Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeResearch on Optimizing Real-Time Data Processing in High-Frequency Trading Algorithms using Machine Learning
High-frequency trading (HFT) represents a pivotal and intensely competitive domain within the financial markets. The velocity and accuracy of data processing exert a direct influence on profitability, underscoring the significance of this field. The objective of this work is to optimise the real-time processing of data in high-frequency trading algorithms. The dynamic feature selection mechanism is responsible for monitoring and analysing market data in real time through clustering and feature weight analysis, with the objective of automatically selecting the most relevant features. This process employs an adaptive feature extraction method, which enables the system to respond and adjust its feature set in a timely manner when the data input changes, thus ensuring the efficient utilisation of data. The lightweight neural networks are designed in a modular fashion, comprising fast convolutional layers and pruning techniques that facilitate the expeditious completion of data processing and output prediction. In contrast to conventional deep learning models, the neural network architecture has been specifically designed to minimise the number of parameters and computational complexity, thereby markedly reducing the inference time. The experimental results demonstrate that the model is capable of maintaining consistent performance in the context of varying market conditions, thereby illustrating its advantages in terms of processing speed and revenue enhancement.
MacroHFT: Memory Augmented Context-aware Reinforcement Learning On High Frequency Trading
High-frequency trading (HFT) that executes algorithmic trading in short time scales, has recently occupied the majority of cryptocurrency market. Besides traditional quantitative trading methods, reinforcement learning (RL) has become another appealing approach for HFT due to its terrific ability of handling high-dimensional financial data and solving sophisticated sequential decision-making problems, e.g., hierarchical reinforcement learning (HRL) has shown its promising performance on second-level HFT by training a router to select only one sub-agent from the agent pool to execute the current transaction. However, existing RL methods for HFT still have some defects: 1) standard RL-based trading agents suffer from the overfitting issue, preventing them from making effective policy adjustments based on financial context; 2) due to the rapid changes in market conditions, investment decisions made by an individual agent are usually one-sided and highly biased, which might lead to significant loss in extreme markets. To tackle these problems, we propose a novel Memory Augmented Context-aware Reinforcement learning method On HFT, a.k.a. MacroHFT, which consists of two training phases: 1) we first train multiple types of sub-agents with the market data decomposed according to various financial indicators, specifically market trend and volatility, where each agent owns a conditional adapter to adjust its trading policy according to market conditions; 2) then we train a hyper-agent to mix the decisions from these sub-agents and output a consistently profitable meta-policy to handle rapid market fluctuations, equipped with a memory mechanism to enhance the capability of decision-making. Extensive experiments on various cryptocurrency markets demonstrate that MacroHFT can achieve state-of-the-art performance on minute-level trading tasks.
Spiking Neural Networks Need High Frequency Information
Spiking Neural Networks promise brain-inspired and energy-efficient computation by transmitting information through binary (0/1) spikes. Yet, their performance still lags behind that of artificial neural networks, often assumed to result from information loss caused by sparse and binary activations. In this work, we challenge this long-standing assumption and reveal a previously overlooked frequency bias: spiking neurons inherently suppress high-frequency components and preferentially propagate low-frequency information. This frequency-domain imbalance, we argue, is the root cause of degraded feature representation in SNNs. Empirically, on Spiking Transformers, adopting Avg-Pooling (low-pass) for token mixing lowers performance to 76.73% on Cifar-100, whereas replacing it with Max-Pool (high-pass) pushes the top-1 accuracy to 79.12%. Accordingly, we introduce Max-Former that restores high-frequency signals through two frequency-enhancing operators: (1) extra Max-Pool in patch embedding, and (2) Depth-Wise Convolution in place of self-attention. Notably, Max-Former attains 82.39% top-1 accuracy on ImageNet using only 63.99M parameters, surpassing Spikformer (74.81%, 66.34M) by +7.58%. Extending our insight beyond transformers, our Max-ResNet-18 achieves state-of-the-art performance on convolution-based benchmarks: 97.17% on CIFAR-10 and 83.06\% on CIFAR-100. We hope this simple yet effective solution inspires future research to explore the distinctive nature of spiking neural networks. Code is available: https://github.com/bic-L/MaxFormer.
Solving High Frequency and Multi-Scale PDEs with Gaussian Processes
Machine learning based solvers have garnered much attention in physical simulation and scientific computing, with a prominent example, physics-informed neural networks (PINNs). However, PINNs often struggle to solve high-frequency and multi-scale PDEs, which can be due to spectral bias during neural network training. To address this problem, we resort to the Gaussian process (GP) framework. To flexibly capture the dominant frequencies, we model the power spectrum of the PDE solution with a student t mixture or Gaussian mixture. We apply the inverse Fourier transform to obtain the covariance function (by Wiener-Khinchin theorem). The covariance derived from the Gaussian mixture spectrum corresponds to the known spectral mixture kernel. Next, we estimate the mixture weights in the log domain, which we show is equivalent to placing a Jeffreys prior. It automatically induces sparsity, prunes excessive frequencies, and adjusts the remaining toward the ground truth. Third, to enable efficient and scalable computation on massive collocation points, which are critical to capture high frequencies, we place the collocation points on a grid, and multiply our covariance function at each input dimension. We use the GP conditional mean to predict the solution and its derivatives so as to fit the boundary condition and the equation itself. As a result, we can derive a Kronecker product structure in the covariance matrix. We use Kronecker product properties and multilinear algebra to promote computational efficiency and scalability, without low-rank approximations. We show the advantage of our method in systematic experiments. The code is released at https://github.com/xuangu-fang/Gaussian-Process-Slover-for-High-Freq-PDE.
Extracting Low-/High- Frequency Knowledge from Graph Neural Networks and Injecting it into MLPs: An Effective GNN-to-MLP Distillation Framework
Recent years have witnessed the great success of Graph Neural Networks (GNNs) in handling graph-related tasks. However, MLPs remain the primary workhorse for practical industrial applications due to their desirable inference efficiency and scalability. To reduce their gaps, one can directly distill knowledge from a well-designed teacher GNN to a student MLP, which is termed as GNN-to-MLP distillation. However, the process of distillation usually entails a loss of information, and ``which knowledge patterns of GNNs are more likely to be left and distilled into MLPs?" becomes an important question. In this paper, we first factorize the knowledge learned by GNNs into low- and high-frequency components in the spectral domain and then derive their correspondence in the spatial domain. Furthermore, we identified a potential information drowning problem for existing GNN-to-MLP distillation, i.e., the high-frequency knowledge of the pre-trained GNNs may be overwhelmed by the low-frequency knowledge during distillation; we have described in detail what it represents, how it arises, what impact it has, and how to deal with it. In this paper, we propose an efficient Full-Frequency GNN-to-MLP (FF-G2M) distillation framework, which extracts both low-frequency and high-frequency knowledge from GNNs and injects it into MLPs. Extensive experiments show that FF-G2M improves over the vanilla MLPs by 12.6% and outperforms its corresponding teacher GNNs by 2.6% averaged over six graph datasets and three common GNN architectures.
Guidance in the Frequency Domain Enables High-Fidelity Sampling at Low CFG Scales
Classifier-free guidance (CFG) has become an essential component of modern conditional diffusion models. Although highly effective in practice, the underlying mechanisms by which CFG enhances quality, detail, and prompt alignment are not fully understood. We present a novel perspective on CFG by analyzing its effects in the frequency domain, showing that low and high frequencies have distinct impacts on generation quality. Specifically, low-frequency guidance governs global structure and condition alignment, while high-frequency guidance mainly enhances visual fidelity. However, applying a uniform scale across all frequencies -- as is done in standard CFG -- leads to oversaturation and reduced diversity at high scales and degraded visual quality at low scales. Based on these insights, we propose frequency-decoupled guidance (FDG), an effective approach that decomposes CFG into low- and high-frequency components and applies separate guidance strengths to each component. FDG improves image quality at low guidance scales and avoids the drawbacks of high CFG scales by design. Through extensive experiments across multiple datasets and models, we demonstrate that FDG consistently enhances sample fidelity while preserving diversity, leading to improved FID and recall compared to CFG, establishing our method as a plug-and-play alternative to standard classifier-free guidance.
Freditor: High-Fidelity and Transferable NeRF Editing by Frequency Decomposition
This paper enables high-fidelity, transferable NeRF editing by frequency decomposition. Recent NeRF editing pipelines lift 2D stylization results to 3D scenes while suffering from blurry results, and fail to capture detailed structures caused by the inconsistency between 2D editings. Our critical insight is that low-frequency components of images are more multiview-consistent after editing compared with their high-frequency parts. Moreover, the appearance style is mainly exhibited on the low-frequency components, and the content details especially reside in high-frequency parts. This motivates us to perform editing on low-frequency components, which results in high-fidelity edited scenes. In addition, the editing is performed in the low-frequency feature space, enabling stable intensity control and novel scene transfer. Comprehensive experiments conducted on photorealistic datasets demonstrate the superior performance of high-fidelity and transferable NeRF editing. The project page is at https://aigc3d.github.io/freditor.
HiLo: Exploiting High Low Frequency Relations for Unbiased Panoptic Scene Graph Generation
Panoptic Scene Graph generation (PSG) is a recently proposed task in image scene understanding that aims to segment the image and extract triplets of subjects, objects and their relations to build a scene graph. This task is particularly challenging for two reasons. First, it suffers from a long-tail problem in its relation categories, making naive biased methods more inclined to high-frequency relations. Existing unbiased methods tackle the long-tail problem by data/loss rebalancing to favor low-frequency relations. Second, a subject-object pair can have two or more semantically overlapping relations. While existing methods favor one over the other, our proposed HiLo framework lets different network branches specialize on low and high frequency relations, enforce their consistency and fuse the results. To the best of our knowledge we are the first to propose an explicitly unbiased PSG method. In extensive experiments we show that our HiLo framework achieves state-of-the-art results on the PSG task. We also apply our method to the Scene Graph Generation task that predicts boxes instead of masks and see improvements over all baseline methods. Code is available at https://github.com/franciszzj/HiLo.
FreqEdit: Preserving High-Frequency Features for Robust Multi-Turn Image Editing
Instruction-based image editing through natural language has emerged as a powerful paradigm for intuitive visual manipulation. While recent models achieve impressive results on single edits, they suffer from severe quality degradation under multi-turn editing. Through systematic analysis, we identify progressive loss of high-frequency information as the primary cause of this quality degradation. We present FreqEdit, a training-free framework that enables stable editing across 10+ consecutive iterations. Our approach comprises three synergistic components: (1) high-frequency feature injection from reference velocity fields to preserve fine-grained details, (2) an adaptive injection strategy that spatially modulates injection strength for precise region-specific control, and (3) a path compensation mechanism that periodically recalibrates the editing trajectory to prevent over-constraint. Extensive experiments demonstrate that FreqEdit achieves superior performance in both identity preservation and instruction following compared to seven state-of-the-art baselines.
Potential and Limitation of High-Frequency Cores and Caches
This paper explores the potential of cryogenic semiconductor computing and superconductor electronics as promising alternatives to traditional semiconductor devices. As semiconductor devices face challenges such as increased leakage currents and reduced performance at higher temperatures, these novel technologies offer high performance and low power computation. Conventional semiconductor electronics operating at cryogenic temperatures (below -150{\deg}C or 123.15 K) can benefit from reduced leakage currents and improved electron mobility. On the other hand, superconductor electronics, operating below 10 K, allow electrons to flow without resistance, offering the potential for ultra-low-power, high-speed computation. This study presents a comprehensive performance modeling and analysis of these technologies and provides insights into their potential benefits and limitations. We implement models of in-order and out-of-order cores operating at high clock frequencies associated with superconductor electronics and cryogenic semiconductor computing in gem5. We evaluate the performance of these components using workloads representative of real-world applications like NPB, SPEC CPU2006, and GAPBS. Our results show the potential speedups achievable by these components and the limitations posed by cache bandwidth. This work provides valuable insights into the performance implications and design trade-offs associated with cryogenic and superconductor technologies, laying the foundation for future research in this field using gem5.
IF-D: A High-Frequency, General-Purpose Inertial Foundation Dataset for Self-Supervised Learning
We present IF-D, a large-scale inertial dataset designed to enable self-supervised and foundational learning for IMU time series. IF-D comprises continuous, long-duration multichannel recordings (accelerometer, gyroscope, magnetometer) sampled at 200Hz using a UM7 IMU mounted inside a 3D-printed spherical enclosure that promotes diverse, free rotations during vehicle traversal. The collection spans approximately 135 minutes of recording, yielding around 1.6 million samples across nine sensor channels. We describe the data acquisition setup, preprocessing, and calibration procedures (six-orientation accelerometer calibration, stationary gyroscope bias estimation, and ellipsoid fitting for magnetometer hard-/soft-iron correction), and provide quantitative calibration results. IF-D is designed to mitigate platform specific motion bias and expose models to both physical dynamics and typical measurement noise, thereby facilitating robust representation learning and downstream tasks such as event detection, motion mode recognition, and inertial navigation.
Label Unbalance in High-frequency Trading
In financial trading, return prediction is one of the foundation for a successful trading system. By the fast development of the deep learning in various areas such as graphical processing, natural language, it has also demonstrate significant edge in handling with financial data. While the success of the deep learning relies on huge amount of labeled sample, labeling each time/event as profitable or unprofitable, under the transaction cost, especially in the high-frequency trading world, suffers from serious label imbalance issue.In this paper, we adopts rigurious end-to-end deep learning framework with comprehensive label imbalance adjustment methods and succeed in predicting in high-frequency return in the Chinese future market. The code for our method is publicly available at https://github.com/RS2002/Label-Unbalance-in-High-Frequency-Trading .
HF-Diff: High-Frequency Perceptual Loss and Distribution Matching for One-Step Diffusion-Based Image Super-Resolution
Although recent diffusion-based single-step super-resolution methods achieve better performance as compared to SinSR, they are computationally complex. To improve the performance of SinSR, we investigate preserving the high-frequency detail features during super-resolution (SR) because the downgraded images lack detailed information. For this purpose, we introduce a high-frequency perceptual loss by utilizing an invertible neural network (INN) pretrained on the ImageNet dataset. Different feature maps of pretrained INN produce different high-frequency aspects of an image. During the training phase, we impose to preserve the high-frequency features of super-resolved and ground truth (GT) images that improve the SR image quality during inference. Furthermore, we also utilize the Jenson-Shannon divergence between GT and SR images in the pretrained DINO-v2 embedding space to match their distribution. By introducing the high- frequency preserving loss and distribution matching constraint in the single-step diffusion-based SR (HF-Diff), we achieve a state-of-the-art CLIPIQA score in the benchmark RealSR, RealSet65, DIV2K-Val, and ImageNet datasets. Furthermore, the experimental results in several datasets demonstrate that our high-frequency perceptual loss yields better SR image quality than LPIPS and VGG-based perceptual losses. Our code will be released at https://github.com/shoaib-sami/HF-Diff.
Harnessing Deep Q-Learning for Enhanced Statistical Arbitrage in High-Frequency Trading: A Comprehensive Exploration
The realm of High-Frequency Trading (HFT) is characterized by rapid decision-making processes that capitalize on fleeting market inefficiencies. As the financial markets become increasingly competitive, there is a pressing need for innovative strategies that can adapt and evolve with changing market dynamics. Enter Reinforcement Learning (RL), a branch of machine learning where agents learn by interacting with their environment, making it an intriguing candidate for HFT applications. This paper dives deep into the integration of RL in statistical arbitrage strategies tailored for HFT scenarios. By leveraging the adaptive learning capabilities of RL, we explore its potential to unearth patterns and devise trading strategies that traditional methods might overlook. We delve into the intricate exploration-exploitation trade-offs inherent in RL and how they manifest in the volatile world of HFT. Furthermore, we confront the challenges of applying RL in non-stationary environments, typical of financial markets, and investigate methodologies to mitigate associated risks. Through extensive simulations and backtests, our research reveals that RL not only enhances the adaptability of trading strategies but also shows promise in improving profitability metrics and risk-adjusted returns. This paper, therefore, positions RL as a pivotal tool for the next generation of HFT-based statistical arbitrage, offering insights for both researchers and practitioners in the field.
High-Resolution Document Shadow Removal via A Large-Scale Real-World Dataset and A Frequency-Aware Shadow Erasing Net
Shadows often occur when we capture the documents with casual equipment, which influences the visual quality and readability of the digital copies. Different from the algorithms for natural shadow removal, the algorithms in document shadow removal need to preserve the details of fonts and figures in high-resolution input. Previous works ignore this problem and remove the shadows via approximate attention and small datasets, which might not work in real-world situations. We handle high-resolution document shadow removal directly via a larger-scale real-world dataset and a carefully designed frequency-aware network. As for the dataset, we acquire over 7k couples of high-resolution (2462 x 3699) images of real-world document pairs with various samples under different lighting circumstances, which is 10 times larger than existing datasets. As for the design of the network, we decouple the high-resolution images in the frequency domain, where the low-frequency details and high-frequency boundaries can be effectively learned via the carefully designed network structure. Powered by our network and dataset, the proposed method clearly shows a better performance than previous methods in terms of visual quality and numerical results. The code, models, and dataset are available at: https://github.com/CXH-Research/DocShadow-SD7K
QuantAgent: Price-Driven Multi-Agent LLMs for High-Frequency Trading
Recent advances in Large Language Models (LLMs) have demonstrated impressive capabilities in financial reasoning and market understanding. Multi-agent LLM frameworks such as TradingAgent and FINMEM augment these models to long-horizon investment tasks, leveraging fundamental and sentiment-based inputs for strategic decision-making. However, such systems are ill-suited for the high-speed, precision-critical demands of High-Frequency Trading (HFT). HFT requires rapid, risk-aware decisions based on structured, short-horizon signals, including technical indicators, chart patterns, and trend-based features, distinct from the long-term semantic reasoning typical of traditional financial LLM applications. To this end, we introduce QuantAgent, the first multi-agent LLM framework explicitly designed for high-frequency algorithmic trading. The system decomposes trading into four specialized agents, Indicator, Pattern, Trend, and Risk, each equipped with domain-specific tools and structured reasoning capabilities to capture distinct aspects of market dynamics over short temporal windows. In zero-shot evaluations across ten financial instruments, including Bitcoin and Nasdaq futures, QuantAgent demonstrates superior performance in both predictive accuracy and cumulative return over 4-hour trading intervals, outperforming strong neural and rule-based baselines. Our findings suggest that combining structured financial priors with language-native reasoning unlocks new potential for traceable, real-time decision systems in high-frequency financial markets.
CHOP: Mobile Operating Assistant with Constrained High-frequency Optimized Subtask Planning
The advancement of visual language models (VLMs) has enhanced mobile device operations, allowing simulated human-like actions to address user requirements. Current VLM-based mobile operating assistants can be structured into three levels: task, subtask, and action. The subtask level, linking high-level goals with low-level executable actions, is crucial for task completion but faces two challenges: ineffective subtasks that lower-level agent cannot execute and inefficient subtasks that fail to contribute to the completion of the higher-level task. These challenges stem from VLM's lack of experience in decomposing subtasks within GUI scenarios in multi-agent architecture. To address these, we propose a new mobile assistant architecture with constrained high-frequency o}ptimized planning (CHOP). Our approach overcomes the VLM's deficiency in GUI scenarios planning by using human-planned subtasks as the basis vector. We evaluate our architecture in both English and Chinese contexts across 20 Apps, demonstrating significant improvements in both effectiveness and efficiency. Our dataset and code is available at https://github.com/Yuqi-Zhou/CHOP
HiPA: Enabling One-Step Text-to-Image Diffusion Models via High-Frequency-Promoting Adaptation
Diffusion models have revolutionized text-to-image generation, but their real-world applications are hampered by the extensive time needed for hundreds of diffusion steps. Although progressive distillation has been proposed to speed up diffusion sampling to 2-8 steps, it still falls short in one-step generation, and necessitates training multiple student models, which is highly parameter-extensive and time-consuming. To overcome these limitations, we introduce High-frequency-Promoting Adaptation (HiPA), a parameter-efficient approach to enable one-step text-to-image diffusion. Grounded in the insight that high-frequency information is essential but highly lacking in one-step diffusion, HiPA focuses on training one-step, low-rank adaptors to specifically enhance the under-represented high-frequency abilities of advanced diffusion models. The learned adaptors empower these diffusion models to generate high-quality images in just a single step. Compared with progressive distillation, HiPA achieves much better performance in one-step text-to-image generation (37.3 rightarrow 23.8 in FID-5k on MS-COCO 2017) and 28.6x training speed-up (108.8 rightarrow 3.8 A100 GPU days), requiring only 0.04% training parameters (7,740 million rightarrow 3.3 million). We also demonstrate HiPA's effectiveness in text-guided image editing, inpainting and super-resolution tasks, where our adapted models consistently deliver high-quality outputs in just one diffusion step. The source code will be released.
Short-term Volatility Estimation for High Frequency Trades using Gaussian processes (GPs)
The fundamental theorem behind financial markets is that stock prices are intrinsically complex and stochastic. One of the complexities is the volatility associated with stock prices. Volatility is a tendency for prices to change unexpectedly [1]. Price volatility is often detrimental to the return economics, and thus, investors should factor it in whenever making investment decisions, choices, and temporal or permanent moves. It is, therefore, crucial to make necessary and regular short and long-term stock price volatility forecasts for the safety and economics of investors returns. These forecasts should be accurate and not misleading. Different models and methods, such as ARCH GARCH models, have been intuitively implemented to make such forecasts. However, such traditional means fail to capture the short-term volatility forecasts effectively. This paper, therefore, investigates and implements a combination of numeric and probabilistic models for short-term volatility and return forecasting for high-frequency trades. The essence is that one-day-ahead volatility forecasts were made with Gaussian Processes (GPs) applied to the outputs of a Numerical market prediction (NMP) model. Firstly, the stock price data from NMP was corrected by a GP. Since it is not easy to set price limits in a market due to its free nature and randomness, a Censored GP was used to model the relationship between the corrected stock prices and returns. Forecasting errors were evaluated using the implied and estimated data.
Feature Modulation Transformer: Cross-Refinement of Global Representation via High-Frequency Prior for Image Super-Resolution
Transformer-based methods have exhibited remarkable potential in single image super-resolution (SISR) by effectively extracting long-range dependencies. However, most of the current research in this area has prioritized the design of transformer blocks to capture global information, while overlooking the importance of incorporating high-frequency priors, which we believe could be beneficial. In our study, we conducted a series of experiments and found that transformer structures are more adept at capturing low-frequency information, but have limited capacity in constructing high-frequency representations when compared to their convolutional counterparts. Our proposed solution, the cross-refinement adaptive feature modulation transformer (CRAFT), integrates the strengths of both convolutional and transformer structures. It comprises three key components: the high-frequency enhancement residual block (HFERB) for extracting high-frequency information, the shift rectangle window attention block (SRWAB) for capturing global information, and the hybrid fusion block (HFB) for refining the global representation. Our experiments on multiple datasets demonstrate that CRAFT outperforms state-of-the-art methods by up to 0.29dB while using fewer parameters. The source code will be made available at: https://github.com/AVC2-UESTC/CRAFT-SR.git.
Neural Network-Based Algorithmic Trading Systems: Multi-Timeframe Analysis and High-Frequency Execution in Cryptocurrency Markets
This paper explores neural network-based approaches for algorithmic trading in cryptocurrency markets. Our approach combines multi-timeframe trend analysis with high-frequency direction prediction networks, achieving positive risk-adjusted returns through statistical modeling and systematic market exploitation. The system integrates diverse data sources including market data, on-chain metrics, and orderbook dynamics, translating these into unified buy/sell pressure signals. We demonstrate how machine learning models can effectively capture cross-timeframe relationships, enabling sub-second trading decisions with statistical confidence.
Generalized Mean Absolute Directional Loss as a Solution to Overfitting and High Transaction Costs in Machine Learning Models Used in High-Frequency Algorithmic Investment Strategies
Regardless of the selected asset class and the level of model complexity (Transformer versus LSTM versus Perceptron/RNN), the GMADL loss function produces superior results than standard MSE-type loss functions and has better numerical properties in the context of optimization than MADL. Better results mean the possibility of achieving a higher risk-weighted return based on buy and sell signals built on forecasts generated by a given theoretical model estimated using the GMADL versus MSE or MADL function. In practice, GMADL solves the problem of selecting the most preferable feature in both classification and regression problems, improving the performance of each estimation. What is important is that, through additional parameterization, GMADL also solves the problem of optimizing investment systems on high-frequency data in such a way that they focus on strategy variants that contain fewer transactions so that transaction costs do not reduce the effectiveness of a given strategy to zero. Moreover, the implementation leverages state-of-the-art machine learning tools, including frameworks for hyperparameter tuning, architecture testing, and walk-forward optimization, ensuring robust and scalable solutions for real-world algorithmic trading.
FreqKV: Frequency Domain Key-Value Compression for Efficient Context Window Extension
Frequency-domain compression has proven effective in reducing redundancies for spatial signals. In this work, we propose FreqKV, a novel frequency domain key-value (KV) compression technique that enables efficient context window extension for decoder-only large language models (LLMs). Our approach is motivated by a key observation that, in the frequency domain, the energy distribution of the KV cache is predominantly concentrated in low-frequency components. By discarding high-frequency components, we achieve efficient compression of the KV cache with minimal information loss. FreqKV iteratively compresses the increasing KV cache to a fixed size in the frequency domain, allowing models to process lengthy contexts efficiently. Introducing no additional parameters or architectural modifications, FreqKV is applicable to both fine-tuning and inference. With minimal fine-tuning, LLMs can learn to leverage the limited cache that is compressed in the frequency domain and extend the context window. Experiments on a range of long context language modeling and understanding tasks demonstrate the efficiency and effectiveness of the proposed method.
FlexiEdit: Frequency-Aware Latent Refinement for Enhanced Non-Rigid Editing
Current image editing methods primarily utilize DDIM Inversion, employing a two-branch diffusion approach to preserve the attributes and layout of the original image. However, these methods encounter challenges with non-rigid edits, which involve altering the image's layout or structure. Our comprehensive analysis reveals that the high-frequency components of DDIM latent, crucial for retaining the original image's key features and layout, significantly contribute to these limitations. Addressing this, we introduce FlexiEdit, which enhances fidelity to input text prompts by refining DDIM latent, by reducing high-frequency components in targeted editing areas. FlexiEdit comprises two key components: (1) Latent Refinement, which modifies DDIM latent to better accommodate layout adjustments, and (2) Edit Fidelity Enhancement via Re-inversion, aimed at ensuring the edits more accurately reflect the input text prompts. Our approach represents notable progress in image editing, particularly in performing complex non-rigid edits, showcasing its enhanced capability through comparative experiments.
FreSh: Frequency Shifting for Accelerated Neural Representation Learning
Implicit Neural Representations (INRs) have recently gained attention as a powerful approach for continuously representing signals such as images, videos, and 3D shapes using multilayer perceptrons (MLPs). However, MLPs are known to exhibit a low-frequency bias, limiting their ability to capture high-frequency details accurately. This limitation is typically addressed by incorporating high-frequency input embeddings or specialized activation layers. In this work, we demonstrate that these embeddings and activations are often configured with hyperparameters that perform well on average but are suboptimal for specific input signals under consideration, necessitating a costly grid search to identify optimal settings. Our key observation is that the initial frequency spectrum of an untrained model's output correlates strongly with the model's eventual performance on a given target signal. Leveraging this insight, we propose frequency shifting (or FreSh), a method that selects embedding hyperparameters to align the frequency spectrum of the model's initial output with that of the target signal. We show that this simple initialization technique improves performance across various neural representation methods and tasks, achieving results comparable to extensive hyperparameter sweeps but with only marginal computational overhead compared to training a single model with default hyperparameters.
Frequency-Adaptive Dilated Convolution for Semantic Segmentation
Dilated convolution, which expands the receptive field by inserting gaps between its consecutive elements, is widely employed in computer vision. In this study, we propose three strategies to improve individual phases of dilated convolution from the view of spectrum analysis. Departing from the conventional practice of fixing a global dilation rate as a hyperparameter, we introduce Frequency-Adaptive Dilated Convolution (FADC), which dynamically adjusts dilation rates spatially based on local frequency components. Subsequently, we design two plug-in modules to directly enhance effective bandwidth and receptive field size. The Adaptive Kernel (AdaKern) module decomposes convolution weights into low-frequency and high-frequency components, dynamically adjusting the ratio between these components on a per-channel basis. By increasing the high-frequency part of convolution weights, AdaKern captures more high-frequency components, thereby improving effective bandwidth. The Frequency Selection (FreqSelect) module optimally balances high- and low-frequency components in feature representations through spatially variant reweighting. It suppresses high frequencies in the background to encourage FADC to learn a larger dilation, thereby increasing the receptive field for an expanded scope. Extensive experiments on segmentation and object detection consistently validate the efficacy of our approach. The code is publicly available at https://github.com/Linwei-Chen/FADC.
Joint2Human: High-quality 3D Human Generation via Compact Spherical Embedding of 3D Joints
3D human generation is increasingly significant in various applications. However, the direct use of 2D generative methods in 3D generation often results in significant loss of local details, while methods that reconstruct geometry from generated images struggle with global view consistency. In this work, we introduce Joint2Human, a novel method that leverages 2D diffusion models to generate detailed 3D human geometry directly, ensuring both global structure and local details. To achieve this, we employ the Fourier occupancy field (FOF) representation, enabling the direct production of 3D shapes as preliminary results using 2D generative models. With the proposed high-frequency enhancer and the multi-view recarving strategy, our method can seamlessly integrate the details from different views into a uniform global shape.To better utilize the 3D human prior and enhance control over the generated geometry, we introduce a compact spherical embedding of 3D joints. This allows for effective application of pose guidance during the generation process. Additionally, our method is capable of generating 3D humans guided by textual inputs. Our experimental results demonstrate the capability of our method to ensure global structure, local details, high resolution, and low computational cost, simultaneously. More results and code can be found on our project page at http://cic.tju.edu.cn/faculty/likun/projects/Joint2Human.
DeCo: Frequency-Decoupled Pixel Diffusion for End-to-End Image Generation
Pixel diffusion aims to generate images directly in pixel space in an end-to-end fashion. This approach avoids the limitations of VAE in the two-stage latent diffusion, offering higher model capacity. Existing pixel diffusion models suffer from slow training and inference, as they usually model both high-frequency signals and low-frequency semantics within a single diffusion transformer (DiT). To pursue a more efficient pixel diffusion paradigm, we propose the frequency-DeCoupled pixel diffusion framework. With the intuition to decouple the generation of high and low frequency components, we leverage a lightweight pixel decoder to generate high-frequency details conditioned on semantic guidance from the DiT. This thus frees the DiT to specialize in modeling low-frequency semantics. In addition, we introduce a frequency-aware flow-matching loss that emphasizes visually salient frequencies while suppressing insignificant ones. Extensive experiments show that DeCo achieves superior performance among pixel diffusion models, attaining FID of 1.62 (256x256) and 2.22 (512x512) on ImageNet, closing the gap with latent diffusion methods. Furthermore, our pretrained text-to-image model achieves a leading overall score of 0.86 on GenEval in system-level comparison. Codes are publicly available at https://github.com/Zehong-Ma/DeCo.
HiFi-SR: A Unified Generative Transformer-Convolutional Adversarial Network for High-Fidelity Speech Super-Resolution
The application of generative adversarial networks (GANs) has recently advanced speech super-resolution (SR) based on intermediate representations like mel-spectrograms. However, existing SR methods that typically rely on independently trained and concatenated networks may lead to inconsistent representations and poor speech quality, especially in out-of-domain scenarios. In this work, we propose HiFi-SR, a unified network that leverages end-to-end adversarial training to achieve high-fidelity speech super-resolution. Our model features a unified transformer-convolutional generator designed to seamlessly handle both the prediction of latent representations and their conversion into time-domain waveforms. The transformer network serves as a powerful encoder, converting low-resolution mel-spectrograms into latent space representations, while the convolutional network upscales these representations into high-resolution waveforms. To enhance high-frequency fidelity, we incorporate a multi-band, multi-scale time-frequency discriminator, along with a multi-scale mel-reconstruction loss in the adversarial training process. HiFi-SR is versatile, capable of upscaling any input speech signal between 4 kHz and 32 kHz to a 48 kHz sampling rate. Experimental results demonstrate that HiFi-SR significantly outperforms existing speech SR methods across both objective metrics and ABX preference tests, for both in-domain and out-of-domain scenarios (https://github.com/modelscope/ClearerVoice-Studio).
MAtCha Gaussians: Atlas of Charts for High-Quality Geometry and Photorealism From Sparse Views
We present a novel appearance model that simultaneously realizes explicit high-quality 3D surface mesh recovery and photorealistic novel view synthesis from sparse view samples. Our key idea is to model the underlying scene geometry Mesh as an Atlas of Charts which we render with 2D Gaussian surfels (MAtCha Gaussians). MAtCha distills high-frequency scene surface details from an off-the-shelf monocular depth estimator and refines it through Gaussian surfel rendering. The Gaussian surfels are attached to the charts on the fly, satisfying photorealism of neural volumetric rendering and crisp geometry of a mesh model, i.e., two seemingly contradicting goals in a single model. At the core of MAtCha lies a novel neural deformation model and a structure loss that preserve the fine surface details distilled from learned monocular depths while addressing their fundamental scale ambiguities. Results of extensive experimental validation demonstrate MAtCha's state-of-the-art quality of surface reconstruction and photorealism on-par with top contenders but with dramatic reduction in the number of input views and computational time. We believe MAtCha will serve as a foundational tool for any visual application in vision, graphics, and robotics that require explicit geometry in addition to photorealism. Our project page is the following: https://anttwo.github.io/matcha/
Frequency-Adaptive Pan-Sharpening with Mixture of Experts
Pan-sharpening involves reconstructing missing high-frequency information in multi-spectral images with low spatial resolution, using a higher-resolution panchromatic image as guidance. Although the inborn connection with frequency domain, existing pan-sharpening research has not almost investigated the potential solution upon frequency domain. To this end, we propose a novel Frequency Adaptive Mixture of Experts (FAME) learning framework for pan-sharpening, which consists of three key components: the Adaptive Frequency Separation Prediction Module, the Sub-Frequency Learning Expert Module, and the Expert Mixture Module. In detail, the first leverages the discrete cosine transform to perform frequency separation by predicting the frequency mask. On the basis of generated mask, the second with low-frequency MOE and high-frequency MOE takes account for enabling the effective low-frequency and high-frequency information reconstruction. Followed by, the final fusion module dynamically weights high-frequency and low-frequency MOE knowledge to adapt to remote sensing images with significant content variations. Quantitative and qualitative experiments over multiple datasets demonstrate that our method performs the best against other state-of-the-art ones and comprises a strong generalization ability for real-world scenes. Code will be made publicly at https://github.com/alexhe101/FAME-Net.
Frequency-Guided Diffusion Model with Perturbation Training for Skeleton-Based Video Anomaly Detection
Video anomaly detection (VAD) is a vital yet complex open-set task in computer vision, commonly tackled through reconstruction-based methods. However, these methods struggle with two key limitations: (1) insufficient robustness in open-set scenarios, where unseen normal motions are frequently misclassified as anomalies, and (2) an overemphasis on, but restricted capacity for, local motion reconstruction, which are inherently difficult to capture accurately due to their diversity. To overcome these challenges, we introduce a novel frequency-guided diffusion model with perturbation training. First, we enhance robustness by training a generator to produce perturbed samples, which are similar to normal samples and target the weakness of the reconstruction model. This training paradigm expands the reconstruction domain of the model, improving its generalization to unseen normal motions. Second, to address the overemphasis on motion details, we employ the 2D Discrete Cosine Transform (DCT) to separate high-frequency (local) and low-frequency (global) motion components. By guiding the diffusion model with observed high-frequency information, we prioritize the reconstruction of low-frequency components, enabling more accurate and robust anomaly detection. Extensive experiments on five widely used VAD datasets demonstrate that our approach surpasses state-of-the-art methods, underscoring its effectiveness in open-set scenarios and diverse motion contexts. Our project website is https://xiaofeng-tan.github.io/projects/FG-Diff/index.html.
Hybrid Convolution and Frequency State Space Network for Image Compression
Learned image compression (LIC) has recently benefited from Transformer based and state space model (SSM) based architectures. Convolutional neural networks (CNNs) effectively capture local high frequency details, whereas Transformers and SSMs provide strong long range modeling capabilities but may cause structural information loss or ignore frequency characteristics that are crucial for compression. In this work we propose HCFSSNet, a Hybrid Convolution and Frequency State Space Network for LIC. HCFSSNet uses CNNs to extract local high frequency structures and introduces a Vision Frequency State Space (VFSS) block that models long range low frequency information. The VFSS block combines an Omni directional Neighborhood State Space (VONSS) module, which scans features horizontally, vertically and diagonally, with an Adaptive Frequency Modulation Module (AFMM) that applies content adaptive weighting of discrete cosine transform frequency components for more efficient bit allocation. To further reduce redundancy in the entropy model, we integrate AFMM with a Swin Transformer to form a Frequency Swin Transformer Attention Module (FSTAM) for frequency aware side information modeling. Experiments on the Kodak, Tecnick and CLIC Professional Validation datasets show that HCFSSNet achieves competitive rate distortion performance compared with recent SSM based codecs such as MambaIC, while using significantly fewer parameters. On Kodak, Tecnick and CLIC, HCFSSNet reduces BD rate over the VTM anchor by 18.06, 24.56 and 22.44 percent, respectively, providing an efficient and interpretable hybrid architecture for future learned image compression systems.
FW-GAN: Frequency-Driven Handwriting Synthesis with Wave-Modulated MLP Generator
Labeled handwriting data is often scarce, limiting the effectiveness of recognition systems that require diverse, style-consistent training samples. Handwriting synthesis offers a promising solution by generating artificial data to augment training. However, current methods face two major limitations. First, most are built on conventional convolutional architectures, which struggle to model long-range dependencies and complex stroke patterns. Second, they largely ignore the crucial role of frequency information, which is essential for capturing fine-grained stylistic and structural details in handwriting. To address these challenges, we propose FW-GAN, a one-shot handwriting synthesis framework that generates realistic, writer-consistent text from a single example. Our generator integrates a phase-aware Wave-MLP to better capture spatial relationships while preserving subtle stylistic cues. We further introduce a frequency-guided discriminator that leverages high-frequency components to enhance the authenticity detection of generated samples. Additionally, we introduce a novel Frequency Distribution Loss that aligns the frequency characteristics of synthetic and real handwriting, thereby enhancing visual fidelity. Experiments on Vietnamese and English handwriting datasets demonstrate that FW-GAN generates high-quality, style-consistent handwriting, making it a valuable tool for augmenting data in low-resource handwriting recognition (HTR) pipelines. Official implementation is available at https://github.com/DAIR-Group/FW-GAN
Frequency-aware Feature Fusion for Dense Image Prediction
Dense image prediction tasks demand features with strong category information and precise spatial boundary details at high resolution. To achieve this, modern hierarchical models often utilize feature fusion, directly adding upsampled coarse features from deep layers and high-resolution features from lower levels. In this paper, we observe rapid variations in fused feature values within objects, resulting in intra-category inconsistency due to disturbed high-frequency features. Additionally, blurred boundaries in fused features lack accurate high frequency, leading to boundary displacement. Building upon these observations, we propose Frequency-Aware Feature Fusion (FreqFusion), integrating an Adaptive Low-Pass Filter (ALPF) generator, an offset generator, and an Adaptive High-Pass Filter (AHPF) generator. The ALPF generator predicts spatially-variant low-pass filters to attenuate high-frequency components within objects, reducing intra-class inconsistency during upsampling. The offset generator refines large inconsistent features and thin boundaries by replacing inconsistent features with more consistent ones through resampling, while the AHPF generator enhances high-frequency detailed boundary information lost during downsampling. Comprehensive visualization and quantitative analysis demonstrate that FreqFusion effectively improves feature consistency and sharpens object boundaries. Extensive experiments across various dense prediction tasks confirm its effectiveness. The code is made publicly available at https://github.com/Linwei-Chen/FreqFusion.
Frequency-Adaptive Sharpness Regularization for Improving 3D Gaussian Splatting Generalization
Despite 3D Gaussian Splatting (3DGS) excelling in most configurations, it lacks generalization across novel viewpoints in a few-shot scenario because it overfits to the sparse observations. We revisit 3DGS optimization from a machine learning perspective, framing novel view synthesis as a generalization problem to unseen viewpoints-an underexplored direction. We propose Frequency-Adaptive Sharpness Regularization (FASR), which reformulates the 3DGS training objective, thereby guiding 3DGS to converge toward a better generalization solution. Although Sharpness-Aware Minimization (SAM) similarly reduces the sharpness of the loss landscape to improve generalization of classification models, directly employing it to 3DGS is suboptimal due to the discrepancy between the tasks. Specifically, it hinders reconstructing high-frequency details due to excessive regularization, while reducing its strength leads to under-penalizing sharpness. To address this, we reflect the local frequency of images to set the regularization weight and the neighborhood radius when estimating the local sharpness. It prevents floater artifacts in novel viewpoints and reconstructs fine details that SAM tends to oversmooth. Across datasets with various configurations, our method consistently improves a wide range of baselines. Code will be available at https://bbangsik13.github.io/FASR.
Spatial Frequency Modulation for Semantic Segmentation
High spatial frequency information, including fine details like textures, significantly contributes to the accuracy of semantic segmentation. However, according to the Nyquist-Shannon Sampling Theorem, high-frequency components are vulnerable to aliasing or distortion when propagating through downsampling layers such as strided-convolution. Here, we propose a novel Spatial Frequency Modulation (SFM) that modulates high-frequency features to a lower frequency before downsampling and then demodulates them back during upsampling. Specifically, we implement modulation through adaptive resampling (ARS) and design a lightweight add-on that can densely sample the high-frequency areas to scale up the signal, thereby lowering its frequency in accordance with the Frequency Scaling Property. We also propose Multi-Scale Adaptive Upsampling (MSAU) to demodulate the modulated feature and recover high-frequency information through non-uniform upsampling This module further improves segmentation by explicitly exploiting information interaction between densely and sparsely resampled areas at multiple scales. Both modules can seamlessly integrate with various architectures, extending from convolutional neural networks to transformers. Feature visualization and analysis confirm that our method effectively alleviates aliasing while successfully retaining details after demodulation. Finally, we validate the broad applicability and effectiveness of SFM by extending it to image classification, adversarial robustness, instance segmentation, and panoptic segmentation tasks. The code is available at https://github.com/Linwei-Chen/SFM.
FDG-Diff: Frequency-Domain-Guided Diffusion Framework for Compressed Hazy Image Restoration
In this study, we reveal that the interaction between haze degradation and JPEG compression introduces complex joint loss effects, which significantly complicate image restoration. Existing dehazing models often neglect compression effects, which limits their effectiveness in practical applications. To address these challenges, we introduce three key contributions. First, we design FDG-Diff, a novel frequency-domain-guided dehazing framework that improves JPEG image restoration by leveraging frequency-domain information. Second, we introduce the High-Frequency Compensation Module (HFCM), which enhances spatial-domain detail restoration by incorporating frequency-domain augmentation techniques into a diffusion-based restoration framework. Lastly, the introduction of the Degradation-Aware Denoising Timestep Predictor (DADTP) module further enhances restoration quality by enabling adaptive region-specific restoration, effectively addressing regional degradation inconsistencies in compressed hazy images. Experimental results across multiple compressed dehazing datasets demonstrate that our method consistently outperforms the latest state-of-the-art approaches. Code be available at https://github.com/SYSUzrc/FDG-Diff.
Frequency-Domain Refinement with Multiscale Diffusion for Super Resolution
The performance of single image super-resolution depends heavily on how to generate and complement high-frequency details to low-resolution images. Recently, diffusion-based models exhibit great potential in generating high-quality images for super-resolution tasks. However, existing models encounter difficulties in directly predicting high-frequency information of wide bandwidth by solely utilizing the high-resolution ground truth as the target for all sampling timesteps. To tackle this problem and achieve higher-quality super-resolution, we propose a novel Frequency Domain-guided multiscale Diffusion model (FDDiff), which decomposes the high-frequency information complementing process into finer-grained steps. In particular, a wavelet packet-based frequency complement chain is developed to provide multiscale intermediate targets with increasing bandwidth for reverse diffusion process. Then FDDiff guides reverse diffusion process to progressively complement the missing high-frequency details over timesteps. Moreover, we design a multiscale frequency refinement network to predict the required high-frequency components at multiple scales within one unified network. Comprehensive evaluations on popular benchmarks are conducted, and demonstrate that FDDiff outperforms prior generative methods with higher-fidelity super-resolution results.
Frequency-Aware Deepfake Detection: Improving Generalizability through Frequency Space Learning
This research addresses the challenge of developing a universal deepfake detector that can effectively identify unseen deepfake images despite limited training data. Existing frequency-based paradigms have relied on frequency-level artifacts introduced during the up-sampling in GAN pipelines to detect forgeries. However, the rapid advancements in synthesis technology have led to specific artifacts for each generation model. Consequently, these detectors have exhibited a lack of proficiency in learning the frequency domain and tend to overfit to the artifacts present in the training data, leading to suboptimal performance on unseen sources. To address this issue, we introduce a novel frequency-aware approach called FreqNet, centered around frequency domain learning, specifically designed to enhance the generalizability of deepfake detectors. Our method forces the detector to continuously focus on high-frequency information, exploiting high-frequency representation of features across spatial and channel dimensions. Additionally, we incorporate a straightforward frequency domain learning module to learn source-agnostic features. It involves convolutional layers applied to both the phase spectrum and amplitude spectrum between the Fast Fourier Transform (FFT) and Inverse Fast Fourier Transform (iFFT). Extensive experimentation involving 17 GANs demonstrates the effectiveness of our proposed method, showcasing state-of-the-art performance (+9.8\%) while requiring fewer parameters. The code is available at {\cred https://github.com/chuangchuangtan/FreqNet-DeepfakeDetection}.
FlashAvatar: High-fidelity Head Avatar with Efficient Gaussian Embedding
We propose FlashAvatar, a novel and lightweight 3D animatable avatar representation that could reconstruct a digital avatar from a short monocular video sequence in minutes and render high-fidelity photo-realistic images at 300FPS on a consumer-grade GPU. To achieve this, we maintain a uniform 3D Gaussian field embedded in the surface of a parametric face model and learn extra spatial offset to model non-surface regions and subtle facial details. While full use of geometric priors can capture high-frequency facial details and preserve exaggerated expressions, proper initialization can help reduce the number of Gaussians, thus enabling super-fast rendering speed. Extensive experimental results demonstrate that FlashAvatar outperforms existing works regarding visual quality and personalized details and is almost an order of magnitude faster in rendering speed. Project page: https://ustc3dv.github.io/FlashAvatar/
CineScale: Free Lunch in High-Resolution Cinematic Visual Generation
Visual diffusion models achieve remarkable progress, yet they are typically trained at limited resolutions due to the lack of high-resolution data and constrained computation resources, hampering their ability to generate high-fidelity images or videos at higher resolutions. Recent efforts have explored tuning-free strategies to exhibit the untapped potential higher-resolution visual generation of pre-trained models. However, these methods are still prone to producing low-quality visual content with repetitive patterns. The key obstacle lies in the inevitable increase in high-frequency information when the model generates visual content exceeding its training resolution, leading to undesirable repetitive patterns deriving from the accumulated errors. In this work, we propose CineScale, a novel inference paradigm to enable higher-resolution visual generation. To tackle the various issues introduced by the two types of video generation architectures, we propose dedicated variants tailored to each. Unlike existing baseline methods that are confined to high-resolution T2I and T2V generation, CineScale broadens the scope by enabling high-resolution I2V and V2V synthesis, built atop state-of-the-art open-source video generation frameworks. Extensive experiments validate the superiority of our paradigm in extending the capabilities of higher-resolution visual generation for both image and video models. Remarkably, our approach enables 8k image generation without any fine-tuning, and achieves 4k video generation with only minimal LoRA fine-tuning. Generated video samples are available at our website: https://eyeline-labs.github.io/CineScale/.
Accelerating High-Fidelity Waveform Generation via Adversarial Flow Matching Optimization
This paper introduces PeriodWave-Turbo, a high-fidelity and high-efficient waveform generation model via adversarial flow matching optimization. Recently, conditional flow matching (CFM) generative models have been successfully adopted for waveform generation tasks, leveraging a single vector field estimation objective for training. Although these models can generate high-fidelity waveform signals, they require significantly more ODE steps compared to GAN-based models, which only need a single generation step. Additionally, the generated samples often lack high-frequency information due to noisy vector field estimation, which fails to ensure high-frequency reproduction. To address this limitation, we enhance pre-trained CFM-based generative models by incorporating a fixed-step generator modification. We utilized reconstruction losses and adversarial feedback to accelerate high-fidelity waveform generation. Through adversarial flow matching optimization, it only requires 1,000 steps of fine-tuning to achieve state-of-the-art performance across various objective metrics. Moreover, we significantly reduce inference speed from 16 steps to 2 or 4 steps. Additionally, by scaling up the backbone of PeriodWave from 29M to 70M parameters for improved generalization, PeriodWave-Turbo achieves unprecedented performance, with a perceptual evaluation of speech quality (PESQ) score of 4.454 on the LibriTTS dataset. Audio samples, source code and checkpoints will be available at https://github.com/sh-lee-prml/PeriodWave.
FMViT: A multiple-frequency mixing Vision Transformer
The transformer model has gained widespread adoption in computer vision tasks in recent times. However, due to the quadratic time and memory complexity of self-attention, which is proportional to the number of input tokens, most existing Vision Transformers (ViTs) encounter challenges in achieving efficient performance in practical industrial deployment scenarios, such as TensorRT and CoreML, where traditional CNNs excel. Although some recent attempts have been made to design CNN-Transformer hybrid architectures to tackle this problem, their overall performance has not met expectations. To tackle these challenges, we propose an efficient hybrid ViT architecture named FMViT. This approach enhances the model's expressive power by blending high-frequency features and low-frequency features with varying frequencies, enabling it to capture both local and global information effectively. Additionally, we introduce deploy-friendly mechanisms such as Convolutional Multigroup Reparameterization (gMLP), Lightweight Multi-head Self-Attention (RLMHSA), and Convolutional Fusion Block (CFB) to further improve the model's performance and reduce computational overhead. Our experiments demonstrate that FMViT surpasses existing CNNs, ViTs, and CNNTransformer hybrid architectures in terms of latency/accuracy trade-offs for various vision tasks. On the TensorRT platform, FMViT outperforms Resnet101 by 2.5% (83.3% vs. 80.8%) in top-1 accuracy on the ImageNet dataset while maintaining similar inference latency. Moreover, FMViT achieves comparable performance with EfficientNet-B5, but with a 43% improvement in inference speed. On CoreML, FMViT outperforms MobileOne by 2.6% in top-1 accuracy on the ImageNet dataset, with inference latency comparable to MobileOne (78.5% vs. 75.9%). Our code can be found at https://github.com/tany0699/FMViT.
FRAMER: Frequency-Aligned Self-Distillation with Adaptive Modulation Leveraging Diffusion Priors for Real-World Image Super-Resolution
Real-image super-resolution (Real-ISR) seeks to recover HR images from LR inputs with mixed, unknown degradations. While diffusion models surpass GANs in perceptual quality, they under-reconstruct high-frequency (HF) details due to a low-frequency (LF) bias and a depth-wise "low-first, high-later" hierarchy. We introduce FRAMER, a plug-and-play training scheme that exploits diffusion priors without changing the backbone or inference. At each denoising step, the final-layer feature map teaches all intermediate layers. Teacher and student feature maps are decomposed into LF/HF bands via FFT masks to align supervision with the model's internal frequency hierarchy. For LF, an Intra Contrastive Loss (IntraCL) stabilizes globally shared structure. For HF, an Inter Contrastive Loss (InterCL) sharpens instance-specific details using random-layer and in-batch negatives. Two adaptive modulators, Frequency-based Adaptive Weight (FAW) and Frequency-based Alignment Modulation (FAM), reweight per-layer LF/HF signals and gate distillation by current similarity. Across U-Net and DiT backbones (e.g., Stable Diffusion 2, 3), FRAMER consistently improves PSNR/SSIM and perceptual metrics (LPIPS, NIQE, MANIQA, MUSIQ). Ablations validate the final-layer teacher and random-layer negatives.
Image Super-resolution Via Latent Diffusion: A Sampling-space Mixture Of Experts And Frequency-augmented Decoder Approach
The recent use of diffusion prior, enhanced by pre-trained text-image models, has markedly elevated the performance of image super-resolution (SR). To alleviate the huge computational cost required by pixel-based diffusion SR, latent-based methods utilize a feature encoder to transform the image and then implement the SR image generation in a compact latent space. Nevertheless, there are two major issues that limit the performance of latent-based diffusion. First, the compression of latent space usually causes reconstruction distortion. Second, huge computational cost constrains the parameter scale of the diffusion model. To counteract these issues, we first propose a frequency compensation module that enhances the frequency components from latent space to pixel space. The reconstruction distortion (especially for high-frequency information) can be significantly decreased. Then, we propose to use Sample-Space Mixture of Experts (SS-MoE) to achieve more powerful latent-based SR, which steadily improves the capacity of the model without a significant increase in inference costs. These carefully crafted designs contribute to performance improvements in largely explored 4x blind super-resolution benchmarks and extend to large magnification factors, i.e., 8x image SR benchmarks. The code is available at https://github.com/amandaluof/moe_sr.
Gaussian Head & Shoulders: High Fidelity Neural Upper Body Avatars with Anchor Gaussian Guided Texture Warping
By equipping the most recent 3D Gaussian Splatting representation with head 3D morphable models (3DMM), existing methods manage to create head avatars with high fidelity. However, most existing methods only reconstruct a head without the body, substantially limiting their application scenarios. We found that naively applying Gaussians to model the clothed chest and shoulders tends to result in blurry reconstruction and noisy floaters under novel poses. This is because of the fundamental limitation of Gaussians and point clouds -- each Gaussian or point can only have a single directional radiance without spatial variance, therefore an unnecessarily large number of them is required to represent complicated spatially varying texture, even for simple geometry. In contrast, we propose to model the body part with a neural texture that consists of coarse and pose-dependent fine colors. To properly render the body texture for each view and pose without accurate geometry nor UV mapping, we optimize another sparse set of Gaussians as anchors that constrain the neural warping field that maps image plane coordinates to the texture space. We demonstrate that Gaussian Head & Shoulders can fit the high-frequency details on the clothed upper body with high fidelity and potentially improve the accuracy and fidelity of the head region. We evaluate our method with casual phone-captured and internet videos and show our method archives superior reconstruction quality and robustness in both self and cross reenactment tasks. To fully utilize the efficient rendering speed of Gaussian splatting, we additionally propose an accelerated inference method of our trained model without Multi-Layer Perceptron (MLP) queries and reach a stable rendering speed of around 130 FPS for any subjects.
High-Fidelity Speech Synthesis with Minimal Supervision: All Using Diffusion Models
Text-to-speech (TTS) methods have shown promising results in voice cloning, but they require a large number of labeled text-speech pairs. Minimally-supervised speech synthesis decouples TTS by combining two types of discrete speech representations(semantic \& acoustic) and using two sequence-to-sequence tasks to enable training with minimal supervision. However, existing methods suffer from information redundancy and dimension explosion in semantic representation, and high-frequency waveform distortion in discrete acoustic representation. Autoregressive frameworks exhibit typical instability and uncontrollability issues. And non-autoregressive frameworks suffer from prosodic averaging caused by duration prediction models. To address these issues, we propose a minimally-supervised high-fidelity speech synthesis method, where all modules are constructed based on the diffusion models. The non-autoregressive framework enhances controllability, and the duration diffusion model enables diversified prosodic expression. Contrastive Token-Acoustic Pretraining (CTAP) is used as an intermediate semantic representation to solve the problems of information redundancy and dimension explosion in existing semantic coding methods. Mel-spectrogram is used as the acoustic representation. Both semantic and acoustic representations are predicted by continuous variable regression tasks to solve the problem of high-frequency fine-grained waveform distortion. Experimental results show that our proposed method outperforms the baseline method. We provide audio samples on our website.
Missing Fine Details in Images: Last Seen in High Frequencies
Latent generative models have shown remarkable progress in high-fidelity image synthesis, typically using a two-stage training process that involves compressing images into latent embeddings via learned tokenizers in the first stage. The quality of generation strongly depends on how expressive and well-optimized these latent embeddings are. While various methods have been proposed to learn effective latent representations, generated images often lack realism, particularly in textured regions with sharp transitions, due to loss of fine details governed by high frequencies. We conduct a detailed frequency decomposition of existing state-of-the-art (SOTA) latent tokenizers and show that conventional objectives inherently prioritize low-frequency reconstruction, often at the expense of high-frequency fidelity. Our analysis reveals these latent tokenizers exhibit a bias toward low-frequency information during optimization, leading to over-smoothed outputs and visual artifacts that diminish perceptual quality. To address this, we propose a wavelet-based, frequency-aware variational autoencoder (FA-VAE) framework that explicitly decouples the optimization of low- and high-frequency components. This decoupling enables improved reconstruction of fine textures while preserving global structure. Moreover, we integrate our frequency-preserving latent embeddings into a SOTA latent diffusion model, resulting in sharper and more realistic image generation. Our approach bridges the fidelity gap in current latent tokenizers and emphasizes the importance of frequency-aware optimization for realistic image synthesis, with broader implications for applications in content creation, neural rendering, and medical imaging.
Low-Frequency First: Eliminating Floating Artifacts in 3D Gaussian Splatting
3D Gaussian Splatting (3DGS) is a powerful and computationally efficient representation for 3D reconstruction. Despite its strengths, 3DGS often produces floating artifacts, which are erroneous structures detached from the actual geometry and significantly degrade visual fidelity. The underlying mechanisms causing these artifacts, particularly in low-quality initialization scenarios, have not been fully explored. In this paper, we investigate the origins of floating artifacts from a frequency-domain perspective and identify under-optimized Gaussians as the primary source. Based on our analysis, we propose Eliminating-Floating-Artifacts Gaussian Splatting (EFA-GS), which selectively expands under-optimized Gaussians to prioritize accurate low-frequency learning. Additionally, we introduce complementary depth-based and scale-based strategies to dynamically refine Gaussian expansion, effectively mitigating detail erosion. Extensive experiments on both synthetic and real-world datasets demonstrate that EFA-GS substantially reduces floating artifacts while preserving high-frequency details, achieving an improvement of 1.68 dB in PSNR over baseline method on our RWLQ dataset. Furthermore, we validate the effectiveness of our approach in downstream 3D editing tasks. We provide our implementation in https://jcwang-gh.github.io/EFA-GS.
Stock Volatility Prediction Based on Transformer Model Using Mixed-Frequency Data
With the increasing volume of high-frequency data in the information age, both challenges and opportunities arise in the prediction of stock volatility. On one hand, the outcome of prediction using tradition method combining stock technical and macroeconomic indicators still leaves room for improvement; on the other hand, macroeconomic indicators and peoples' search record on those search engines affecting their interested topics will intuitively have an impact on the stock volatility. For the convenience of assessment of the influence of these indicators, macroeconomic indicators and stock technical indicators are then grouped into objective factors, while Baidu search indices implying people's interested topics are defined as subjective factors. To align different frequency data, we introduce GARCH-MIDAS model. After mixing all the above data, we then feed them into Transformer model as part of the training data. Our experiments show that this model outperforms the baselines in terms of mean square error. The adaption of both types of data under Transformer model significantly reduces the mean square error from 1.00 to 0.86.
Identity-Preserving Text-to-Video Generation by Frequency Decomposition
Identity-preserving text-to-video (IPT2V) generation aims to create high-fidelity videos with consistent human identity. It is an important task in video generation but remains an open problem for generative models. This paper pushes the technical frontier of IPT2V in two directions that have not been resolved in literature: (1) A tuning-free pipeline without tedious case-by-case finetuning, and (2) A frequency-aware heuristic identity-preserving DiT-based control scheme. We propose ConsisID, a tuning-free DiT-based controllable IPT2V model to keep human identity consistent in the generated video. Inspired by prior findings in frequency analysis of diffusion transformers, it employs identity-control signals in the frequency domain, where facial features can be decomposed into low-frequency global features and high-frequency intrinsic features. First, from a low-frequency perspective, we introduce a global facial extractor, which encodes reference images and facial key points into a latent space, generating features enriched with low-frequency information. These features are then integrated into shallow layers of the network to alleviate training challenges associated with DiT. Second, from a high-frequency perspective, we design a local facial extractor to capture high-frequency details and inject them into transformer blocks, enhancing the model's ability to preserve fine-grained features. We propose a hierarchical training strategy to leverage frequency information for identity preservation, transforming a vanilla pre-trained video generation model into an IPT2V model. Extensive experiments demonstrate that our frequency-aware heuristic scheme provides an optimal control solution for DiT-based models. Thanks to this scheme, our ConsisID generates high-quality, identity-preserving videos, making strides towards more effective IPT2V.
FourierSampler: Unlocking Non-Autoregressive Potential in Diffusion Language Models via Frequency-Guided Generation
Despite the non-autoregressive potential of diffusion language models (dLLMs), existing decoding strategies demonstrate positional bias, failing to fully unlock the potential of arbitrary generation. In this work, we delve into the inherent spectral characteristics of dLLMs and present the first frequency-domain analysis showing that low-frequency components in hidden states primarily encode global structural information and long-range dependencies, while high-frequency components are responsible for characterizing local details. Based on this observation, we propose FourierSampler, which leverages a frequency-domain sliding window mechanism to dynamically guide the model to achieve a "structure-to-detail" generation. FourierSampler outperforms other inference enhancement strategies on LLADA and SDAR, achieving relative improvements of 20.4% on LLaDA1.5-8B and 16.0% on LLaDA-8B-Instruct. It notably surpasses similarly sized autoregressive models like Llama3.1-8B-Instruct.
FitDiT: Advancing the Authentic Garment Details for High-fidelity Virtual Try-on
Although image-based virtual try-on has made considerable progress, emerging approaches still encounter challenges in producing high-fidelity and robust fitting images across diverse scenarios. These methods often struggle with issues such as texture-aware maintenance and size-aware fitting, which hinder their overall effectiveness. To address these limitations, we propose a novel garment perception enhancement technique, termed FitDiT, designed for high-fidelity virtual try-on using Diffusion Transformers (DiT) allocating more parameters and attention to high-resolution features. First, to further improve texture-aware maintenance, we introduce a garment texture extractor that incorporates garment priors evolution to fine-tune garment feature, facilitating to better capture rich details such as stripes, patterns, and text. Additionally, we introduce frequency-domain learning by customizing a frequency distance loss to enhance high-frequency garment details. To tackle the size-aware fitting issue, we employ a dilated-relaxed mask strategy that adapts to the correct length of garments, preventing the generation of garments that fill the entire mask area during cross-category try-on. Equipped with the above design, FitDiT surpasses all baselines in both qualitative and quantitative evaluations. It excels in producing well-fitting garments with photorealistic and intricate details, while also achieving competitive inference times of 4.57 seconds for a single 1024x768 image after DiT structure slimming, outperforming existing methods.
Hi3DGen: High-fidelity 3D Geometry Generation from Images via Normal Bridging
With the growing demand for high-fidelity 3D models from 2D images, existing methods still face significant challenges in accurately reproducing fine-grained geometric details due to limitations in domain gaps and inherent ambiguities in RGB images. To address these issues, we propose Hi3DGen, a novel framework for generating high-fidelity 3D geometry from images via normal bridging. Hi3DGen consists of three key components: (1) an image-to-normal estimator that decouples the low-high frequency image pattern with noise injection and dual-stream training to achieve generalizable, stable, and sharp estimation; (2) a normal-to-geometry learning approach that uses normal-regularized latent diffusion learning to enhance 3D geometry generation fidelity; and (3) a 3D data synthesis pipeline that constructs a high-quality dataset to support training. Extensive experiments demonstrate the effectiveness and superiority of our framework in generating rich geometric details, outperforming state-of-the-art methods in terms of fidelity. Our work provides a new direction for high-fidelity 3D geometry generation from images by leveraging normal maps as an intermediate representation.
Apollo: Band-sequence Modeling for High-Quality Audio Restoration
Audio restoration has become increasingly significant in modern society, not only due to the demand for high-quality auditory experiences enabled by advanced playback devices, but also because the growing capabilities of generative audio models necessitate high-fidelity audio. Typically, audio restoration is defined as a task of predicting undistorted audio from damaged input, often trained using a GAN framework to balance perception and distortion. Since audio degradation is primarily concentrated in mid- and high-frequency ranges, especially due to codecs, a key challenge lies in designing a generator capable of preserving low-frequency information while accurately reconstructing high-quality mid- and high-frequency content. Inspired by recent advancements in high-sample-rate music separation, speech enhancement, and audio codec models, we propose Apollo, a generative model designed for high-sample-rate audio restoration. Apollo employs an explicit frequency band split module to model the relationships between different frequency bands, allowing for more coherent and higher-quality restored audio. Evaluated on the MUSDB18-HQ and MoisesDB datasets, Apollo consistently outperforms existing SR-GAN models across various bit rates and music genres, particularly excelling in complex scenarios involving mixtures of multiple instruments and vocals. Apollo significantly improves music restoration quality while maintaining computational efficiency. The source code for Apollo is publicly available at https://github.com/JusperLee/Apollo.
MagiCodec: Simple Masked Gaussian-Injected Codec for High-Fidelity Reconstruction and Generation
Neural audio codecs have made significant strides in efficiently mapping raw audio waveforms into discrete token representations, which are foundational for contemporary audio generative models. However, most existing codecs are optimized primarily for reconstruction quality, often at the expense of the downstream modelability of the encoded tokens. Motivated by the need to overcome this bottleneck, we introduce MagiCodec, a novel single-layer, streaming Transformer-based audio codec. MagiCodec is designed with a multistage training pipeline that incorporates Gaussian noise injection and latent regularization, explicitly targeting the enhancement of semantic expressiveness in the generated codes while preserving high reconstruction fidelity. We analytically derive the effect of noise injection in the frequency domain, demonstrating its efficacy in attenuating high-frequency components and fostering robust tokenization. Extensive experimental evaluations show that MagiCodec surpasses state-of-the-art codecs in both reconstruction quality and downstream tasks. Notably, the tokens produced by MagiCodec exhibit Zipf-like distributions, as observed in natural languages, thereby improving compatibility with language-model-based generative architectures. The code and pre-trained models are available at https://github.com/Ereboas/MagiCodec.
FreqPolicy: Frequency Autoregressive Visuomotor Policy with Continuous Tokens
Learning effective visuomotor policies for robotic manipulation is challenging, as it requires generating precise actions while maintaining computational efficiency. Existing methods remain unsatisfactory due to inherent limitations in the essential action representation and the basic network architectures. We observe that representing actions in the frequency domain captures the structured nature of motion more effectively: low-frequency components reflect global movement patterns, while high-frequency components encode fine local details. Additionally, robotic manipulation tasks of varying complexity demand different levels of modeling precision across these frequency bands. Motivated by this, we propose a novel paradigm for visuomotor policy learning that progressively models hierarchical frequency components. To further enhance precision, we introduce continuous latent representations that maintain smoothness and continuity in the action space. Extensive experiments across diverse 2D and 3D robotic manipulation benchmarks demonstrate that our approach outperforms existing methods in both accuracy and efficiency, showcasing the potential of a frequency-domain autoregressive framework with continuous tokens for generalized robotic manipulation.Code is available at https://github.com/4DVLab/Freqpolicy
BAE-Net: A Low complexity and high fidelity Bandwidth-Adaptive neural network for speech super-resolution
Speech bandwidth extension (BWE) has demonstrated promising performance in enhancing the perceptual speech quality in real communication systems. Most existing BWE researches primarily focus on fixed upsampling ratios, disregarding the fact that the effective bandwidth of captured audio may fluctuate frequently due to various capturing devices and transmission conditions. In this paper, we propose a novel streaming adaptive bandwidth extension solution dubbed BAE-Net, which is suitable to handle the low-resolution speech with unknown and varying effective bandwidth. To address the challenges of recovering both the high-frequency magnitude and phase speech content blindly, we devise a dual-stream architecture that incorporates the magnitude inpainting and phase refinement. For potential applications on edge devices, this paper also introduces BAE-NET-lite, which is a lightweight, streaming and efficient framework. Quantitative results demonstrate the superiority of BAE-Net in terms of both performance and computational efficiency when compared with existing state-of-the-art BWE methods.
Enhancing Frequency Forgery Clues for Diffusion-Generated Image Detection
Diffusion models have achieved remarkable success in image synthesis, but the generated high-quality images raise concerns about potential malicious use. Existing detectors often struggle to capture discriminative clues across different models and settings, limiting their generalization to unseen diffusion models and robustness to various perturbations. To address this issue, we observe that diffusion-generated images exhibit progressively larger differences from natural real images across low- to high-frequency bands. Based on this insight, we propose a simple yet effective representation by enhancing the Frequency Forgery Clue (F^2C) across all frequency bands. Specifically, we introduce a frequency-selective function which serves as a weighted filter to the Fourier spectrum, suppressing less discriminative bands while enhancing more informative ones. This approach, grounded in a comprehensive analysis of frequency-based differences between natural real and diffusion-generated images, enables general detection of images from unseen diffusion models and provides robust resilience to various perturbations. Extensive experiments on various diffusion-generated image datasets demonstrate that our method outperforms state-of-the-art detectors with superior generalization and robustness.
AdverX-Ray: Ensuring X-Ray Integrity Through Frequency-Sensitive Adversarial VAEs
Ensuring the quality and integrity of medical images is crucial for maintaining diagnostic accuracy in deep learning-based Computer-Aided Diagnosis and Computer-Aided Detection (CAD) systems. Covariate shifts are subtle variations in the data distribution caused by different imaging devices or settings and can severely degrade model performance, similar to the effects of adversarial attacks. Therefore, it is vital to have a lightweight and fast method to assess the quality of these images prior to using CAD models. AdverX-Ray addresses this need by serving as an image-quality assessment layer, designed to detect covariate shifts effectively. This Adversarial Variational Autoencoder prioritizes the discriminator's role, using the suboptimal outputs of the generator as negative samples to fine-tune the discriminator's ability to identify high-frequency artifacts. Images generated by adversarial networks often exhibit severe high-frequency artifacts, guiding the discriminator to focus excessively on these components. This makes the discriminator ideal for this approach. Trained on patches from X-ray images of specific machine models, AdverX-Ray can evaluate whether a scan matches the training distribution, or if a scan from the same machine is captured under different settings. Extensive comparisons with various OOD detection methods show that AdverX-Ray significantly outperforms existing techniques, achieving a 96.2% average AUROC using only 64 random patches from an X-ray. Its lightweight and fast architecture makes it suitable for real-time applications, enhancing the reliability of medical imaging systems. The code and pretrained models are publicly available.
Online Writer Retrieval with Chinese Handwritten Phrases: A Synergistic Temporal-Frequency Representation Learning Approach
Currently, the prevalence of online handwriting has spurred a critical need for effective retrieval systems to accurately search relevant handwriting instances from specific writers, known as online writer retrieval. Despite the growing demand, this field suffers from a scarcity of well-established methodologies and public large-scale datasets. This paper tackles these challenges with a focus on Chinese handwritten phrases. First, we propose DOLPHIN, a novel retrieval model designed to enhance handwriting representations through synergistic temporal-frequency analysis. For frequency feature learning, we propose the HFGA block, which performs gated cross-attention between the vanilla temporal handwriting sequence and its high-frequency sub-bands to amplify salient writing details. For temporal feature learning, we propose the CAIR block, tailored to promote channel interaction and reduce channel redundancy. Second, to address data deficit, we introduce OLIWER, a large-scale online writer retrieval dataset encompassing over 670,000 Chinese handwritten phrases from 1,731 individuals. Through extensive evaluations, we demonstrate the superior performance of DOLPHIN over existing methods. In addition, we explore cross-domain writer retrieval and reveal the pivotal role of increasing feature alignment in bridging the distributional gap between different handwriting data. Our findings emphasize the significance of point sampling frequency and pressure features in improving handwriting representation quality and retrieval performance. Code and dataset are available at https://github.com/SCUT-DLVCLab/DOLPHIN.
FreqINR: Frequency Consistency for Implicit Neural Representation with Adaptive DCT Frequency Loss
Recent advancements in local Implicit Neural Representation (INR) demonstrate its exceptional capability in handling images at various resolutions. However, frequency discrepancies between high-resolution (HR) and ground-truth images, especially at larger scales, result in significant artifacts and blurring in HR images. This paper introduces Frequency Consistency for Implicit Neural Representation (FreqINR), an innovative Arbitrary-scale Super-resolution method aimed at enhancing detailed textures by ensuring spectral consistency throughout both training and inference. During training, we employ Adaptive Discrete Cosine Transform Frequency Loss (ADFL) to minimize the frequency gap between HR and ground-truth images, utilizing 2-Dimensional DCT bases and focusing dynamically on challenging frequencies. During inference, we extend the receptive field to preserve spectral coherence between low-resolution (LR) and ground-truth images, which is crucial for the model to generate high-frequency details from LR counterparts. Experimental results show that FreqINR, as a lightweight approach, achieves state-of-the-art performance compared to existing Arbitrary-scale Super-resolution methods and offers notable improvements in computational efficiency. The code for our method will be made publicly available.
NeuDA: Neural Deformable Anchor for High-Fidelity Implicit Surface Reconstruction
This paper studies implicit surface reconstruction leveraging differentiable ray casting. Previous works such as IDR and NeuS overlook the spatial context in 3D space when predicting and rendering the surface, thereby may fail to capture sharp local topologies such as small holes and structures. To mitigate the limitation, we propose a flexible neural implicit representation leveraging hierarchical voxel grids, namely Neural Deformable Anchor (NeuDA), for high-fidelity surface reconstruction. NeuDA maintains the hierarchical anchor grids where each vertex stores a 3D position (or anchor) instead of the direct embedding (or feature). We optimize the anchor grids such that different local geometry structures can be adaptively encoded. Besides, we dig into the frequency encoding strategies and introduce a simple hierarchical positional encoding method for the hierarchical anchor structure to flexibly exploit the properties of high-frequency and low-frequency geometry and appearance. Experiments on both the DTU and BlendedMVS datasets demonstrate that NeuDA can produce promising mesh surfaces.
Masked Frequency Modeling for Self-Supervised Visual Pre-Training
We present Masked Frequency Modeling (MFM), a unified frequency-domain-based approach for self-supervised pre-training of visual models. Instead of randomly inserting mask tokens to the input embeddings in the spatial domain, in this paper, we shift the perspective to the frequency domain. Specifically, MFM first masks out a portion of frequency components of the input image and then predicts the missing frequencies on the frequency spectrum. Our key insight is that predicting masked components in the frequency domain is more ideal to reveal underlying image patterns rather than predicting masked patches in the spatial domain, due to the heavy spatial redundancy. Our findings suggest that with the right configuration of mask-and-predict strategy, both the structural information within high-frequency components and the low-level statistics among low-frequency counterparts are useful in learning good representations. For the first time, MFM demonstrates that, for both ViT and CNN, a simple non-Siamese framework can learn meaningful representations even using none of the following: (i) extra data, (ii) extra model, (iii) mask token. Experimental results on image classification and semantic segmentation, as well as several robustness benchmarks show the competitive performance and advanced robustness of MFM compared with recent masked image modeling approaches. Furthermore, we also comprehensively investigate the effectiveness of classical image restoration tasks for representation learning from a unified frequency perspective and reveal their intriguing relations with our MFM approach.
Investigating and Explaining the Frequency Bias in Image Classification
CNNs exhibit many behaviors different from humans, one of which is the capability of employing high-frequency components. This paper discusses the frequency bias phenomenon in image classification tasks: the high-frequency components are actually much less exploited than the low- and mid-frequency components. We first investigate the frequency bias phenomenon by presenting two observations on feature discrimination and learning priority. Furthermore, we hypothesize that (i) the spectral density, (ii) class consistency directly affect the frequency bias. Specifically, our investigations verify that the spectral density of datasets mainly affects the learning priority, while the class consistency mainly affects the feature discrimination.
High-Resolution Image Inpainting using Multi-Scale Neural Patch Synthesis
Recent advances in deep learning have shown exciting promise in filling large holes in natural images with semantically plausible and context aware details, impacting fundamental image manipulation tasks such as object removal. While these learning-based methods are significantly more effective in capturing high-level features than prior techniques, they can only handle very low-resolution inputs due to memory limitations and difficulty in training. Even for slightly larger images, the inpainted regions would appear blurry and unpleasant boundaries become visible. We propose a multi-scale neural patch synthesis approach based on joint optimization of image content and texture constraints, which not only preserves contextual structures but also produces high-frequency details by matching and adapting patches with the most similar mid-layer feature correlations of a deep classification network. We evaluate our method on the ImageNet and Paris Streetview datasets and achieved state-of-the-art inpainting accuracy. We show our approach produces sharper and more coherent results than prior methods, especially for high-resolution images.
Generative Densification: Learning to Densify Gaussians for High-Fidelity Generalizable 3D Reconstruction
Generalized feed-forward Gaussian models have achieved significant progress in sparse-view 3D reconstruction by leveraging prior knowledge from large multi-view datasets. However, these models often struggle to represent high-frequency details due to the limited number of Gaussians. While the densification strategy used in per-scene 3D Gaussian splatting (3D-GS) optimization can be adapted to the feed-forward models, it may not be ideally suited for generalized scenarios. In this paper, we propose Generative Densification, an efficient and generalizable method to densify Gaussians generated by feed-forward models. Unlike the 3D-GS densification strategy, which iteratively splits and clones raw Gaussian parameters, our method up-samples feature representations from the feed-forward models and generates their corresponding fine Gaussians in a single forward pass, leveraging the embedded prior knowledge for enhanced generalization. Experimental results on both object-level and scene-level reconstruction tasks demonstrate that our method outperforms state-of-the-art approaches with comparable or smaller model sizes, achieving notable improvements in representing fine details.
Treble10: A high-quality dataset for far-field speech recognition, dereverberation, and enhancement
Accurate far-field speech datasets are critical for tasks such as automatic speech recognition (ASR), dereverberation, speech enhancement, and source separation. However, current datasets are limited by the trade-off between acoustic realism and scalability. Measured corpora provide faithful physics but are expensive, low-coverage, and rarely include paired clean and reverberant data. In contrast, most simulation-based datasets rely on simplified geometrical acoustics, thus failing to reproduce key physical phenomena like diffraction, scattering, and interference that govern sound propagation in complex environments. We introduce Treble10, a large-scale, physically accurate room-acoustic dataset. Treble10 contains over 3000 broadband room impulse responses (RIRs) simulated in 10 fully furnished real-world rooms, using a hybrid simulation paradigm implemented in the Treble SDK that combines a wave-based and geometrical acoustics solver. The dataset provides six complementary subsets, spanning mono, 8th-order Ambisonics, and 6-channel device RIRs, as well as pre-convolved reverberant speech scenes paired with LibriSpeech utterances. All signals are simulated at 32 kHz, accurately modelling low-frequency wave effects and high-frequency reflections. Treble10 bridges the realism gap between measurement and simulation, enabling reproducible, physically grounded evaluation and large-scale data augmentation for far-field speech tasks. The dataset is openly available via the Hugging Face Hub, and is intended as both a benchmark and a template for next-generation simulation-driven audio research.
AdaIR: Adaptive All-in-One Image Restoration via Frequency Mining and Modulation
In the image acquisition process, various forms of degradation, including noise, haze, and rain, are frequently introduced. These degradations typically arise from the inherent limitations of cameras or unfavorable ambient conditions. To recover clean images from degraded versions, numerous specialized restoration methods have been developed, each targeting a specific type of degradation. Recently, all-in-one algorithms have garnered significant attention by addressing different types of degradations within a single model without requiring prior information of the input degradation type. However, these methods purely operate in the spatial domain and do not delve into the distinct frequency variations inherent to different degradation types. To address this gap, we propose an adaptive all-in-one image restoration network based on frequency mining and modulation. Our approach is motivated by the observation that different degradation types impact the image content on different frequency subbands, thereby requiring different treatments for each restoration task. Specifically, we first mine low- and high-frequency information from the input features, guided by the adaptively decoupled spectra of the degraded image. The extracted features are then modulated by a bidirectional operator to facilitate interactions between different frequency components. Finally, the modulated features are merged into the original input for a progressively guided restoration. With this approach, the model achieves adaptive reconstruction by accentuating the informative frequency subbands according to different input degradations. Extensive experiments demonstrate that the proposed method achieves state-of-the-art performance on different image restoration tasks, including denoising, dehazing, deraining, motion deblurring, and low-light image enhancement. Our code is available at https://github.com/c-yn/AdaIR.
PatchFusion: An End-to-End Tile-Based Framework for High-Resolution Monocular Metric Depth Estimation
Single image depth estimation is a foundational task in computer vision and generative modeling. However, prevailing depth estimation models grapple with accommodating the increasing resolutions commonplace in today's consumer cameras and devices. Existing high-resolution strategies show promise, but they often face limitations, ranging from error propagation to the loss of high-frequency details. We present PatchFusion, a novel tile-based framework with three key components to improve the current state of the art: (1) A patch-wise fusion network that fuses a globally-consistent coarse prediction with finer, inconsistent tiled predictions via high-level feature guidance, (2) A Global-to-Local (G2L) module that adds vital context to the fusion network, discarding the need for patch selection heuristics, and (3) A Consistency-Aware Training (CAT) and Inference (CAI) approach, emphasizing patch overlap consistency and thereby eradicating the necessity for post-processing. Experiments on UnrealStereo4K, MVS-Synth, and Middleburry 2014 demonstrate that our framework can generate high-resolution depth maps with intricate details. PatchFusion is independent of the base model for depth estimation. Notably, our framework built on top of SOTA ZoeDepth brings improvements for a total of 17.3% and 29.4% in terms of the root mean squared error (RMSE) on UnrealStereo4K and MVS-Synth, respectively.
Wukong's 72 Transformations: High-fidelity Textured 3D Morphing via Flow Models
We present WUKONG, a novel training-free framework for high-fidelity textured 3D morphing that takes a pair of source and target prompts (image or text) as input. Unlike conventional methods -- which rely on manual correspondence matching and deformation trajectory estimation (limiting generalization and requiring costly preprocessing) -- WUKONG leverages the generative prior of flow-based transformers to produce high-fidelity 3D transitions with rich texture details. To ensure smooth shape transitions, we exploit the inherent continuity of flow-based generative processes and formulate morphing as an optimal transport barycenter problem. We further introduce a sequential initialization strategy to prevent abrupt geometric distortions and preserve identity coherence. For faithful texture preservation, we propose a similarity-guided semantic consistency mechanism that selectively retains high-frequency details and enables precise control over blending dynamics. This avoids common artifacts like oversmoothing while maintaining semantic fidelity. Extensive quantitative and qualitative evaluations demonstrate that WUKONG significantly outperforms state-of-the-art methods, achieving superior results across diverse geometry and texture variations.
When Semantic Segmentation Meets Frequency Aliasing
Despite recent advancements in semantic segmentation, where and what pixels are hard to segment remains largely unexplored. Existing research only separates an image into easy and hard regions and empirically observes the latter are associated with object boundaries. In this paper, we conduct a comprehensive analysis of hard pixel errors, categorizing them into three types: false responses, merging mistakes, and displacements. Our findings reveal a quantitative association between hard pixels and aliasing, which is distortion caused by the overlapping of frequency components in the Fourier domain during downsampling. To identify the frequencies responsible for aliasing, we propose using the equivalent sampling rate to calculate the Nyquist frequency, which marks the threshold for aliasing. Then, we introduce the aliasing score as a metric to quantify the extent of aliasing. While positively correlated with the proposed aliasing score, three types of hard pixels exhibit different patterns. Here, we propose two novel de-aliasing filter (DAF) and frequency mixing (FreqMix) modules to alleviate aliasing degradation by accurately removing or adjusting frequencies higher than the Nyquist frequency. The DAF precisely removes the frequencies responsible for aliasing before downsampling, while the FreqMix dynamically selects high-frequency components within the encoder block. Experimental results demonstrate consistent improvements in semantic segmentation and low-light instance segmentation tasks. The code is available at: https://github.com/Linwei-Chen/Seg-Aliasing.
Towards High-Quality and Efficient Speech Bandwidth Extension with Parallel Amplitude and Phase Prediction
Speech bandwidth extension (BWE) refers to widening the frequency bandwidth range of speech signals, enhancing the speech quality towards brighter and fuller. This paper proposes a generative adversarial network (GAN) based BWE model with parallel prediction of Amplitude and Phase spectra, named AP-BWE, which achieves both high-quality and efficient wideband speech waveform generation. The proposed AP-BWE generator is entirely based on convolutional neural networks (CNNs). It features a dual-stream architecture with mutual interaction, where the amplitude stream and the phase stream communicate with each other and respectively extend the high-frequency components from the input narrowband amplitude and phase spectra. To improve the naturalness of the extended speech signals, we employ a multi-period discriminator at the waveform level and design a pair of multi-resolution amplitude and phase discriminators at the spectral level, respectively. Experimental results demonstrate that our proposed AP-BWE achieves state-of-the-art performance in terms of speech quality for BWE tasks targeting sampling rates of both 16 kHz and 48 kHz. In terms of generation efficiency, due to the all-convolutional architecture and all-frame-level operations, the proposed AP-BWE can generate 48 kHz waveform samples 292.3 times faster than real-time on a single RTX 4090 GPU and 18.1 times faster than real-time on a single CPU. Notably, to our knowledge, AP-BWE is the first to achieve the direct extension of the high-frequency phase spectrum, which is beneficial for improving the effectiveness of existing BWE methods.
CADE 2.5 - ZeResFDG: Frequency-Decoupled, Rescaled and Zero-Projected Guidance for SD/SDXL Latent Diffusion Models
We introduce CADE 2.5 (Comfy Adaptive Detail Enhancer), a sampler-level guidance stack for SD/SDXL latent diffusion models. The central module, ZeResFDG, unifies (i) frequency-decoupled guidance that reweights low- and high-frequency components of the guidance signal, (ii) energy rescaling that matches the per-sample magnitude of the guided prediction to the positive branch, and (iii) zero-projection that removes the component parallel to the unconditional direction. A lightweight spectral EMA with hysteresis switches between a conservative and a detail-seeking mode as structure crystallizes during sampling. Across SD/SDXL samplers, ZeResFDG improves sharpness, prompt adherence, and artifact control at moderate guidance scales without any retraining. In addition, we employ a training-free inference-time stabilizer, QSilk Micrograin Stabilizer (quantile clamp + depth/edge-gated micro-detail injection), which improves robustness and yields natural high-frequency micro-texture at high resolutions with negligible overhead. For completeness we note that the same rule is compatible with alternative parameterizations (e.g., velocity), which we briefly discuss in the Appendix; however, this paper focuses on SD/SDXL latent diffusion models.
Hierarchical Spatial Algorithms for High-Resolution Image Quantization and Feature Extraction
This study introduces a modular framework for spatial image processing, integrating grayscale quantization, color and brightness enhancement, image sharpening, bidirectional transformation pipelines, and geometric feature extraction. A stepwise intensity transformation quantizes grayscale images into eight discrete levels, producing a posterization effect that simplifies representation while preserving structural detail. Color enhancement is achieved via histogram equalization in both RGB and YCrCb color spaces, with the latter improving contrast while maintaining chrominance fidelity. Brightness adjustment is implemented through HSV value-channel manipulation, and image sharpening is performed using a 3 * 3 convolution kernel to enhance high-frequency details. A bidirectional transformation pipeline that integrates unsharp masking, gamma correction, and noise amplification achieved accuracy levels of 76.10% and 74.80% for the forward and reverse processes, respectively. Geometric feature extraction employed Canny edge detection, Hough-based line estimation (e.g., 51.50{\deg} for billiard cue alignment), Harris corner detection, and morphological window localization. Cue isolation further yielded 81.87\% similarity against ground truth images. Experimental evaluation across diverse datasets demonstrates robust and deterministic performance, highlighting its potential for real-time image analysis and computer vision.
HyperGaussians: High-Dimensional Gaussian Splatting for High-Fidelity Animatable Face Avatars
We introduce HyperGaussians, a novel extension of 3D Gaussian Splatting for high-quality animatable face avatars. Creating such detailed face avatars from videos is a challenging problem and has numerous applications in augmented and virtual reality. While tremendous successes have been achieved for static faces, animatable avatars from monocular videos still fall in the uncanny valley. The de facto standard, 3D Gaussian Splatting (3DGS), represents a face through a collection of 3D Gaussian primitives. 3DGS excels at rendering static faces, but the state-of-the-art still struggles with nonlinear deformations, complex lighting effects, and fine details. While most related works focus on predicting better Gaussian parameters from expression codes, we rethink the 3D Gaussian representation itself and how to make it more expressive. Our insights lead to a novel extension of 3D Gaussians to high-dimensional multivariate Gaussians, dubbed 'HyperGaussians'. The higher dimensionality increases expressivity through conditioning on a learnable local embedding. However, splatting HyperGaussians is computationally expensive because it requires inverting a high-dimensional covariance matrix. We solve this by reparameterizing the covariance matrix, dubbed the 'inverse covariance trick'. This trick boosts the efficiency so that HyperGaussians can be seamlessly integrated into existing models. To demonstrate this, we plug in HyperGaussians into the state-of-the-art in fast monocular face avatars: FlashAvatar. Our evaluation on 19 subjects from 4 face datasets shows that HyperGaussians outperform 3DGS numerically and visually, particularly for high-frequency details like eyeglass frames, teeth, complex facial movements, and specular reflections.
Hallo4: High-Fidelity Dynamic Portrait Animation via Direct Preference Optimization and Temporal Motion Modulation
Generating highly dynamic and photorealistic portrait animations driven by audio and skeletal motion remains challenging due to the need for precise lip synchronization, natural facial expressions, and high-fidelity body motion dynamics. We propose a human-preference-aligned diffusion framework that addresses these challenges through two key innovations. First, we introduce direct preference optimization tailored for human-centric animation, leveraging a curated dataset of human preferences to align generated outputs with perceptual metrics for portrait motion-video alignment and naturalness of expression. Second, the proposed temporal motion modulation resolves spatiotemporal resolution mismatches by reshaping motion conditions into dimensionally aligned latent features through temporal channel redistribution and proportional feature expansion, preserving the fidelity of high-frequency motion details in diffusion-based synthesis. The proposed mechanism is complementary to existing UNet and DiT-based portrait diffusion approaches, and experiments demonstrate obvious improvements in lip-audio synchronization, expression vividness, body motion coherence over baseline methods, alongside notable gains in human preference metrics. Our model and source code can be found at: https://github.com/xyz123xyz456/hallo4.
SVDC: Consistent Direct Time-of-Flight Video Depth Completion with Frequency Selective Fusion
Lightweight direct Time-of-Flight (dToF) sensors are ideal for 3D sensing on mobile devices. However, due to the manufacturing constraints of compact devices and the inherent physical principles of imaging, dToF depth maps are sparse and noisy. In this paper, we propose a novel video depth completion method, called SVDC, by fusing the sparse dToF data with the corresponding RGB guidance. Our method employs a multi-frame fusion scheme to mitigate the spatial ambiguity resulting from the sparse dToF imaging. Misalignment between consecutive frames during multi-frame fusion could cause blending between object edges and the background, which results in a loss of detail. To address this, we introduce an adaptive frequency selective fusion (AFSF) module, which automatically selects convolution kernel sizes to fuse multi-frame features. Our AFSF utilizes a channel-spatial enhancement attention (CSEA) module to enhance features and generates an attention map as fusion weights. The AFSF ensures edge detail recovery while suppressing high-frequency noise in smooth regions. To further enhance temporal consistency, We propose a cross-window consistency loss to ensure consistent predictions across different windows, effectively reducing flickering. Our proposed SVDC achieves optimal accuracy and consistency on the TartanAir and Dynamic Replica datasets. Code is available at https://github.com/Lan1eve/SVDC.
BEAT: Balanced Frequency Adaptive Tuning for Long-Term Time-Series Forecasting
Time-series forecasting is crucial for numerous real-world applications including weather prediction and financial market modeling. While temporal-domain methods remain prevalent, frequency-domain approaches can effectively capture multi-scale periodic patterns, reduce sequence dependencies, and naturally denoise signals. However, existing approaches typically train model components for all frequencies under a unified training objective, often leading to mismatched learning speeds: high-frequency components converge faster and risk overfitting, while low-frequency components underfit due to insufficient training time. To deal with this challenge, we propose BEAT (Balanced frEquency Adaptive Tuning), a novel framework that dynamically monitors the training status for each frequency and adaptively adjusts their gradient updates. By recognizing convergence, overfitting, or underfitting for each frequency, BEAT dynamically reallocates learning priorities, moderating gradients for rapid learners and increasing those for slower ones, alleviating the tension between competing objectives across frequencies and synchronizing the overall learning process. Extensive experiments on seven real-world datasets demonstrate that BEAT consistently outperforms state-of-the-art approaches.
FA-GAN: Artifacts-free and Phase-aware High-fidelity GAN-based Vocoder
Generative adversarial network (GAN) based vocoders have achieved significant attention in speech synthesis with high quality and fast inference speed. However, there still exist many noticeable spectral artifacts, resulting in the quality decline of synthesized speech. In this work, we adopt a novel GAN-based vocoder designed for few artifacts and high fidelity, called FA-GAN. To suppress the aliasing artifacts caused by non-ideal upsampling layers in high-frequency components, we introduce the anti-aliased twin deconvolution module in the generator. To alleviate blurring artifacts and enrich the reconstruction of spectral details, we propose a novel fine-grained multi-resolution real and imaginary loss to assist in the modeling of phase information. Experimental results reveal that FA-GAN outperforms the compared approaches in promoting audio quality and alleviating spectral artifacts, and exhibits superior performance when applied to unseen speaker scenarios.
HybridAugment++: Unified Frequency Spectra Perturbations for Model Robustness
Convolutional Neural Networks (CNN) are known to exhibit poor generalization performance under distribution shifts. Their generalization have been studied extensively, and one line of work approaches the problem from a frequency-centric perspective. These studies highlight the fact that humans and CNNs might focus on different frequency components of an image. First, inspired by these observations, we propose a simple yet effective data augmentation method HybridAugment that reduces the reliance of CNNs on high-frequency components, and thus improves their robustness while keeping their clean accuracy high. Second, we propose HybridAugment++, which is a hierarchical augmentation method that attempts to unify various frequency-spectrum augmentations. HybridAugment++ builds on HybridAugment, and also reduces the reliance of CNNs on the amplitude component of images, and promotes phase information instead. This unification results in competitive to or better than state-of-the-art results on clean accuracy (CIFAR-10/100 and ImageNet), corruption benchmarks (ImageNet-C, CIFAR-10-C and CIFAR-100-C), adversarial robustness on CIFAR-10 and out-of-distribution detection on various datasets. HybridAugment and HybridAugment++ are implemented in a few lines of code, does not require extra data, ensemble models or additional networks.
Defects of Convolutional Decoder Networks in Frequency Representation
In this paper, we prove representation bottlenecks of a cascaded convolutional decoder network, considering the capacity of representing different frequency components of an input sample. We conduct the discrete Fourier transform on each channel of the feature map in an intermediate layer of the decoder network. Then, we introduce the rule of the forward propagation of such intermediate-layer spectrum maps, which is equivalent to the forward propagation of feature maps through a convolutional layer. Based on this, we find that each frequency component in the spectrum map is forward propagated independently with other frequency components. Furthermore, we prove two bottlenecks in representing feature spectrums. First, we prove that the convolution operation, the zero-padding operation, and a set of other settings all make a convolutional decoder network more likely to weaken high-frequency components. Second, we prove that the upsampling operation generates a feature spectrum, in which strong signals repetitively appears at certain frequencies.
End-to-end Whispered Speech Recognition with Frequency-weighted Approaches and Pseudo Whisper Pre-training
Whispering is an important mode of human speech, but no end-to-end recognition results for it were reported yet, probably due to the scarcity of available whispered speech data. In this paper, we present several approaches for end-to-end (E2E) recognition of whispered speech considering the special characteristics of whispered speech and the scarcity of data. This includes a frequency-weighted SpecAugment policy and a frequency-divided CNN feature extractor for better capturing the high-frequency structures of whispered speech, and a layer-wise transfer learning approach to pre-train a model with normal or normal-to-whispered converted speech then fine-tune it with whispered speech to bridge the gap between whispered and normal speech. We achieve an overall relative reduction of 19.8% in PER and 44.4% in CER on a relatively small whispered TIMIT corpus. The results indicate as long as we have a good E2E model pre-trained on normal or pseudo-whispered speech, a relatively small set of whispered speech may suffice to obtain a reasonably good E2E whispered speech recognizer.
HiWave: Training-Free High-Resolution Image Generation via Wavelet-Based Diffusion Sampling
Diffusion models have emerged as the leading approach for image synthesis, demonstrating exceptional photorealism and diversity. However, training diffusion models at high resolutions remains computationally prohibitive, and existing zero-shot generation techniques for synthesizing images beyond training resolutions often produce artifacts, including object duplication and spatial incoherence. In this paper, we introduce HiWave, a training-free, zero-shot approach that substantially enhances visual fidelity and structural coherence in ultra-high-resolution image synthesis using pretrained diffusion models. Our method employs a two-stage pipeline: generating a base image from the pretrained model followed by a patch-wise DDIM inversion step and a novel wavelet-based detail enhancer module. Specifically, we first utilize inversion methods to derive initial noise vectors that preserve global coherence from the base image. Subsequently, during sampling, our wavelet-domain detail enhancer retains low-frequency components from the base image to ensure structural consistency, while selectively guiding high-frequency components to enrich fine details and textures. Extensive evaluations using Stable Diffusion XL demonstrate that HiWave effectively mitigates common visual artifacts seen in prior methods, achieving superior perceptual quality. A user study confirmed HiWave's performance, where it was preferred over the state-of-the-art alternative in more than 80% of comparisons, highlighting its effectiveness for high-quality, ultra-high-resolution image synthesis without requiring retraining or architectural modifications.
DINO-SAE: DINO Spherical Autoencoder for High-Fidelity Image Reconstruction and Generation
Recent studies have explored using pretrained Vision Foundation Models (VFMs) such as DINO for generative autoencoders, showing strong generative performance. Unfortunately, existing approaches often suffer from limited reconstruction fidelity due to the loss of high-frequency details. In this work, we present the DINO Spherical Autoencoder (DINO-SAE), a framework that bridges semantic representation and pixel-level reconstruction. Our key insight is that semantic information in contrastive representations is primarily encoded in the direction of feature vectors, while forcing strict magnitude matching can hinder the encoder from preserving fine-grained details. To address this, we introduce Hierarchical Convolutional Patch Embedding module that enhances local structure and texture preservation, and Cosine Similarity Alignment objective that enforces semantic consistency while allowing flexible feature magnitudes for detail retention. Furthermore, leveraging the observation that SSL-based foundation model representations intrinsically lie on a hypersphere, we employ Riemannian Flow Matching to train a Diffusion Transformer (DiT) directly on this spherical latent manifold. Experiments on ImageNet-1K demonstrate that our approach achieves state-of-the-art reconstruction quality, reaching 0.37 rFID and 26.2 dB PSNR, while maintaining strong semantic alignment to the pretrained VFM. Notably, our Riemannian Flow Matching-based DiT exhibits efficient convergence, achieving a gFID of 3.47 at 80 epochs.
PeriodWave: Multi-Period Flow Matching for High-Fidelity Waveform Generation
Recently, universal waveform generation tasks have been investigated conditioned on various out-of-distribution scenarios. Although GAN-based methods have shown their strength in fast waveform generation, they are vulnerable to train-inference mismatch scenarios such as two-stage text-to-speech. Meanwhile, diffusion-based models have shown their powerful generative performance in other domains; however, they stay out of the limelight due to slow inference speed in waveform generation tasks. Above all, there is no generator architecture that can explicitly disentangle the natural periodic features of high-resolution waveform signals. In this paper, we propose PeriodWave, a novel universal waveform generation model. First, we introduce a period-aware flow matching estimator that can capture the periodic features of the waveform signal when estimating the vector fields. Additionally, we utilize a multi-period estimator that avoids overlaps to capture different periodic features of waveform signals. Although increasing the number of periods can improve the performance significantly, this requires more computational costs. To reduce this issue, we also propose a single period-conditional universal estimator that can feed-forward parallel by period-wise batch inference. Additionally, we utilize discrete wavelet transform to losslessly disentangle the frequency information of waveform signals for high-frequency modeling, and introduce FreeU to reduce the high-frequency noise for waveform generation. The experimental results demonstrated that our model outperforms the previous models both in Mel-spectrogram reconstruction and text-to-speech tasks. All source code will be available at https://github.com/sh-lee-prml/PeriodWave.
FS-RWKV: Leveraging Frequency Spatial-Aware RWKV for 3T-to-7T MRI Translation
Ultra-high-field 7T MRI offers enhanced spatial resolution and tissue contrast that enables the detection of subtle pathological changes in neurological disorders. However, the limited availability of 7T scanners restricts widespread clinical adoption due to substantial infrastructure costs and technical demands. Computational approaches for synthesizing 7T-quality images from accessible 3T acquisitions present a viable solution to this accessibility challenge. Existing CNN approaches suffer from limited spatial coverage, while Transformer models demand excessive computational overhead. RWKV architectures offer an efficient alternative for global feature modeling in medical image synthesis, combining linear computational complexity with strong long-range dependency capture. Building on this foundation, we propose Frequency Spatial-RWKV (FS-RWKV), an RWKV-based framework for 3T-to-7T MRI translation. To better address the challenges of anatomical detail preservation and global tissue contrast recovery, FS-RWKV incorporates two key modules: (1) Frequency-Spatial Omnidirectional Shift (FSO-Shift), which performs discrete wavelet decomposition followed by omnidirectional spatial shifting on the low-frequency branch to enhance global contextual representation while preserving high-frequency anatomical details; and (2) Structural Fidelity Enhancement Block (SFEB), a module that adaptively reinforces anatomical structure through frequency-aware feature fusion. Comprehensive experiments on UNC and BNU datasets demonstrate that FS-RWKV consistently outperforms existing CNN-, Transformer-, GAN-, and RWKV-based baselines across both T1w and T2w modalities, achieving superior anatomical fidelity and perceptual quality.
3DGabSplat: 3D Gabor Splatting for Frequency-adaptive Radiance Field Rendering
Recent prominence in 3D Gaussian Splatting (3DGS) has enabled real-time rendering while maintaining high-fidelity novel view synthesis. However, 3DGS resorts to the Gaussian function that is low-pass by nature and is restricted in representing high-frequency details in 3D scenes. Moreover, it causes redundant primitives with degraded training and rendering efficiency and excessive memory overhead. To overcome these limitations, we propose 3D Gabor Splatting (3DGabSplat) that leverages a novel 3D Gabor-based primitive with multiple directional 3D frequency responses for radiance field representation supervised by multi-view images. The proposed 3D Gabor-based primitive forms a filter bank incorporating multiple 3D Gabor kernels at different frequencies to enhance flexibility and efficiency in capturing fine 3D details. Furthermore, to achieve novel view rendering, an efficient CUDA-based rasterizer is developed to project the multiple directional 3D frequency components characterized by 3D Gabor-based primitives onto the 2D image plane, and a frequency-adaptive mechanism is presented for adaptive joint optimization of primitives. 3DGabSplat is scalable to be a plug-and-play kernel for seamless integration into existing 3DGS paradigms to enhance both efficiency and quality of novel view synthesis. Extensive experiments demonstrate that 3DGabSplat outperforms 3DGS and its variants using alternative primitives, and achieves state-of-the-art rendering quality across both real-world and synthetic scenes. Remarkably, we achieve up to 1.35 dB PSNR gain over 3DGS with simultaneously reduced number of primitives and memory consumption.
Improving Adversarial Robustness of Masked Autoencoders via Test-time Frequency-domain Prompting
In this paper, we investigate the adversarial robustness of vision transformers that are equipped with BERT pretraining (e.g., BEiT, MAE). A surprising observation is that MAE has significantly worse adversarial robustness than other BERT pretraining methods. This observation drives us to rethink the basic differences between these BERT pretraining methods and how these differences affect the robustness against adversarial perturbations. Our empirical analysis reveals that the adversarial robustness of BERT pretraining is highly related to the reconstruction target, i.e., predicting the raw pixels of masked image patches will degrade more adversarial robustness of the model than predicting the semantic context, since it guides the model to concentrate more on medium-/high-frequency components of images. Based on our analysis, we provide a simple yet effective way to boost the adversarial robustness of MAE. The basic idea is using the dataset-extracted domain knowledge to occupy the medium-/high-frequency of images, thus narrowing the optimization space of adversarial perturbations. Specifically, we group the distribution of pretraining data and optimize a set of cluster-specific visual prompts on frequency domain. These prompts are incorporated with input images through prototype-based prompt selection during test period. Extensive evaluation shows that our method clearly boost MAE's adversarial robustness while maintaining its clean performance on ImageNet-1k classification. Our code is available at: https://github.com/shikiw/RobustMAE.
Towards Building More Robust Models with Frequency Bias
The vulnerability of deep neural networks to adversarial samples has been a major impediment to their broad applications, despite their success in various fields. Recently, some works suggested that adversarially-trained models emphasize the importance of low-frequency information to achieve higher robustness. While several attempts have been made to leverage this frequency characteristic, they have all faced the issue that applying low-pass filters directly to input images leads to irreversible loss of discriminative information and poor generalizability to datasets with distinct frequency features. This paper presents a plug-and-play module called the Frequency Preference Control Module that adaptively reconfigures the low- and high-frequency components of intermediate feature representations, providing better utilization of frequency in robust learning. Empirical studies show that our proposed module can be easily incorporated into any adversarial training framework, further improving model robustness across different architectures and datasets. Additionally, experiments were conducted to examine how the frequency bias of robust models impacts the adversarial training process and its final robustness, revealing interesting insights.
LLaVA-UHD v2: an MLLM Integrating High-Resolution Feature Pyramid via Hierarchical Window Transformer
In multimodal large language models (MLLMs), vision transformers (ViTs) are widely employed for visual encoding. However, their performance in solving universal MLLM tasks is not satisfactory. We attribute it to a lack of information from diverse visual levels, impeding alignment with the various semantic granularity required for language generation. To address this issue, we present LLaVA-UHD v2, an advanced MLLM centered around a Hierarchical window transformer that enables capturing diverse visual granularity by constructing and integrating a high-resolution feature pyramid. As a vision-language projector, Hiwin transformer comprises two primary modules: (i) an inverse feature pyramid, constructed by a ViT-derived feature up-sampling process utilizing high-frequency details from an image pyramid, and (ii) hierarchical window attention, focusing on a set of key sampling features within cross-scale windows to condense multi-level feature maps. Extensive experiments demonstrate that LLaVA-UHD v2 achieves superior performance over existing MLLMs on popular benchmarks. Notably, our design brings an average boost of 3.7% across 14 benchmarks compared with the baseline method, 9.3% on DocVQA for instance. We make all the data, model checkpoint, and code publicly available to facilitate future research.
HyRF: Hybrid Radiance Fields for Memory-efficient and High-quality Novel View Synthesis
Recently, 3D Gaussian Splatting (3DGS) has emerged as a powerful alternative to NeRF-based approaches, enabling real-time, high-quality novel view synthesis through explicit, optimizable 3D Gaussians. However, 3DGS suffers from significant memory overhead due to its reliance on per-Gaussian parameters to model view-dependent effects and anisotropic shapes. While recent works propose compressing 3DGS with neural fields, these methods struggle to capture high-frequency spatial variations in Gaussian properties, leading to degraded reconstruction of fine details. We present Hybrid Radiance Fields (HyRF), a novel scene representation that combines the strengths of explicit Gaussians and neural fields. HyRF decomposes the scene into (1) a compact set of explicit Gaussians storing only critical high-frequency parameters and (2) grid-based neural fields that predict remaining properties. To enhance representational capacity, we introduce a decoupled neural field architecture, separately modeling geometry (scale, opacity, rotation) and view-dependent color. Additionally, we propose a hybrid rendering scheme that composites Gaussian splatting with a neural field-predicted background, addressing limitations in distant scene representation. Experiments demonstrate that HyRF achieves state-of-the-art rendering quality while reducing model size by over 20 times compared to 3DGS and maintaining real-time performance. Our project page is available at https://wzpscott.github.io/hyrf/.
DiMSUM: Diffusion Mamba -- A Scalable and Unified Spatial-Frequency Method for Image Generation
We introduce a novel state-space architecture for diffusion models, effectively harnessing spatial and frequency information to enhance the inductive bias towards local features in input images for image generation tasks. While state-space networks, including Mamba, a revolutionary advancement in recurrent neural networks, typically scan input sequences from left to right, they face difficulties in designing effective scanning strategies, especially in the processing of image data. Our method demonstrates that integrating wavelet transformation into Mamba enhances the local structure awareness of visual inputs and better captures long-range relations of frequencies by disentangling them into wavelet subbands, representing both low- and high-frequency components. These wavelet-based outputs are then processed and seamlessly fused with the original Mamba outputs through a cross-attention fusion layer, combining both spatial and frequency information to optimize the order awareness of state-space models which is essential for the details and overall quality of image generation. Besides, we introduce a globally-shared transformer to supercharge the performance of Mamba, harnessing its exceptional power to capture global relationships. Through extensive experiments on standard benchmarks, our method demonstrates superior results compared to DiT and DIFFUSSM, achieving faster training convergence and delivering high-quality outputs. The codes and pretrained models are released at https://github.com/VinAIResearch/DiMSUM.git.
Deformable Model-Driven Neural Rendering for High-Fidelity 3D Reconstruction of Human Heads Under Low-View Settings
Reconstructing 3D human heads in low-view settings presents technical challenges, mainly due to the pronounced risk of overfitting with limited views and high-frequency signals. To address this, we propose geometry decomposition and adopt a two-stage, coarse-to-fine training strategy, allowing for progressively capturing high-frequency geometric details. We represent 3D human heads using the zero level-set of a combined signed distance field, comprising a smooth template, a non-rigid deformation, and a high-frequency displacement field. The template captures features that are independent of both identity and expression and is co-trained with the deformation network across multiple individuals with sparse and randomly selected views. The displacement field, capturing individual-specific details, undergoes separate training for each person. Our network training does not require 3D supervision or object masks. Experimental results demonstrate the effectiveness and robustness of our geometry decomposition and two-stage training strategy. Our method outperforms existing neural rendering approaches in terms of reconstruction accuracy and novel view synthesis under low-view settings. Moreover, the pre-trained template serves a good initialization for our model when encountering unseen individuals.
Rethinking Brain Tumor Segmentation from the Frequency Domain Perspective
Precise segmentation of brain tumors, particularly contrast-enhancing regions visible in post-contrast MRI (areas highlighted by contrast agent injection), is crucial for accurate clinical diagnosis and treatment planning but remains challenging. However, current methods exhibit notable performance degradation in segmenting these enhancing brain tumor areas, largely due to insufficient consideration of MRI-specific tumor features such as complex textures and directional variations. To address this, we propose the Harmonized Frequency Fusion Network (HFF-Net), which rethinks brain tumor segmentation from a frequency-domain perspective. To comprehensively characterize tumor regions, we develop a Frequency Domain Decomposition (FDD) module that separates MRI images into low-frequency components, capturing smooth tumor contours and high-frequency components, highlighting detailed textures and directional edges. To further enhance sensitivity to tumor boundaries, we introduce an Adaptive Laplacian Convolution (ALC) module that adaptively emphasizes critical high-frequency details using dynamically updated convolution kernels. To effectively fuse tumor features across multiple scales, we design a Frequency Domain Cross-Attention (FDCA) integrating semantic, positional, and slice-specific information. We further validate and interpret frequency-domain improvements through visualization, theoretical reasoning, and experimental analyses. Extensive experiments on four public datasets demonstrate that HFF-Net achieves an average relative improvement of 4.48\% (ranging from 2.39\% to 7.72\%) in the mean Dice scores across the three major subregions, and an average relative improvement of 7.33% (ranging from 5.96% to 8.64%) in the segmentation of contrast-enhancing tumor regions, while maintaining favorable computational efficiency and clinical applicability. Code: https://github.com/VinyehShaw/HFF.
NSTR: Neural Spectral Transport Representation for Space-Varying Frequency Fields
Implicit Neural Representations (INRs) have emerged as a powerful paradigm for representing signals such as images, audio, and 3D scenes. However, existing INR frameworks -- including MLPs with Fourier features, SIREN, and multiresolution hash grids -- implicitly assume a global and stationary spectral basis. This assumption is fundamentally misaligned with real-world signals whose frequency characteristics vary significantly across space, exhibiting local high-frequency textures, smooth regions, and frequency drift phenomena. We propose Neural Spectral Transport Representation (NSTR), the first INR framework that explicitly models a spatially varying local frequency field. NSTR introduces a learnable frequency transport equation, a PDE that governs how local spectral compositions evolve across space. Given a learnable local spectrum field S(x) and a frequency transport network F_θ enforcing nabla S(x) approx F_θ(x, S(x)), NSTR reconstructs signals by spatially modulating a compact set of global sinusoidal bases. This formulation enables strong local adaptivity and offers a new level of interpretability via visualizing frequency flows. Experiments on 2D image regression, audio reconstruction, and implicit 3D geometry show that NSTR achieves significantly better accuracy-parameter trade-offs than SIREN, Fourier-feature MLPs, and Instant-NGP. NSTR requires fewer global frequencies, converges faster, and naturally explains signal structure through spectral transport fields. We believe NSTR opens a new direction in INR research by introducing explicit modeling of space-varying spectrum.
Back to Ear: Perceptually Driven High Fidelity Music Reconstruction
Variational Autoencoders (VAEs) are essential for large-scale audio tasks like diffusion-based generation. However, existing open-source models often neglect auditory perceptual aspects during training, leading to weaknesses in phase accuracy and stereophonic spatial representation. To address these challenges, we propose {\epsilon}ar-VAE, an open-source music signal reconstruction model that rethinks and optimizes the VAE training paradigm. Our contributions are threefold: (i) A K-weighting perceptual filter applied prior to loss calculation to align the objective with auditory perception. (ii) Two novel phase losses: a Correlation Loss for stereo coherence, and a Phase Loss using its derivatives--Instantaneous Frequency and Group Delay--for precision. (iii) A new spectral supervision paradigm where magnitude is supervised by all four Mid/Side/Left/Right components, while phase is supervised only by the LR components. Experiments show {\epsilon}ar-VAE at 44.1kHz substantially outperforms leading open-source models across diverse metrics, showing particular strength in reconstructing high-frequency harmonics and the spatial characteristics.
FUSE: Label-Free Image-Event Joint Monocular Depth Estimation via Frequency-Decoupled Alignment and Degradation-Robust Fusion
Image-event joint depth estimation methods leverage complementary modalities for robust perception, yet face challenges in generalizability stemming from two factors: 1) limited annotated image-event-depth datasets causing insufficient cross-modal supervision, and 2) inherent frequency mismatches between static images and dynamic event streams with distinct spatiotemporal patterns, leading to ineffective feature fusion. To address this dual challenge, we propose Frequency-decoupled Unified Self-supervised Encoder (FUSE) with two synergistic components: The Parameter-efficient Self-supervised Transfer (PST) establishes cross-modal knowledge transfer through latent space alignment with image foundation models, effectively mitigating data scarcity by enabling joint encoding without depth ground truth. Complementing this, we propose the Frequency-Decoupled Fusion module (FreDFuse) to explicitly decouple high-frequency edge features from low-frequency structural components, resolving modality-specific frequency mismatches through physics-aware fusion. This combined approach enables FUSE to construct a universal image-event encoder that only requires lightweight decoder adaptation for target datasets. Extensive experiments demonstrate state-of-the-art performance with 14% and 24.9% improvements in Abs.Rel on MVSEC and DENSE datasets. The framework exhibits remarkable zero-shot adaptability to challenging scenarios including extreme lighting and motion blur, significantly advancing real-world deployment capabilities. The source code for our method is publicly available at: https://github.com/sunpihai-up/FUSE
Mitigating Object Hallucinations in MLLMs via Multi-Frequency Perturbations
Recently, multimodal large language models (MLLMs) have demonstrated remarkable performance in visual-language tasks. However, the authenticity of the responses generated by MLLMs is often compromised by object hallucinations. We identify that a key cause of these hallucinations is the model's over-susceptibility to specific image frequency features in detecting objects. In this paper, we introduce Multi-Frequency Perturbations (MFP), a simple, cost-effective, and pluggable method that leverages both low-frequency and high-frequency features of images to perturb visual feature representations and explicitly suppress redundant frequency-domain features during inference, thereby mitigating hallucinations. Experimental results demonstrate that our method significantly mitigates object hallucinations across various model architectures. Furthermore, as a training-time method, MFP can be combined with inference-time methods to achieve state-of-the-art performance on the CHAIR benchmark.
FreCaS: Efficient Higher-Resolution Image Generation via Frequency-aware Cascaded Sampling
While image generation with diffusion models has achieved a great success, generating images of higher resolution than the training size remains a challenging task due to the high computational cost. Current methods typically perform the entire sampling process at full resolution and process all frequency components simultaneously, contradicting with the inherent coarse-to-fine nature of latent diffusion models and wasting computations on processing premature high-frequency details at early diffusion stages. To address this issue, we introduce an efficient Frequency-aware Cascaded Sampling framework, FreCaS in short, for higher-resolution image generation. FreCaS decomposes the sampling process into cascaded stages with gradually increased resolutions, progressively expanding frequency bands and refining the corresponding details. We propose an innovative frequency-aware classifier-free guidance (FA-CFG) strategy to assign different guidance strengths for different frequency components, directing the diffusion model to add new details in the expanded frequency domain of each stage. Additionally, we fuse the cross-attention maps of previous and current stages to avoid synthesizing unfaithful layouts. Experiments demonstrate that FreCaS significantly outperforms state-of-the-art methods in image quality and generation speed. In particular, FreCaS is about 2.86times and 6.07times faster than ScaleCrafter and DemoFusion in generating a 2048times2048 image using a pre-trained SDXL model and achieves an FID_b improvement of 11.6 and 3.7, respectively. FreCaS can be easily extended to more complex models such as SD3. The source code of FreCaS can be found at text{https://github.com/xtudbxk/FreCaS}{https://github.com/xtudbxk/FreCaS}.
Enhancing Vision-Language Model Pre-training with Image-text Pair Pruning Based on Word Frequency
We propose Word-Frequency-based Image-Text Pair Pruning (WFPP), a novel data pruning method that improves the efficiency of VLMs. Unlike MetaCLIP, our method does not need metadata for pruning, but selects text-image pairs to prune based on the content of the text. Specifically, WFPP prunes text-image pairs containing high-frequency words across the entire training dataset. The effect of WFPP is to reduce the dominance of frequent words. The result a better balanced word-frequency distribution in the dataset, which is known to improve the training of word embedding models. After pre-training on the pruned subset, we fine-tuned the model on the entire dataset for one additional epoch to achieve better performance. Our experiments demonstrate that applying WFPP when training a CLIP model improves performance on a wide range of downstream tasks. WFPP also provides the advantage of speeding up pre-training by using fewer samples. Additionally, we analyze the training data before and after pruning to visualize how WFPP changes the balance of word frequencies. We hope our work encourages researchers to consider the distribution of words in the training data when pre-training VLMs, not limited to CLIP.
UltraHR-100K: Enhancing UHR Image Synthesis with A Large-Scale High-Quality Dataset
Ultra-high-resolution (UHR) text-to-image (T2I) generation has seen notable progress. However, two key challenges remain : 1) the absence of a large-scale high-quality UHR T2I dataset, and (2) the neglect of tailored training strategies for fine-grained detail synthesis in UHR scenarios. To tackle the first challenge, we introduce UltraHR-100K, a high-quality dataset of 100K UHR images with rich captions, offering diverse content and strong visual fidelity. Each image exceeds 3K resolution and is rigorously curated based on detail richness, content complexity, and aesthetic quality. To tackle the second challenge, we propose a frequency-aware post-training method that enhances fine-detail generation in T2I diffusion models. Specifically, we design (i) Detail-Oriented Timestep Sampling (DOTS) to focus learning on detail-critical denoising steps, and (ii) Soft-Weighting Frequency Regularization (SWFR), which leverages Discrete Fourier Transform (DFT) to softly constrain frequency components, encouraging high-frequency detail preservation. Extensive experiments on our proposed UltraHR-eval4K benchmarks demonstrate that our approach significantly improves the fine-grained detail quality and overall fidelity of UHR image generation. The code is available at https://github.com/NJU-PCALab/UltraHR-100k{here}.
TryOn-Adapter: Efficient Fine-Grained Clothing Identity Adaptation for High-Fidelity Virtual Try-On
Virtual try-on focuses on adjusting the given clothes to fit a specific person seamlessly while avoiding any distortion of the patterns and textures of the garment. However, the clothing identity uncontrollability and training inefficiency of existing diffusion-based methods, which struggle to maintain the identity even with full parameter training, are significant limitations that hinder the widespread applications. In this work, we propose an effective and efficient framework, termed TryOn-Adapter. Specifically, we first decouple clothing identity into fine-grained factors: style for color and category information, texture for high-frequency details, and structure for smooth spatial adaptive transformation. Our approach utilizes a pre-trained exemplar-based diffusion model as the fundamental network, whose parameters are frozen except for the attention layers. We then customize three lightweight modules (Style Preserving, Texture Highlighting, and Structure Adapting) incorporated with fine-tuning techniques to enable precise and efficient identity control. Meanwhile, we introduce the training-free T-RePaint strategy to further enhance clothing identity preservation while maintaining the realistic try-on effect during the inference. Our experiments demonstrate that our approach achieves state-of-the-art performance on two widely-used benchmarks. Additionally, compared with recent full-tuning diffusion-based methods, we only use about half of their tunable parameters during training. The code will be made publicly available at https://github.com/jiazheng-xing/TryOn-Adapter.
No Pixel Left Behind: A Detail-Preserving Architecture for Robust High-Resolution AI-Generated Image Detection
The rapid growth of high-resolution, meticulously crafted AI-generated images poses a significant challenge to existing detection methods, which are often trained and evaluated on low-resolution, automatically generated datasets that do not align with the complexities of high-resolution scenarios. A common practice is to resize or center-crop high-resolution images to fit standard network inputs. However, without full coverage of all pixels, such strategies risk either obscuring subtle, high-frequency artifacts or discarding information from uncovered regions, leading to input information loss. In this paper, we introduce the High-Resolution Detail-Aggregation Network (HiDA-Net), a novel framework that ensures no pixel is left behind. We use the Feature Aggregation Module (FAM), which fuses features from multiple full-resolution local tiles with a down-sampled global view of the image. These local features are aggregated and fused with global representations for final prediction, ensuring that native-resolution details are preserved and utilized for detection. To enhance robustness against challenges such as localized AI manipulations and compression, we introduce Token-wise Forgery Localization (TFL) module for fine-grained spatial sensitivity and JPEG Quality Factor Estimation (QFE) module to disentangle generative artifacts from compression noise explicitly. Furthermore, to facilitate future research, we introduce HiRes-50K, a new challenging benchmark consisting of 50,568 images with up to 64 megapixels. Extensive experiments show that HiDA-Net achieves state-of-the-art, increasing accuracy by over 13% on the challenging Chameleon dataset and 10% on our HiRes-50K.
DET-GS: Depth- and Edge-Aware Regularization for High-Fidelity 3D Gaussian Splatting
3D Gaussian Splatting (3DGS) represents a significant advancement in the field of efficient and high-fidelity novel view synthesis. Despite recent progress, achieving accurate geometric reconstruction under sparse-view conditions remains a fundamental challenge. Existing methods often rely on non-local depth regularization, which fails to capture fine-grained structures and is highly sensitive to depth estimation noise. Furthermore, traditional smoothing methods neglect semantic boundaries and indiscriminately degrade essential edges and textures, consequently limiting the overall quality of reconstruction. In this work, we propose DET-GS, a unified depth and edge-aware regularization framework for 3D Gaussian Splatting. DET-GS introduces a hierarchical geometric depth supervision framework that adaptively enforces multi-level geometric consistency, significantly enhancing structural fidelity and robustness against depth estimation noise. To preserve scene boundaries, we design an edge-aware depth regularization guided by semantic masks derived from Canny edge detection. Furthermore, we introduce an RGB-guided edge-preserving Total Variation loss that selectively smooths homogeneous regions while rigorously retaining high-frequency details and textures. Extensive experiments demonstrate that DET-GS achieves substantial improvements in both geometric accuracy and visual fidelity, outperforming state-of-the-art (SOTA) methods on sparse-view novel view synthesis benchmarks.
Seg2Any: Open-set Segmentation-Mask-to-Image Generation with Precise Shape and Semantic Control
Despite recent advances in diffusion models, top-tier text-to-image (T2I) models still struggle to achieve precise spatial layout control, i.e. accurately generating entities with specified attributes and locations. Segmentation-mask-to-image (S2I) generation has emerged as a promising solution by incorporating pixel-level spatial guidance and regional text prompts. However, existing S2I methods fail to simultaneously ensure semantic consistency and shape consistency. To address these challenges, we propose Seg2Any, a novel S2I framework built upon advanced multimodal diffusion transformers (e.g. FLUX). First, to achieve both semantic and shape consistency, we decouple segmentation mask conditions into regional semantic and high-frequency shape components. The regional semantic condition is introduced by a Semantic Alignment Attention Mask, ensuring that generated entities adhere to their assigned text prompts. The high-frequency shape condition, representing entity boundaries, is encoded as an Entity Contour Map and then introduced as an additional modality via multi-modal attention to guide image spatial structure. Second, to prevent attribute leakage across entities in multi-entity scenarios, we introduce an Attribute Isolation Attention Mask mechanism, which constrains each entity's image tokens to attend exclusively to themselves during image self-attention. To support open-set S2I generation, we construct SACap-1M, a large-scale dataset containing 1 million images with 5.9 million segmented entities and detailed regional captions, along with a SACap-Eval benchmark for comprehensive S2I evaluation. Extensive experiments demonstrate that Seg2Any achieves state-of-the-art performance on both open-set and closed-set S2I benchmarks, particularly in fine-grained spatial and attribute control of entities.
Low-Light Hyperspectral Image Enhancement
Due to inadequate energy captured by the hyperspectral camera sensor in poor illumination conditions, low-light hyperspectral images (HSIs) usually suffer from low visibility, spectral distortion, and various noises. A range of HSI restoration methods have been developed, yet their effectiveness in enhancing low-light HSIs is constrained. This work focuses on the low-light HSI enhancement task, which aims to reveal the spatial-spectral information hidden in darkened areas. To facilitate the development of low-light HSI processing, we collect a low-light HSI (LHSI) dataset of both indoor and outdoor scenes. Based on Laplacian pyramid decomposition and reconstruction, we developed an end-to-end data-driven low-light HSI enhancement (HSIE) approach trained on the LHSI dataset. With the observation that illumination is related to the low-frequency component of HSI, while textural details are closely correlated to the high-frequency component, the proposed HSIE is designed to have two branches. The illumination enhancement branch is adopted to enlighten the low-frequency component with reduced resolution. The high-frequency refinement branch is utilized for refining the high-frequency component via a predicted mask. In addition, to improve information flow and boost performance, we introduce an effective channel attention block (CAB) with residual dense connection, which served as the basic block of the illumination enhancement branch. The effectiveness and efficiency of HSIE both in quantitative assessment measures and visual effects are demonstrated by experimental results on the LHSI dataset. According to the classification performance on the remote sensing Indian Pines dataset, downstream tasks benefit from the enhanced HSI. Datasets and codes are available: https://github.com/guanguanboy/HSIE{https://github.com/guanguanboy/HSIE}.
Chupa: Carving 3D Clothed Humans from Skinned Shape Priors using 2D Diffusion Probabilistic Models
We propose a 3D generation pipeline that uses diffusion models to generate realistic human digital avatars. Due to the wide variety of human identities, poses, and stochastic details, the generation of 3D human meshes has been a challenging problem. To address this, we decompose the problem into 2D normal map generation and normal map-based 3D reconstruction. Specifically, we first simultaneously generate realistic normal maps for the front and backside of a clothed human, dubbed dual normal maps, using a pose-conditional diffusion model. For 3D reconstruction, we ``carve'' the prior SMPL-X mesh to a detailed 3D mesh according to the normal maps through mesh optimization. To further enhance the high-frequency details, we present a diffusion resampling scheme on both body and facial regions, thus encouraging the generation of realistic digital avatars. We also seamlessly incorporate a recent text-to-image diffusion model to support text-based human identity control. Our method, namely, Chupa, is capable of generating realistic 3D clothed humans with better perceptual quality and identity variety.
LayeringDiff: Layered Image Synthesis via Generation, then Disassembly with Generative Knowledge
Layers have become indispensable tools for professional artists, allowing them to build a hierarchical structure that enables independent control over individual visual elements. In this paper, we propose LayeringDiff, a novel pipeline for the synthesis of layered images, which begins by generating a composite image using an off-the-shelf image generative model, followed by disassembling the image into its constituent foreground and background layers. By extracting layers from a composite image, rather than generating them from scratch, LayeringDiff bypasses the need for large-scale training to develop generative capabilities for individual layers. Furthermore, by utilizing a pretrained off-the-shelf generative model, our method can produce diverse contents and object scales in synthesized layers. For effective layer decomposition, we adapt a large-scale pretrained generative prior to estimate foreground and background layers. We also propose high-frequency alignment modules to refine the fine-details of the estimated layers. Our comprehensive experiments demonstrate that our approach effectively synthesizes layered images and supports various practical applications.
Rieger, Schwabe, Suess-de Vries: The Sunny Beats of Resonance
We propose a self-consistent explanation of Rieger-type periodicities, the Schwabe cycle, and the Suess-de Vries cycle of the solar dynamo in terms of resonances of various wave phenomena with gravitational forces exerted by the orbiting planets. Starting on the high-frequency side, we show that the two-planet spring tides of Venus, Earth and Jupiter are able to excite magneto-Rossby waves which can be linked with typical Rieger-type periods. We argue then that the 11.07-year beat period of those magneto-Rossby waves synchronizes an underlying conventional alpha-Omega-dynamo, by periodically changing either the field storage capacity in the tachocline or some portion of the alpha-effect therein. We also strengthen the argument that the Suess-de Vries cycle appears as an 193-year beat period between the 22.14-year Hale cycle and a spin-orbit coupling effect related with the 19.86-year rosette-like motion of the Sun around the barycenter.
Wavelet Diffusion Models are fast and scalable Image Generators
Diffusion models are rising as a powerful solution for high-fidelity image generation, which exceeds GANs in quality in many circumstances. However, their slow training and inference speed is a huge bottleneck, blocking them from being used in real-time applications. A recent DiffusionGAN method significantly decreases the models' running time by reducing the number of sampling steps from thousands to several, but their speeds still largely lag behind the GAN counterparts. This paper aims to reduce the speed gap by proposing a novel wavelet-based diffusion scheme. We extract low-and-high frequency components from both image and feature levels via wavelet decomposition and adaptively handle these components for faster processing while maintaining good generation quality. Furthermore, we propose to use a reconstruction term, which effectively boosts the model training convergence. Experimental results on CelebA-HQ, CIFAR-10, LSUN-Church, and STL-10 datasets prove our solution is a stepping-stone to offering real-time and high-fidelity diffusion models. Our code and pre-trained checkpoints are available at https://github.com/VinAIResearch/WaveDiff.git.
Forecasting Thermoacoustic Instabilities in Liquid Propellant Rocket Engines Using Multimodal Bayesian Deep Learning
The 100 MW cryogenic liquid oxygen/hydrogen multi-injector combustor BKD operated by the DLR Institute of Space Propulsion is a research platform that allows the study of thermoacoustic instabilities under realistic conditions, representative of small upper stage rocket engines. We use data from BKD experimental campaigns in which the static chamber pressure and fuel-oxidizer ratio are varied such that the first tangential mode of the combustor is excited under some conditions. We train an autoregressive Bayesian neural network model to forecast the amplitude of the dynamic pressure time series, inputting multiple sensor measurements (injector pressure/ temperature measurements, static chamber pressure, high-frequency dynamic pressure measurements, high-frequency OH* chemiluminescence measurements) and future flow rate control signals. The Bayesian nature of our algorithms allows us to work with a dataset whose size is restricted by the expense of each experimental run, without making overconfident extrapolations. We find that the networks are able to accurately forecast the evolution of the pressure amplitude and anticipate instability events on unseen experimental runs 500 milliseconds in advance. We compare the predictive accuracy of multiple models using different combinations of sensor inputs. We find that the high-frequency dynamic pressure signal is particularly informative. We also use the technique of integrated gradients to interpret the influence of different sensor inputs on the model prediction. The negative log-likelihood of data points in the test dataset indicates that predictive uncertainties are well-characterized by our Bayesian model and simulating a sensor failure event results as expected in a dramatic increase in the epistemic component of the uncertainty.
Boosting Neural Representations for Videos with a Conditional Decoder
Implicit neural representations (INRs) have emerged as a promising approach for video storage and processing, showing remarkable versatility across various video tasks. However, existing methods often fail to fully leverage their representation capabilities, primarily due to inadequate alignment of intermediate features during target frame decoding. This paper introduces a universal boosting framework for current implicit video representation approaches. Specifically, we utilize a conditional decoder with a temporal-aware affine transform module, which uses the frame index as a prior condition to effectively align intermediate features with target frames. Besides, we introduce a sinusoidal NeRV-like block to generate diverse intermediate features and achieve a more balanced parameter distribution, thereby enhancing the model's capacity. With a high-frequency information-preserving reconstruction loss, our approach successfully boosts multiple baseline INRs in the reconstruction quality and convergence speed for video regression, and exhibits superior inpainting and interpolation results. Further, we integrate a consistent entropy minimization technique and develop video codecs based on these boosted INRs. Experiments on the UVG dataset confirm that our enhanced codecs significantly outperform baseline INRs and offer competitive rate-distortion performance compared to traditional and learning-based codecs.
On the Anatomy of Real-World R Code for Static Analysis
CONTEXT The R programming language has a huge and active community, especially in the area of statistical computing. Its interpreted nature allows for several interesting constructs, like the manipulation of functions at run-time, that hinder the static analysis of R programs. At the same time, there is a lack of existing research regarding how these features, or even the R language as a whole are used in practice. OBJECTIVE In this paper, we conduct a large-scale, static analysis of more than 50 million lines of real-world R programs and packages to identify their characteristics and the features that are actually used. Moreover, we compare the similarities and differences between the scripts of R users and the implementations of package authors. We provide insights for static analysis tools like the lintr package as well as potential interpreter optimizations and uncover areas for future research. METHOD We analyze 4230 R scripts submitted alongside publications and the sources of 19450 CRAN packages for over 350000 R files, collecting and summarizing quantitative information for features of interest. RESULTS We find a high frequency of name-based indexing operations, assignments, and loops, but a low frequency for most of R's reflective functions. Furthermore, we find neither testing functions nor many calls to R's foreign function interface (FFI) in the publication submissions. CONCLUSION R scripts and package sources differ, for example, in their size, the way they include other packages, and their usage of R's reflective capabilities. We provide features that are used frequently and should be prioritized by static analysis tools, like operator assignments, function calls, and certain reflective functions like load.
WaveNeRF: Wavelet-based Generalizable Neural Radiance Fields
Neural Radiance Field (NeRF) has shown impressive performance in novel view synthesis via implicit scene representation. However, it usually suffers from poor scalability as requiring densely sampled images for each new scene. Several studies have attempted to mitigate this problem by integrating Multi-View Stereo (MVS) technique into NeRF while they still entail a cumbersome fine-tuning process for new scenes. Notably, the rendering quality will drop severely without this fine-tuning process and the errors mainly appear around the high-frequency features. In the light of this observation, we design WaveNeRF, which integrates wavelet frequency decomposition into MVS and NeRF to achieve generalizable yet high-quality synthesis without any per-scene optimization. To preserve high-frequency information when generating 3D feature volumes, WaveNeRF builds Multi-View Stereo in the Wavelet domain by integrating the discrete wavelet transform into the classical cascade MVS, which disentangles high-frequency information explicitly. With that, disentangled frequency features can be injected into classic NeRF via a novel hybrid neural renderer to yield faithful high-frequency details, and an intuitive frequency-guided sampling strategy can be designed to suppress artifacts around high-frequency regions. Extensive experiments over three widely studied benchmarks show that WaveNeRF achieves superior generalizable radiance field modeling when only given three images as input.
FITS: Modeling Time Series with $10k$ Parameters
In this paper, we introduce FITS, a lightweight yet powerful model for time series analysis. Unlike existing models that directly process raw time-domain data, FITS operates on the principle that time series can be manipulated through interpolation in the complex frequency domain. By discarding high-frequency components with negligible impact on time series data, FITS achieves performance comparable to state-of-the-art models for time series forecasting and anomaly detection tasks, while having a remarkably compact size of only approximately 10k parameters. Such a lightweight model can be easily trained and deployed in edge devices, creating opportunities for various applications. The code is available in: https://github.com/VEWOXIC/FITS
What Do Self-Supervised Vision Transformers Learn?
We present a comparative study on how and why contrastive learning (CL) and masked image modeling (MIM) differ in their representations and in their performance of downstream tasks. In particular, we demonstrate that self-supervised Vision Transformers (ViTs) have the following properties: (1) CL trains self-attentions to capture longer-range global patterns than MIM, such as the shape of an object, especially in the later layers of the ViT architecture. This CL property helps ViTs linearly separate images in their representation spaces. However, it also makes the self-attentions collapse into homogeneity for all query tokens and heads. Such homogeneity of self-attention reduces the diversity of representations, worsening scalability and dense prediction performance. (2) CL utilizes the low-frequency signals of the representations, but MIM utilizes high-frequencies. Since low- and high-frequency information respectively represent shapes and textures, CL is more shape-oriented and MIM more texture-oriented. (3) CL plays a crucial role in the later layers, while MIM mainly focuses on the early layers. Upon these analyses, we find that CL and MIM can complement each other and observe that even the simplest harmonization can help leverage the advantages of both methods. The code is available at https://github.com/naver-ai/cl-vs-mim.
A Closer Look at Fourier Spectrum Discrepancies for CNN-generated Images Detection
CNN-based generative modelling has evolved to produce synthetic images indistinguishable from real images in the RGB pixel space. Recent works have observed that CNN-generated images share a systematic shortcoming in replicating high frequency Fourier spectrum decay attributes. Furthermore, these works have successfully exploited this systematic shortcoming to detect CNN-generated images reporting up to 99% accuracy across multiple state-of-the-art GAN models. In this work, we investigate the validity of assertions claiming that CNN-generated images are unable to achieve high frequency spectral decay consistency. We meticulously construct a counterexample space of high frequency spectral decay consistent CNN-generated images emerging from our handcrafted experiments using DCGAN, LSGAN, WGAN-GP and StarGAN, where we empirically show that this frequency discrepancy can be avoided by a minor architecture change in the last upsampling operation. We subsequently use images from this counterexample space to successfully bypass the recently proposed forensics detector which leverages on high frequency Fourier spectrum decay attributes for CNN-generated image detection. Through this study, we show that high frequency Fourier spectrum decay discrepancies are not inherent characteristics for existing CNN-based generative models--contrary to the belief of some existing work--, and such features are not robust to perform synthetic image detection. Our results prompt re-thinking of using high frequency Fourier spectrum decay attributes for CNN-generated image detection. Code and models are available at https://keshik6.github.io/Fourier-Discrepancies-CNN-Detection/
