3 PETCI: A Parallel English Translation Dataset of Chinese Idioms Idioms are an important language phenomenon in Chinese, but idiom translation is notoriously hard. Current machine translation models perform poorly on idiom translation, while idioms are sparse in many translation datasets. We present PETCI, a parallel English translation dataset of Chinese idioms, aiming to improve idiom translation by both human and machine. The dataset is built by leveraging human and machine effort. Baseline generation models show unsatisfactory abilities to improve translation, but structure-aware classification models show good performance on distinguishing good translations. Furthermore, the size of PETCI can be easily increased without expertise. Overall, PETCI can be helpful to language learners and machine translation systems. University of Chicago · Feb 18, 2022
- Idioms: Neural Decompilation With Joint Code and Type Prediction Decompilers are important tools for reverse engineers that help them analyze software at a higher level of abstraction than assembly. Unfortunately, because compilation is lossy, deterministic decompilers produce code that is missing many of the details that make source code readable in the first place, like variable names and types. Neural decompilers, on the other hand, offer the ability to statistically fill in these details. Existing work in neural decompilation, however, suffers from substantial drawbacks that limits its ability to handle real code: it is unable to handle user-defined composite types, which are essential to fully specifying many functions' semantics, or require test cases. In this work, we introduce a new training process to finetune any LLM into a neural decompiler capable of generating the appropriate user-defined types alongside the decompilation. We introduce a new dataset, Realtype, that includes substantially more complicated and realistic types than existing neural decompilation benchmarks. Motivated by the intuition that different parts of data structures can be operated upon by different parts of the program, we show that interprocedural context can help improve neural decompilers' ability to handle user-defined types. We show that our training process yields state-of-the-art results in neural decompilation. We also publicly release the Idioms series of finetuned neural decompilation models in support of open science. In summary, we identify the need for joint code and type prediction, show that it is a hard problem, and take the first steps towards solving it. 3 authors · Feb 6, 2025
4 Creative and Context-Aware Translation of East Asian Idioms with GPT-4 As a type of figurative language, an East Asian idiom condenses rich cultural background into only a few characters. Translating such idioms is challenging for human translators, who often resort to choosing a context-aware translation from an existing list of candidates. However, compiling a dictionary of candidate translations demands much time and creativity even for expert translators. To alleviate such burden, we evaluate if GPT-4 can help generate high-quality translations. Based on automatic evaluations of faithfulness and creativity, we first identify Pareto-optimal prompting strategies that can outperform translation engines from Google and DeepL. Then, at a low cost, our context-aware translations can achieve far more high-quality translations per idiom than the human baseline. We open-source all code and data to facilitate further research. University of California, Santa Barbara · Oct 1, 2024
1 The Mediomatix Corpus: Parallel Data for Romansh Idioms via Comparable Schoolbooks The five idioms (i.e., varieties) of the Romansh language are largely standardized and are taught in the schools of the respective communities in Switzerland. In this paper, we present the first parallel corpus of Romansh idioms. The corpus is based on 291 schoolbook volumes, which are comparable in content for the five idioms. We use automatic alignment methods to extract 207k multi-parallel segments from the books, with more than 2M tokens in total. A small-scale human evaluation confirms that the segments are highly parallel, making the dataset suitable for NLP applications such as machine translation between Romansh idioms. We release the parallel and unaligned versions of the dataset under a CC-BY-NC-SA license and demonstrate its utility for machine translation by training and evaluating an LLM on a sample of the dataset. 6 authors · Aug 22, 2025
- Comparative Study of Multilingual Idioms and Similes in Large Language Models This study addresses the gap in the literature concerning the comparative performance of LLMs in interpreting different types of figurative language across multiple languages. By evaluating LLMs using two multilingual datasets on simile and idiom interpretation, we explore the effectiveness of various prompt engineering strategies, including chain-of-thought, few-shot, and English translation prompts. We extend the language of these datasets to Persian as well by building two new evaluation sets. Our comprehensive assessment involves both closed-source (GPT-3.5, GPT-4o mini, Gemini 1.5), and open-source models (Llama 3.1, Qwen2), highlighting significant differences in performance across languages and figurative types. Our findings reveal that while prompt engineering methods are generally effective, their success varies by figurative type, language, and model. We also observe that open-source models struggle particularly with low-resource languages in similes. Additionally, idiom interpretation is nearing saturation for many languages, necessitating more challenging evaluations. 6 authors · Oct 21, 2024
- Automatic Evaluation and Analysis of Idioms in Neural Machine Translation A major open problem in neural machine translation (NMT) is the translation of idiomatic expressions, such as "under the weather". The meaning of these expressions is not composed by the meaning of their constituent words, and NMT models tend to translate them literally (i.e., word-by-word), which leads to confusing and nonsensical translations. Research on idioms in NMT is limited and obstructed by the absence of automatic methods for quantifying these errors. In this work, first, we propose a novel metric for automatically measuring the frequency of literal translation errors without human involvement. Equipped with this metric, we present controlled translation experiments with models trained in different conditions (with/without the test-set idioms) and across a wide range of (global and targeted) metrics and test sets. We explore the role of monolingual pretraining and find that it yields substantial targeted improvements, even without observing any translation examples of the test-set idioms. In our analysis, we probe the role of idiom context. We find that the randomly initialized models are more local or "myopic" as they are relatively unaffected by variations of the idiom context, unlike the pretrained ones. 3 authors · Oct 10, 2022
2 Shedding Light on Software Engineering-specific Metaphors and Idioms Use of figurative language, such as metaphors and idioms, is common in our daily-life communications, and it can also be found in Software Engineering (SE) channels, such as comments on GitHub. Automatically interpreting figurative language is a challenging task, even with modern Large Language Models (LLMs), as it often involves subtle nuances. This is particularly true in the SE domain, where figurative language is frequently used to convey technical concepts, often bearing developer affect (e.g., `spaghetti code'). Surprisingly, there is a lack of studies on how figurative language in SE communications impacts the performance of automatic tools that focus on understanding developer communications, e.g., bug prioritization, incivility detection. Furthermore, it is an open question to what extent state-of-the-art LLMs interpret figurative expressions in domain-specific communication such as software engineering. To address this gap, we study the prevalence and impact of figurative language in SE communication channels. This study contributes to understanding the role of figurative language in SE, the potential of LLMs in interpreting them, and its impact on automated SE communication analysis. Our results demonstrate the effectiveness of fine-tuning LLMs with figurative language in SE and its potential impact on automated tasks that involve affect. We found that, among three state-of-the-art LLMs, the best improved fine-tuned versions have an average improvement of 6.66% on a GitHub emotion classification dataset, 7.07% on a GitHub incivility classification dataset, and 3.71% on a Bugzilla bug report prioritization dataset. 3 authors · Dec 15, 2023
1 A Rising Tide Lifts All Boats: MTQE Rewards for Idioms Improve General Translation Quality Non-compositional expressions (e.g., idioms, proverbs, and metaphors) pose significant challenges for neural machine translation systems because their meanings cannot be derived from individual words alone. These expressions encode rich, cultural meaning, and have both figurative and literal meanings, making accurate translation difficult. Because models are fairly good at translating compositional text, we investigate GRPO-style fine-tuning using Machine Translation Quality Estimation (MTQE) models as reward functions to train models to better translate idioms. Using Chinese and Hindi idiom datasets, we find that idiom translation abilities improve by ~14 points, general, non-idiomatic translation implicitly improves by ~8 points, and cross-lingual translation abilities (trained on one language, evaluated on another) improves by ~6 points. Overall, our work quantifies the non-compositional translation gap and offers insights for developing LLMs with stronger cross-cultural and figurative language understanding. 4 authors · Jan 9 2