new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 31

Synthesizing mixed-integer linear programming models from natural language descriptions

Numerous real-world decision-making problems can be formulated and solved using Mixed-Integer Linear Programming (MILP) models. However, the transformation of these problems into MILP models heavily relies on expertise in operations research and mathematical optimization, which restricts non-experts' accessibility to MILP. To address this challenge, we propose a framework for automatically formulating MILP models from unstructured natural language descriptions of decision problems, which integrates Large Language Models (LLMs) and mathematical modeling techniques. This framework consists of three phases: i) identification of decision variables, ii) classification of objective and constraints, and iii) finally, generation of MILP models. In this study, we present a constraint classification scheme and a set of constraint templates that can guide the LLMs in synthesizing a complete MILP model. After fine-tuning LLMs, our approach can identify and synthesize logic constraints in addition to classic demand and resource constraints. The logic constraints have not been studied in existing work. To evaluate the performance of the proposed framework, we extend the NL4Opt dataset with more problem descriptions and constraint types, and with the new dataset, we compare our framework with one-step model generation methods offered by LLMs. The experimental results reveal that with respect to the accuracies of generating the correct model, objective, and constraints, our method which integrates constraint classification and templates with LLMs significantly outperforms the others. The prototype system that we developed has a great potential to capture more constraints for more complex MILPs. It opens up opportunities for developing training tools for operations research practitioners and has the potential to be a powerful tool for automatic decision problem modeling and solving in practice.

  • 3 authors
·
Nov 26, 2023

The FM Agent

Large language models (LLMs) are catalyzing the development of autonomous AI research agents for scientific and engineering discovery. We present FM Agent, a novel and general-purpose multi-agent framework that leverages a synergistic combination of LLM-based reasoning and large-scale evolutionary search to address complex real-world challenges. The core of FM Agent integrates several key innovations: 1) a cold-start initialization phase incorporating expert guidance, 2) a novel evolutionary sampling strategy for iterative optimization, 3) domain-specific evaluators that combine correctness, effectiveness, and LLM-supervised feedback, and 4) a distributed, asynchronous execution infrastructure built on Ray. Demonstrating broad applicability, our system has been evaluated across diverse domains, including operations research, machine learning, GPU kernel optimization, and classical mathematical problems. FM Agent reaches state-of-the-art results autonomously, without human interpretation or tuning -- 1976.3 on ALE-Bench (+5.2\%), 43.56\% on MLE-Bench (+4.0pp), up to 20x speedups on KernelBench, and establishes new state-of-the-art(SOTA) results on several classical mathematical problems. Beyond academic benchmarks, FM Agent shows considerable promise for both large-scale enterprise R\&D workflows and fundamental scientific research, where it can accelerate innovation, automate complex discovery processes, and deliver substantial engineering and scientific advances with broader societal impact.

  • 22 authors
·
Oct 30

Robo-taxi Fleet Coordination at Scale via Reinforcement Learning

Fleets of robo-taxis offering on-demand transportation services, commonly known as Autonomous Mobility-on-Demand (AMoD) systems, hold significant promise for societal benefits, such as reducing pollution, energy consumption, and urban congestion. However, orchestrating these systems at scale remains a critical challenge, with existing coordination algorithms often failing to exploit the systems' full potential. This work introduces a novel decision-making framework that unites mathematical modeling with data-driven techniques. In particular, we present the AMoD coordination problem through the lens of reinforcement learning and propose a graph network-based framework that exploits the main strengths of graph representation learning, reinforcement learning, and classical operations research tools. Extensive evaluations across diverse simulation fidelities and scenarios demonstrate the flexibility of our approach, achieving superior system performance, computational efficiency, and generalizability compared to prior methods. Finally, motivated by the need to democratize research efforts in this area, we release publicly available benchmarks, datasets, and simulators for network-level coordination alongside an open-source codebase designed to provide accessible simulation platforms and establish a standardized validation process for comparing methodologies. Code available at: https://github.com/StanfordASL/RL4AMOD

  • 7 authors
·
Apr 8

Artificial Intelligence in Port Logistics: A Bibliometric Analysis of Technological Integration and Research Dynamics

The paper explores the transformation of port logistics operations with artificial intelligence during the port transformation into a smart port. The research integrates capabilities-based resource analysis and dynamic capabilities with sociotechnicalimplementations of technologies and resilience approaches of complex systems under disruptions. The system applies robustdata infrastructures to propel analytical and AI modules that become effective once integrated with sufficient governance systems and trained personnel and operational processes to transform planning and safety and sustainability operations.It applies Scopus bibliometric research to analyze 123 articles using a systematic approach with both a search protocol and a document screening and duplication verification. It incorporates annual behavior and distribution of author and country performance analysis with science mapping techniques that explore keyword relation and co-citation and bibliographic coupling and conceptual structuring tools that construct thematic maps and multiple correspondence analysis with community detection while applying explicit thresholding and robust tests.The research connects AI applications to smart port domains through specific data-to-impact pathways while providing a method for bibliometric analysis that enables future updates. The research presents a step-by-step approach for data readiness followed by predictive and optimization implementation and organizational integration. The paper supports public policy through recommendations for data sharing standards and complete environmental benefit assessments. The research proposes a future study plan whichcombines field-based testing with multiple port assessments to enhance both cause-effect understanding and research applicability.

  • 4 authors
·
Oct 7

Challenges and Research Directions from the Operational Use of a Machine Learning Damage Assessment System via Small Uncrewed Aerial Systems at Hurricanes Debby and Helene

This paper details four principal challenges encountered with machine learning (ML) damage assessment using small uncrewed aerial systems (sUAS) at Hurricanes Debby and Helene that prevented, degraded, or delayed the delivery of data products during operations and suggests three research directions for future real-world deployments. The presence of these challenges is not surprising given that a review of the literature considering both datasets and proposed ML models suggests this is the first sUAS-based ML system for disaster damage assessment actually deployed as a part of real-world operations. The sUAS-based ML system was applied by the State of Florida to Hurricanes Helene (2 orthomosaics, 3.0 gigapixels collected over 2 sorties by a Wintra WingtraOne sUAS) and Debby (1 orthomosaic, 0.59 gigapixels collected via 1 sortie by a Wintra WingtraOne sUAS) in Florida. The same model was applied to crewed aerial imagery of inland flood damage resulting from post-tropical remnants of Hurricane Debby in Pennsylvania (436 orthophotos, 136.5 gigapixels), providing further insights into the advantages and limitations of sUAS for disaster response. The four challenges (variationin spatial resolution of input imagery, spatial misalignment between imagery and geospatial data, wireless connectivity, and data product format) lead to three recommendations that specify research needed to improve ML model capabilities to accommodate the wide variation of potential spatial resolutions used in practice, handle spatial misalignment, and minimize the dependency on wireless connectivity. These recommendations are expected to improve the effective operational use of sUAS and sUAS-based ML damage assessment systems for disaster response.

  • 4 authors
·
Jun 18

OpsEval: A Comprehensive IT Operations Benchmark Suite for Large Language Models

Information Technology (IT) Operations (Ops), particularly Artificial Intelligence for IT Operations (AIOps), is the guarantee for maintaining the orderly and stable operation of existing information systems. According to Gartner's prediction, the use of AI technology for automated IT operations has become a new trend. Large language models (LLMs) that have exhibited remarkable capabilities in NLP-related tasks, are showing great potential in the field of AIOps, such as in aspects of root cause analysis of failures, generation of operations and maintenance scripts, and summarizing of alert information. Nevertheless, the performance of current LLMs in Ops tasks is yet to be determined. In this paper, we present OpsEval, a comprehensive task-oriented Ops benchmark designed for LLMs. For the first time, OpsEval assesses LLMs' proficiency in various crucial scenarios at different ability levels. The benchmark includes 7184 multi-choice questions and 1736 question-answering (QA) formats in English and Chinese. By conducting a comprehensive performance evaluation of the current leading large language models, we show how various LLM techniques can affect the performance of Ops, and discussed findings related to various topics, including model quantification, QA evaluation, and hallucination issues. To ensure the credibility of our evaluation, we invite dozens of domain experts to manually review our questions. At the same time, we have open-sourced 20% of the test QA to assist current researchers in preliminary evaluations of their OpsLLM models. The remaining 80% of the data, which is not disclosed, is used to eliminate the issue of the test set leakage. Additionally, we have constructed an online leaderboard that is updated in real-time and will continue to be updated, ensuring that any newly emerging LLMs will be evaluated promptly. Both our dataset and leaderboard have been made public.

  • 16 authors
·
Oct 11, 2023

Explore to Evolve: Scaling Evolved Aggregation Logic via Proactive Online Exploration for Deep Research Agents

Deep research web agents not only retrieve information from diverse sources such as web environments, files, and multimodal inputs, but more importantly, they need to rigorously analyze and aggregate knowledge for insightful research. However, existing open-source deep research agents predominantly focus on enhancing information-seeking capabilities of web agents to locate specific information, while overlooking the essential need for information aggregation, which would limit their ability to support in-depth research. We propose an Explore to Evolve paradigm to scalably construct verifiable training data for web agents. Begins with proactive online exploration, an agent sources grounded information by exploring the real web. Using the collected evidence, the agent then self-evolves an aggregation program by selecting, composing, and refining operations from 12 high-level logical types to synthesize a verifiable QA pair. This evolution from high-level guidance to concrete operations allowed us to scalably produce WebAggregatorQA, a dataset of 10K samples across 50K websites and 11 domains. Based on an open-source agent framework, SmolAgents, we collect supervised fine-tuning trajectories to develop a series of foundation models, WebAggregator. WebAggregator-8B matches the performance of GPT-4.1, while the 32B variant surpasses GPT-4.1 by more than 10% on GAIA-text and closely approaches Claude-3.7-sonnet. Moreover, given the limited availability of benchmarks that evaluate web agents' information aggregation abilities, we construct a human-annotated evaluation split of WebAggregatorQA as a challenging test set. On this benchmark, Claude-3.7-sonnet only achieves 28%, and GPT-4.1 scores 25.8%. Even when agents manage to retrieve all references, they still struggle on WebAggregatorQA, highlighting the need to strengthen the information aggregation capabilities of web agent foundations.

On the Workflows and Smells of Leaderboard Operations (LBOps): An Exploratory Study of Foundation Model Leaderboards

Foundation models (FM), such as large language models (LLMs), which are large-scale machine learning (ML) models, have demonstrated remarkable adaptability in various downstream software engineering (SE) tasks, such as code completion, code understanding, and software development. As a result, FM leaderboards, especially those hosted on cloud platforms, have become essential tools for SE teams to compare and select the best third-party FMs for their specific products and purposes. However, the lack of standardized guidelines for FM evaluation and comparison threatens the transparency of FM leaderboards and limits stakeholders' ability to perform effective FM selection. As a first step towards addressing this challenge, our research focuses on understanding how these FM leaderboards operate in real-world scenarios ("leaderboard operations") and identifying potential leaderboard pitfalls and areas for improvement ("leaderboard smells"). In this regard, we perform a multivocal literature review to collect up to 721 FM leaderboards, after which we examine their documentation and engage in direct communication with leaderboard operators to understand their workflow patterns. Using card sorting and negotiated agreement, we identify 5 unique workflow patterns and develop a domain model that outlines the essential components and their interaction within FM leaderboards. We then identify 8 unique types of leaderboard smells in LBOps. By mitigating these smells, SE teams can improve transparency, accountability, and collaboration in current LBOps practices, fostering a more robust and responsible ecosystem for FM comparison and selection.

  • 5 authors
·
Jul 4, 2024

Mixed Precision Training of Convolutional Neural Networks using Integer Operations

The state-of-the-art (SOTA) for mixed precision training is dominated by variants of low precision floating point operations, and in particular, FP16 accumulating into FP32 Micikevicius et al. (2017). On the other hand, while a lot of research has also happened in the domain of low and mixed-precision Integer training, these works either present results for non-SOTA networks (for instance only AlexNet for ImageNet-1K), or relatively small datasets (like CIFAR-10). In this work, we train state-of-the-art visual understanding neural networks on the ImageNet-1K dataset, with Integer operations on General Purpose (GP) hardware. In particular, we focus on Integer Fused-Multiply-and-Accumulate (FMA) operations which take two pairs of INT16 operands and accumulate results into an INT32 output.We propose a shared exponent representation of tensors and develop a Dynamic Fixed Point (DFP) scheme suitable for common neural network operations. The nuances of developing an efficient integer convolution kernel is examined, including methods to handle overflow of the INT32 accumulator. We implement CNN training for ResNet-50, GoogLeNet-v1, VGG-16 and AlexNet; and these networks achieve or exceed SOTA accuracy within the same number of iterations as their FP32 counterparts without any change in hyper-parameters and with a 1.8X improvement in end-to-end training throughput. To the best of our knowledge these results represent the first INT16 training results on GP hardware for ImageNet-1K dataset using SOTA CNNs and achieve highest reported accuracy using half-precision

  • 17 authors
·
Feb 3, 2018

Large language models can consistently generate high-quality content for election disinformation operations

Advances in large language models have raised concerns about their potential use in generating compelling election disinformation at scale. This study presents a two-part investigation into the capabilities of LLMs to automate stages of an election disinformation operation. First, we introduce DisElect, a novel evaluation dataset designed to measure LLM compliance with instructions to generate content for an election disinformation operation in localised UK context, containing 2,200 malicious prompts and 50 benign prompts. Using DisElect, we test 13 LLMs and find that most models broadly comply with these requests; we also find that the few models which refuse malicious prompts also refuse benign election-related prompts, and are more likely to refuse to generate content from a right-wing perspective. Secondly, we conduct a series of experiments (N=2,340) to assess the "humanness" of LLMs: the extent to which disinformation operation content generated by an LLM is able to pass as human-written. Our experiments suggest that almost all LLMs tested released since 2022 produce election disinformation operation content indiscernible by human evaluators over 50% of the time. Notably, we observe that multiple models achieve above-human levels of humanness. Taken together, these findings suggest that current LLMs can be used to generate high-quality content for election disinformation operations, even in hyperlocalised scenarios, at far lower costs than traditional methods, and offer researchers and policymakers an empirical benchmark for the measurement and evaluation of these capabilities in current and future models.

  • 10 authors
·
Aug 13, 2024

Concrete Subspace Learning based Interference Elimination for Multi-task Model Fusion

Merging models fine-tuned from a common, extensively pre-trained large model but specialized for different tasks has been demonstrated as a cheap and scalable strategy to construct a multi-task model that performs well across diverse tasks. Recent research, exemplified by task arithmetic, highlights that this multi-task model can be derived through arithmetic operations on task vectors. Nevertheless, current merging techniques frequently resolve potential conflicts among parameters from task-specific models by evaluating individual attributes, such as the parameters' magnitude or sign, overlooking their collective impact on the overall functionality of the model. In this work, we propose the CONtinuous relaxation of disCRETE (Concrete) subspace learning method to identify a common low-dimensional subspace and utilize its shared information to track the interference problem without sacrificing much performance. Specifically, we model the problem as a bi-level optimization problem and introduce a meta-learning framework to find the Concrete subspace mask through gradient-based techniques. At the upper level, we focus on learning a shared Concrete mask to identify the subspace, while at the inner level, model merging is performed to maximize the performance of the merged model. We conduct extensive experiments on both vision domain and language domain, and the results demonstrate the effectiveness of our method. The code is available at https://github.com/tanganke/subspace_fusion

  • 7 authors
·
Dec 11, 2023

Not All Large Language Models (LLMs) Succumb to the "Reversal Curse": A Comparative Study of Deductive Logical Reasoning in BERT and GPT Models

The "Reversal Curse" refers to the scenario where auto-regressive decoder large language models (LLMs), such as ChatGPT, trained on "A is B" fail to learn "B is A", demonstrating a basic failure of logical deduction. This raises a red flag in the use of GPT models for certain general tasks such as constructing knowledge graphs, considering their adherence to this symmetric principle. In our study, we examined a bidirectional LLM, BERT, and found that it is immune to the reversal curse. Driven by ongoing efforts to construct biomedical knowledge graphs with LLMs, we also embarked on evaluating more complex but essential deductive reasoning capabilities. This process included first training encoder and decoder language models to master the intersection (cap) and union (cup) operations on two sets and then moving on to assess their capability to infer different combinations of union (cup) and intersection (cap) operations on three newly created sets. The findings showed that while both encoder and decoder language models, trained for tasks involving two sets (union/intersection), were proficient in such scenarios, they encountered difficulties when dealing with operations that included three sets (various combinations of union and intersection). Our research highlights the distinct characteristics of encoder and decoder models in simple and complex logical reasoning. In practice, the choice between BERT and GPT should be guided by the specific requirements and nature of the task at hand, leveraging their respective strengths in bidirectional context comprehension and sequence prediction.

  • 3 authors
·
Dec 6, 2023

CookBench: A Long-Horizon Embodied Planning Benchmark for Complex Cooking Scenarios

Embodied Planning is dedicated to the goal of creating agents capable of executing long-horizon tasks in complex physical worlds. However, existing embodied planning benchmarks frequently feature short-horizon tasks and coarse-grained action primitives. To address this challenge, we introduce CookBench, a benchmark for long-horizon planning in complex cooking scenarios. By leveraging a high-fidelity simulation environment built upon the powerful Unity game engine, we define frontier AI challenges in a complex, realistic environment. The core task in CookBench is designed as a two-stage process. First, in Intention Recognition, an agent needs to accurately parse a user's complex intent. Second, in Embodied Interaction, the agent should execute the identified cooking goal through a long-horizon, fine-grained sequence of physical actions. Unlike existing embodied planning benchmarks, we refine the action granularity to a spatial level that considers crucial operational information while abstracting away low-level robotic control. Besides, We provide a comprehensive toolset that encapsulates the simulator. Its unified API supports both macro-level operations, such as placing orders and purchasing ingredients, and a rich set of fine-grained embodied actions for physical interaction, enabling researchers to focus on high-level planning and decision-making. Furthermore, we present an in-depth analysis of state-of-the-art, closed-source Large Language Model and Vision-Language Model, revealing their major shortcomings and challenges posed by complex, long-horizon tasks. The full benchmark will be open-sourced to facilitate future research.

  • 8 authors
·
Aug 5