new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 19

Accurate generation of chemical reaction transition states by conditional flow matching

Transition state (TS) structures define the critical geometries and energy barriers underlying chemical reactivity, yet their fleeting nature renders them experimentally elusive and drives the reliance on costly, high-throughput density functional theory (DFT) calculations. Here, we introduce TS-GEN, a conditional flow-matching generative model that maps samples from a simple Gaussian prior directly to transition-state saddle-point geometries in a single, deterministic pass. By embedding both reactant and product conformations as conditioning information, TS-GEN learns to transport latent noise to true TS structures via an optimal-transport path, effectively replacing the iterative optimization common in nudged-elastic band or string-method algorithms. TS-GEN delivers unprecedented accuracy, achieving a root-mean-square deviation of 0.004 mathring{A} (vs. 0.103 mathring{A} for prior state-of-the-art) and a mean barrier-height error of 1.019 {rm kcal/mol} (vs. 2.864 {rm kcal/mol}), while requiring only 0.06 {rm s} GPU time per inference. Over 87% of generated TSs meet chemical-accuracy criteria (<1.58 {rm kcal/mol} error), substantially outpacing existing methods. TS-GEN also exhibits strong transferability to out-of-distribution reactions from a larger database. By uniting sub-angstrom precision, sub-second speed, and broad applicability, TS-GEN will be highly useful for high-throughput exploration of complex reaction networks, paving the way to the exploration of novel chemical reaction mechanisms.

  • 3 authors
·
Jul 14, 2025

A Neural Anthropometer Learning from Body Dimensions Computed on Human 3D Meshes

Human shape estimation has become increasingly important both theoretically and practically, for instance, in 3D mesh estimation, distance garment production and computational forensics, to mention just a few examples. As a further specialization, Human Body Dimensions Estimation (HBDE) focuses on estimating human body measurements like shoulder width or chest circumference from images or 3D meshes usually using supervised learning approaches. The main obstacle in this context is the data scarcity problem, as collecting this ground truth requires expensive and difficult procedures. This obstacle can be overcome by obtaining realistic human measurements from 3D human meshes. However, a) there are no well established methods to calculate HBDs from 3D meshes and b) there are no benchmarks to fairly compare results on the HBDE task. Our contribution is twofold. On the one hand, we present a method to calculate right and left arm length, shoulder width, and inseam (crotch height) from 3D meshes with focus on potential medical, virtual try-on and distance tailoring applications. On the other hand, we use four additional body dimensions calculated using recently published methods to assemble a set of eight body dimensions which we use as a supervision signal to our Neural Anthropometer: a convolutional neural network capable of estimating these dimensions. To assess the estimation, we train the Neural Anthropometer with synthetic images of 3D meshes, from which we calculated the HBDs and observed that the network's overall mean estimate error is 20.89 mm (relative error of 2.84\%). The results we present are fully reproducible and establish a fair baseline for research on the task of HBDE, therefore enabling the community with a valuable method.

  • 2 authors
·
Oct 6, 2021

The Devil in the Details: Emergent Misalignment, Format and Coherence in Open-Weights LLMs

Prior work has shown that fine-tuning models on a narrow domain with misaligned data can lead to broad misalignment - a phenomenon termed "emergent misalignment" (Betley et al. 2025). While all tested models were susceptible to emergent misalignment, some models showed more resistance than others. Specifically the Qwen-2.5 family proved to be relatively resistant, while GPT-4o exhibited the strongest misalignment. In this paper we evaluate if current-generation open-weights models exhibit similar resistance to the Qwen-2.5 family and measure misalignment robustness over a range of model architectures and scales. We replicate the effect across nine modern open-weights models (Gemma 3 and Qwen 3 families, 1B-32B parameters). Models fine-tuned on insecure code generation show a 0.68% misalignment rate (compared to 0.07% for base models), matching the lower end of prior open-model results but dramatically lower than GPT-4o's 20%. We identify a critical format-dependent vulnerability: requiring JSON output doubles misalignment rates compared to natural language prompts (0.96% vs 0.42%). This suggests that structural constraints may bypass safety training by reducing the model's 'degrees of freedom' to refuse. These findings confirm emergent misalignment as a reproducible phenomenon in modern open-weights models, with rates substantially lower than observed in proprietary systems.

  • 1 authors
·
Nov 25, 2025