- Seal-Tools: Self-Instruct Tool Learning Dataset for Agent Tuning and Detailed Benchmark This paper presents a new tool learning dataset Seal-Tools, which contains self-instruct API-like tools. Seal-Tools not only offers a large number of tools, but also includes instances which demonstrate the practical application of tools. Seeking to generate data on a large scale while ensuring reliability, we propose a self-instruct method to generate tools and instances, allowing precise control over the process. Moreover, our Seal-Tools contains hard instances that call multiple tools to complete the job, among which some are nested tool callings. For precise and comprehensive evaluation, we use strict format control and design three metrics from different dimensions. Therefore, Seal-Tools can serve as a new benchmark to evaluate the tool-calling ability of LLMs. Finally, we evaluate several prevalent LLMs and our finetuned model on Seal-Tools. The results show that current systems are far from perfect. The code, data and experiment results are available at https://github.com/fairyshine/Seal-Tools . 6 authors · May 14, 2024
- Toolshed: Scale Tool-Equipped Agents with Advanced RAG-Tool Fusion and Tool Knowledge Bases Recent advancements in tool-equipped Agents (LLMs) have enabled complex tasks like secure database interactions and multi-agent code development. However, scaling tool capacity beyond agent reasoning or model limits remains a challenge. In this paper, we address these challenges by introducing Toolshed Knowledge Bases, a tool knowledge base (vector database) designed to store enhanced tool representations and optimize tool selection for large-scale tool-equipped Agents. Additionally, we propose Advanced RAG-Tool Fusion, a novel ensemble of tool-applied advanced retrieval-augmented generation (RAG) techniques across the pre-retrieval, intra-retrieval, and post-retrieval phases, without requiring model fine-tuning. During pre-retrieval, tool documents are enhanced with key information and stored in the Toolshed Knowledge Base. Intra-retrieval focuses on query planning and transformation to increase retrieval accuracy. Post-retrieval refines the retrieved tool documents and enables self-reflection. Furthermore, by varying both the total number of tools (tool-M) an Agent has access to and the tool selection threshold (top-k), we address trade-offs between retrieval accuracy, agent performance, and token cost. Our approach achieves 46%, 56%, and 47% absolute improvements on the ToolE single-tool, ToolE multi-tool and Seal-Tools benchmark datasets, respectively (Recall@5). 5 authors · Oct 18, 2024
- SEAL: Towards Safe Autonomous Driving via Skill-Enabled Adversary Learning for Closed-Loop Scenario Generation Verification and validation of autonomous driving (AD) systems and components is of increasing importance, as such technology increases in real-world prevalence. Safety-critical scenario generation is a key approach to robustify AD policies through closed-loop training. However, existing approaches for scenario generation rely on simplistic objectives, resulting in overly-aggressive or non-reactive adversarial behaviors. To generate diverse adversarial yet realistic scenarios, we propose SEAL, a scenario perturbation approach which leverages learned objective functions and adversarial, human-like skills. SEAL-perturbed scenarios are more realistic than SOTA baselines, leading to improved ego task success across real-world, in-distribution, and out-of-distribution scenarios, of more than 20%. To facilitate future research, we release our code and tools: https://github.com/cmubig/SEAL 4 authors · Sep 16, 2024
5 SealQA: Raising the Bar for Reasoning in Search-Augmented Language Models We introduce SealQA, a new challenge benchmark for evaluating SEarch-Augmented Language models on fact-seeking questions where web search yields conflicting, noisy, or unhelpful results. SealQA comes in three flavors: (1) Seal-0 (main) and (2) Seal-Hard, which assess factual accuracy and reasoning capabilities, with Seal-0 focusing on the most challenging questions where chat models (e.g., GPT-4.1) typically achieve near-zero accuracy; and (3) LongSeal, which extends SealQA to test long-context, multi-document reasoning in "needle-in-a-haystack" settings. Our evaluation reveals critical limitations in current models: Even frontier LLMs perform poorly across all SealQA flavors. On Seal-0, frontier agentic models equipped with tools like o3 and o4-mini achieve only 17.1% and 6.3% accuracy, respectively, at their best reasoning efforts. We find that advanced reasoning models such as DeepSeek-R1-671B and o3-mini are highly vulnerable to noisy search results. Notably, increasing test-time compute does not yield reliable gains across o3-mini, o4-mini, and o3, with performance often plateauing or even declining early. Additionally, while recent models are less affected by the "lost-in-the-middle" issue, they still fail to reliably identify relevant documents in LongSeal when faced with numerous distractors. To facilitate future work, we release SealQA at huggingface.co/datasets/vtllms/sealqa. 6 authors · Jun 1, 2025 2
- SEAL : Interactive Tool for Systematic Error Analysis and Labeling With the advent of Transformers, large language models (LLMs) have saturated well-known NLP benchmarks and leaderboards with high aggregate performance. However, many times these models systematically fail on tail data or rare groups not obvious in aggregate evaluation. Identifying such problematic data groups is even more challenging when there are no explicit labels (e.g., ethnicity, gender, etc.) and further compounded for NLP datasets due to the lack of visual features to characterize failure modes (e.g., Asian males, animals indoors, waterbirds on land, etc.). This paper introduces an interactive Systematic Error Analysis and Labeling (\seal) tool that uses a two-step approach to first identify high error slices of data and then, in the second step, introduce methods to give human-understandable semantics to those underperforming slices. We explore a variety of methods for coming up with coherent semantics for the error groups using language models for semantic labeling and a text-to-image model for generating visual features. SEAL toolkit and demo screencast is available at https://huggingface.co/spaces/nazneen/seal. 5 authors · Oct 11, 2022
1 SEAL: Suite for Evaluating API-use of LLMs Large language models (LLMs) have limitations in handling tasks that require real-time access to external APIs. While several benchmarks like ToolBench and APIGen have been developed to assess LLMs' API-use capabilities, they often suffer from issues such as lack of generalizability, limited multi-step reasoning coverage, and instability due to real-time API fluctuations. In this paper, we introduce SEAL, an end-to-end testbed designed to evaluate LLMs in real-world API usage. SEAL standardizes existing benchmarks, integrates an agent system for testing API retrieval and planning, and addresses the instability of real-time APIs by introducing a GPT-4-powered API simulator with caching for deterministic evaluations. Our testbed provides a comprehensive evaluation pipeline that covers API retrieval, API calls, and final responses, offering a reliable framework for structured performance comparison in diverse real-world scenarios. SEAL is publicly available, with ongoing updates for new benchmarks. 3 authors · Sep 23, 2024
- Understanding Biology in the Age of Artificial Intelligence Modern life sciences research is increasingly relying on artificial intelligence approaches to model biological systems, primarily centered around the use of machine learning (ML) models. Although ML is undeniably useful for identifying patterns in large, complex data sets, its widespread application in biological sciences represents a significant deviation from traditional methods of scientific inquiry. As such, the interplay between these models and scientific understanding in biology is a topic with important implications for the future of scientific research, yet it is a subject that has received little attention. Here, we draw from an epistemological toolkit to contextualize recent applications of ML in biological sciences under modern philosophical theories of understanding, identifying general principles that can guide the design and application of ML systems to model biological phenomena and advance scientific knowledge. We propose that conceptions of scientific understanding as information compression, qualitative intelligibility, and dependency relation modelling provide a useful framework for interpreting ML-mediated understanding of biological systems. Through a detailed analysis of two key application areas of ML in modern biological research - protein structure prediction and single cell RNA-sequencing - we explore how these features have thus far enabled ML systems to advance scientific understanding of their target phenomena, how they may guide the development of future ML models, and the key obstacles that remain in preventing ML from achieving its potential as a tool for biological discovery. Consideration of the epistemological features of ML applications in biology will improve the prospects of these methods to solve important problems and advance scientific understanding of living systems. 9 authors · Mar 6, 2024
- Graph Neural Networks Based Analog Circuit Link Prediction Circuit link prediction, which identifies missing component connections from incomplete netlists, is crucial in analog circuit design automation. However, existing methods face three main challenges: 1) Insufficient use of topological patterns in circuit graphs reduces prediction accuracy; 2) Data scarcity due to the complexity of annotations hinders model generalization; 3) Limited adaptability to various netlist formats restricts model flexibility. We propose Graph Neural Networks Based Analog Circuit Link Prediction (GNN-ACLP), a graph neural networks (GNNs) based method featuring three innovations to tackle these challenges. First, we introduce the SEAL (learning from Subgraphs, Embeddings, and Attributes for Link prediction) framework and achieve port-level accuracy in circuit link prediction. Second, we propose Netlist Babel Fish, a netlist format conversion tool that leverages retrieval-augmented generation (RAG) with a large language model (LLM) to enhance the compatibility of netlist formats. Finally, we build a comprehensive dataset, SpiceNetlist, comprising 775 annotated circuits of 7 different types across 10 component classes. Experiments demonstrate accuracy improvements of 16.08% on SpiceNetlist, 11.38% on Image2Net, and 16.01% on Masala-CHAI compared to the baseline in intra-dataset evaluation, while maintaining accuracy from 92.05% to 99.07% in cross-dataset evaluation, demonstrating robust feature transfer capabilities. However, its linear computational complexity makes processing large-scale netlists challenging and requires future addressing. 9 authors · Apr 14, 2025