tunisian dialect. We evaluate our language model on sentiment analysis task, dialect identification task and reading comprehension question-answering task. We show that the use of noisy web crawled data instead of structured data (Wikipedia, articles, etc.) is more convenient for such non-standardized language. Moreover, results indicate that a relatively small web crawled dataset leads to performances that are as good as those obtained using larger datasets. Finally, our best performing TunBERT model reaches or improves the state-of-the-art in all three downstream tasks. We release the TunBERT pretrained model and the datasets used for fine-tuning.

  • 9 authors
·
Nov 25, 2021

A Survey on Large Language Models with Multilingualism: Recent Advances and New Frontiers

The rapid development of Large Language Models (LLMs) demonstrates remarkable multilingual capabilities in natural language processing, attracting global attention in both academia and industry. To mitigate potential discrimination and enhance the overall usability and accessibility for diverse language user groups, it is important for the development of language-fair technology. Despite the breakthroughs of LLMs, the investigation into the multilingual scenario remains insufficient, where a comprehensive survey to summarize recent approaches, developments, limitations, and potential solutions is desirable. To this end, we provide a survey with multiple perspectives on the utilization of LLMs in the multilingual scenario. We first rethink the transitions between previous and current research on pre-trained language models. Then we introduce several perspectives on the multilingualism of LLMs, including training and inference methods, model security, multi-domain with language culture, and usage of datasets. We also discuss the major challenges that arise in these aspects, along with possible solutions. Besides, we highlight future research directions that aim at further enhancing LLMs with multilingualism. The survey aims to help the research community address multilingual problems and provide a comprehensive understanding of the core concepts, key techniques, and latest developments in multilingual natural language processing based on LLMs.

  • 12 authors
·
May 17, 2024

Are Multilingual Models the Best Choice for Moderately Under-resourced Languages? A Comprehensive Assessment for Catalan

Multilingual language models have been a crucial breakthrough as they considerably reduce the need of data for under-resourced languages. Nevertheless, the superiority of language-specific models has already been proven for languages having access to large amounts of data. In this work, we focus on Catalan with the aim to explore to what extent a medium-sized monolingual language model is competitive with state-of-the-art large multilingual models. For this, we: (1) build a clean, high-quality textual Catalan corpus (CaText), the largest to date (but only a fraction of the usual size of the previous work in monolingual language models), (2) train a Transformer-based language model for Catalan (BERTa), and (3) devise a thorough evaluation in a diversity of settings, comprising a complete array of downstream tasks, namely, Part of Speech Tagging, Named Entity Recognition and Classification, Text Classification, Question Answering, and Semantic Textual Similarity, with most of the corresponding datasets being created ex novo. The result is a new benchmark, the Catalan Language Understanding Benchmark (CLUB), which we publish as an open resource, together with the clean textual corpus, the language model, and the cleaning pipeline. Using state-of-the-art multilingual models and a monolingual model trained only on Wikipedia as baselines, we consistently observe the superiority of our model across tasks and settings.

  • 8 authors
·
Jul 16, 2021

A Survey on Mixture of Experts

Large language models (LLMs) have garnered unprecedented advancements across diverse fields, ranging from natural language processing to computer vision and beyond. The prowess of LLMs is underpinned by their substantial model size, extensive and diverse datasets, and the vast computational power harnessed during training, all of which contribute to the emergent abilities of LLMs (e.g., in-context learning) that are not present in small models. Within this context, the mixture of experts (MoE) has emerged as an effective method for substantially scaling up model capacity with minimal computation overhead, gaining significant attention from academia and industry. Despite its growing prevalence, there lacks a systematic and comprehensive review of the literature on MoE. This survey seeks to bridge that gap, serving as an essential resource for researchers delving into the intricacies of MoE. We first briefly introduce the structure of the MoE layer, followed by proposing a new taxonomy of MoE. Next, we overview the core designs for various MoE models including both algorithmic and systemic aspects, alongside collections of available open-source implementations, hyperparameter configurations and empirical evaluations. Furthermore, we delineate the multifaceted applications of MoE in practice, and outline some potential directions for future research. To facilitate ongoing updates and the sharing of cutting-edge developments in MoE research, we have established a resource repository accessible at https://github.com/withinmiaov/A-Survey-on-Mixture-of-Experts.

  • 6 authors
·
Jun 26, 2024

Language Ranker: A Metric for Quantifying LLM Performance Across High and Low-Resource Languages

The development of Large Language Models (LLMs) relies on extensive text corpora, which are often unevenly distributed across languages. This imbalance results in LLMs performing significantly better on high-resource languages like English, German, and French, while their capabilities in low-resource languages remain inadequate. Currently, there is a lack of quantitative methods to evaluate the performance of LLMs in these low-resource languages. To address this gap, we propose the Language Ranker, an intrinsic metric designed to benchmark and rank languages based on LLM performance using internal representations. By comparing the LLM's internal representation of various languages against a baseline derived from English, we can assess the model's multilingual capabilities in a robust and language-agnostic manner. Our analysis reveals that high-resource languages exhibit higher similarity scores with English, demonstrating superior performance, while low-resource languages show lower similarity scores, underscoring the effectiveness of our metric in assessing language-specific capabilities. Besides, the experiments show that there is a strong correlation between the LLM's performance in different languages and the proportion of those languages in its pre-training corpus. These insights underscore the efficacy of the Language Ranker as a tool for evaluating LLM performance across different languages, particularly those with limited resources.

  • 7 authors
·
Apr 17, 2024

An Empirical Comparison of Vocabulary Expansion and Initialization Approaches for Language Models

Language Models (LMs) excel in natural language processing tasks for English but show reduced performance in most other languages. This problem is commonly tackled by continually pre-training and fine-tuning these models for said languages. A significant issue in this process is the limited vocabulary coverage in the original model's tokenizer, leading to inadequate representation of new languages and necessitating an expansion of the tokenizer. The initialization of the embeddings corresponding to new vocabulary items presents a further challenge. Current strategies require cross-lingual embeddings and lack a solid theoretical foundation as well as comparisons with strong baselines. In this paper, we first establish theoretically that initializing within the convex hull of existing embeddings is a good initialization, followed by a novel but simple approach, Constrained Word2Vec (CW2V), which does not require cross-lingual embeddings. Our study evaluates different initialization methods for expanding RoBERTa and LLaMA 2 across four languages and five tasks. The results show that CW2V performs equally well or even better than more advanced techniques. Additionally, simpler approaches like multivariate initialization perform on par with these advanced methods indicating that efficient large-scale multilingual continued pretraining can be achieved even with simpler initialization methods.

  • 6 authors
·
Jul 8, 2024

NileChat: Towards Linguistically Diverse and Culturally Aware LLMs for Local Communities

Enhancing the linguistic capabilities of Large Language Models (LLMs) to include low-resource languages is a critical research area. Current research directions predominantly rely on synthetic data generated by translating English corpora, which, while demonstrating promising linguistic understanding and translation abilities, often results in models aligned with source language culture. These models frequently fail to represent the cultural heritage and values of local communities. This work proposes a methodology to create both synthetic and retrieval-based pre-training data tailored to a specific community, considering its (i) language, (ii) cultural heritage, and (iii) cultural values. We demonstrate our methodology using Egyptian and Moroccan dialects as testbeds, chosen for their linguistic and cultural richness and current underrepresentation in LLMs. As a proof-of-concept, we develop NileChat, a 3B parameter LLM adapted for Egyptian and Moroccan communities, incorporating their language, cultural heritage, and values. Our results on various understanding, translation, and cultural and values alignment benchmarks show that NileChat outperforms existing Arabic-aware LLMs of similar size and performs on par with larger models. We share our methods, data, and models with the community to promote the inclusion and coverage of more diverse communities in LLM development.

  • 5 authors
·
May 23, 2025 2

Contextual Code Switching for Machine Translation using Language Models

Large language models (LLMs) have exerted a considerable impact on diverse language-related tasks in recent years. Their demonstrated state-of-the-art performance is achieved through methodologies such as zero-shot or few-shot prompting. These models undergo training on extensive datasets that encompass segments of the Internet and subsequently undergo fine-tuning tailored to specific tasks. Notably, they exhibit proficiency in tasks such as translation, summarization, question answering, and creative writing, even in the absence of explicit training for those particular tasks. While they have shown substantial improvement in the multilingual tasks their performance in the code switching, especially for machine translation remains relatively uncharted. In this paper, we present an extensive study on the code switching task specifically for the machine translation task comparing multiple LLMs. Our results indicate that despite the LLMs having promising results in the certain tasks, the models with relatively lesser complexity outperform the multilingual large language models in the machine translation task. We posit that the efficacy of multilingual large language models in contextual code switching is constrained by their training methodologies. In contrast, relatively smaller models, when trained and fine-tuned on bespoke datasets, may yield superior results in comparison to the majority of multilingual models.

  • 2 authors
·
Dec 20, 2023