1 Priority-Aware Preemptive Scheduling for Mixed-Priority Workloads in MoE Inference Large Language Models have revolutionized natural language processing, yet serving them efficiently in data centers remains challenging due to mixed workloads comprising latency-sensitive (LS) and best-effort (BE) jobs. Existing inference systems employ iteration-level first-come-first-served scheduling, causing head-of-line blocking when BE jobs delay LS jobs. We introduce QLLM, a novel inference system designed for Mixture of Experts (MoE) models, featuring a fine-grained, priority-aware preemptive scheduler. QLLM enables expert-level preemption, deferring BE job execution while minimizing LS time-to-first-token (TTFT). Our approach removes iteration-level scheduling constraints, enabling the scheduler to preempt jobs at any layer based on priority. Evaluations on an Nvidia A100 GPU show that QLLM significantly improves performance. It reduces LS TTFT by an average of 65.5times and meets the SLO at up to 7 requests/sec, whereas the baseline fails to do so under the tested workload. Additionally, it cuts LS turnaround time by up to 12.8times without impacting throughput. QLLM is modular, extensible, and seamlessly integrates with Hugging Face MoE models. 4 authors · Mar 12, 2025
2 LLaDA-MoE: A Sparse MoE Diffusion Language Model We introduce LLaDA-MoE, a large language diffusion model with the Mixture-of-Experts (MoE) architecture, trained from scratch on approximately 20T tokens. LLaDA-MoE achieves competitive performance with significantly reduced computational overhead by maintaining a 7B-parameter capacity while activating only 1.4B parameters during inference. Our empirical evaluation reveals that LLaDA-MoE achieves state-of-the-art performance among diffusion language models with larger parameters, surpassing previous diffusion language models LLaDA, LLaDA 1.5, and Dream across multiple benchmarks. The instruct-tuned model LLaDA-MoE-7B-A1B-Instruct demonstrates capabilities comparable to Qwen2.5-3B-Instruct in knowledge understanding, code generation, mathematical reasoning, agent and alignment tasks, despite using fewer active parameters. Our results show that integrating a sparse MoE architecture into the training objective of masked diffusion language models still brings out MoE's strengths under efficient inference with few active parameters, and opens ample room for further exploration of diffusion language models. LLaDA-MoE models are available at Huggingface. 26 authors · Sep 29, 2025