- Learning Symmetry-Independent Jet Representations via Jet-Based Joint Embedding Predictive Architecture In high energy physics, self-supervised learning (SSL) methods have the potential to aid in the creation of machine learning models without the need for labeled datasets for a variety of tasks, including those related to jets -- narrow sprays of particles produced by quarks and gluons in high energy particle collisions. This study introduces an approach to learning jet representations without hand-crafted augmentations using a jet-based joint embedding predictive architecture (J-JEPA), which aims to predict various physical targets from an informative context. As our method does not require hand-crafted augmentation like other common SSL techniques, J-JEPA avoids introducing biases that could harm downstream tasks. Since different tasks generally require invariance under different augmentations, this training without hand-crafted augmentation enables versatile applications, offering a pathway toward a cross-task foundation model. We finetune the representations learned by J-JEPA for jet tagging and benchmark them against task-specific representations. 6 authors · Dec 5, 2024
1 Rectified LpJEPA: Joint-Embedding Predictive Architectures with Sparse and Maximum-Entropy Representations Joint-Embedding Predictive Architectures (JEPA) learn view-invariant representations and admit projection-based distribution matching for collapse prevention. Existing approaches regularize representations towards isotropic Gaussian distributions, but inherently favor dense representations and fail to capture the key property of sparsity observed in efficient representations. We introduce Rectified Distribution Matching Regularization (RDMReg), a sliced two-sample distribution-matching loss that aligns representations to a Rectified Generalized Gaussian (RGG) distribution. RGG enables explicit control over expected ell_0 norm through rectification, while preserving maximum-entropy up to rescaling under expected ell_p norm constraints. Equipping JEPAs with RDMReg yields Rectified LpJEPA, which strictly generalizes prior Gaussian-based JEPAs. Empirically, Rectified LpJEPA learns sparse, non-negative representations with favorable sparsity-performance trade-offs and competitive downstream performance on image classification benchmarks, demonstrating that RDMReg effectively enforces sparsity while preserving task-relevant information. 5 authors · Feb 1
- PriVi: Towards A General-Purpose Video Model For Primate Behavior In The Wild Non-human primates are our closest living relatives, and analyzing their behavior is central to research in cognition, evolution, and conservation. Computer vision could greatly aid this research, but existing methods often rely on human-centric pretrained models and focus on single datasets, which limits generalization. We address this limitation by shifting from a model-centric to a data-centric approach and introduce PriVi, a large-scale primate-centric video pretraining dataset. PriVi contains 424 hours of curated video, combining 174 hours from behavioral research across 11 settings with 250 hours of diverse web-sourced footage, assembled through a scalable data curation pipeline. We pretrain V-JEPA on PriVi to learn primate-specific representations and evaluate it using a lightweight frozen classifier. Across four benchmark datasets, ChimpACT, BaboonLand, PanAf500, and ChimpBehave, our approach consistently outperforms prior work, including fully finetuned baselines, and scales favorably with fewer labels. These results demonstrate that primate-centric pretraining substantially improves data efficiency and generalization, making it a promising approach for low-label applications. Code, models, and the majority of the dataset will be made available. 23 authors · Nov 12, 2025
2 Learning from Reward-Free Offline Data: A Case for Planning with Latent Dynamics Models A long-standing goal in AI is to build agents that can solve a variety of tasks across different environments, including previously unseen ones. Two dominant approaches tackle this challenge: (i) reinforcement learning (RL), which learns policies through trial and error, and (ii) optimal control, which plans actions using a learned or known dynamics model. However, their relative strengths and weaknesses remain underexplored in the setting where agents must learn from offline trajectories without reward annotations. In this work, we systematically analyze the performance of different RL and control-based methods under datasets of varying quality. On the RL side, we consider goal-conditioned and zero-shot approaches. On the control side, we train a latent dynamics model using the Joint Embedding Predictive Architecture (JEPA) and use it for planning. We study how dataset properties-such as data diversity, trajectory quality, and environment variability-affect the performance of these approaches. Our results show that model-free RL excels when abundant, high-quality data is available, while model-based planning excels in generalization to novel environment layouts, trajectory stitching, and data-efficiency. Notably, planning with a latent dynamics model emerges as a promising approach for zero-shot generalization from suboptimal data. 6 authors · Feb 20, 2025