Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeSHEET: A Multi-purpose Open-source Speech Human Evaluation Estimation Toolkit
We introduce SHEET, a multi-purpose open-source toolkit designed to accelerate subjective speech quality assessment (SSQA) research. SHEET stands for the Speech Human Evaluation Estimation Toolkit, which focuses on data-driven deep neural network-based models trained to predict human-labeled quality scores of speech samples. SHEET provides comprehensive training and evaluation scripts, multi-dataset and multi-model support, as well as pre-trained models accessible via Torch Hub and HuggingFace Spaces. To demonstrate its capabilities, we re-evaluated SSL-MOS, a speech self-supervised learning (SSL)-based SSQA model widely used in recent scientific papers, on an extensive list of speech SSL models. Experiments were conducted on two representative SSQA datasets named BVCC and NISQA, and we identified the optimal speech SSL model, whose performance surpassed the original SSL-MOS implementation and was comparable to state-of-the-art methods.
VeriSciQA: An Auto-Verified Dataset for Scientific Visual Question Answering
Large Vision-Language Models (LVLMs) show promise for scientific applications, yet open-source models still struggle with Scientific Visual Question Answering (SVQA), namely answering questions about figures from scientific papers. A key bottleneck lies in the lack of public, large-scale, high-quality SVQA datasets. Although recent work uses LVLMs to synthesize data at scale, we identify systematic errors in their resulting QA pairs, stemming from LVLMs' inherent limitations and information asymmetry between figures and text. To address these challenges, we propose a verification-centric Generate-then-Verify framework that first generates QA pairs with figure-associated textual context, then applies cross-modal consistency checks against figures along with auxiliary filters to eliminate erroneous pairs. We instantiate this framework to curate VeriSciQA, a dataset of 20,351 QA pairs spanning 20 scientific domains and 12 figure types. VeriSciQA poses a challenging benchmark for open-source models, with a substantial accuracy gap between the leading open-source models (64%) and a proprietary model (82%). Moreover, models fine-tuned on VeriSciQA achieve consistent improvements on SVQA benchmarks, with performance gains that scale with data size and surpass models trained on existing datasets. Human evaluation further validates the superior correctness of VeriSciQA. Together, these evidences demonstrate that continued data expansion by our scalable framework can further advance SVQA capability in the open-source community.
Empower Large Language Model to Perform Better on Industrial Domain-Specific Question Answering
Large Language Model (LLM) has gained popularity and achieved remarkable results in open-domain tasks, but its performance in real industrial domain-specific scenarios is average since there is no specific knowledge in it. This issue has attracted widespread attention, but there are few relevant benchmarks available. In this paper, we provide a benchmark Question Answering (QA) dataset named MSQA, which is about Microsoft products and IT technical problems encountered by customers. This dataset contains industry cloud-specific QA knowledge, which is not available for general LLM, so it is well suited for evaluating methods aimed at improving domain-specific capabilities of LLM. In addition, we propose a new model interaction paradigm that can empower LLM to achieve better performance on domain-specific tasks where it is not proficient. Extensive experiments demonstrate that the approach following our model fusion framework outperforms the commonly used LLM with retrieval methods.
Capability Instruction Tuning: A New Paradigm for Dynamic LLM Routing
Large Language Models (LLMs) have demonstrated human-like instruction-following abilities, particularly those exceeding 100 billion parameters. The combined capability of some smaller, resource-friendly LLMs can address most of the instructions that larger LLMs excel at. In this work, we explore how to route the best-performing LLM for each instruction to achieve better overall performance. We develop a new paradigm, constructing capability instructions with model capability representation, user instruction, and performance inquiry prompts to assess the performance. To learn from capability instructions, we introduce a new end-to-end framework called Model Selection with Aptitude Test (Model-SAT), which generates positive and negative samples based on what different models perform well or struggle with. Model-SAT uses a model capability encoder that extends its model representation to a lightweight LLM. Our experiments show that Model-SAT understands the performance dimensions of candidate models and provides the probabilities of their capability to handle various instructions. Additionally, during deployment, a new model can quickly infer its aptitude test results across 50 tasks, each with 20 shots. Model-SAT performs state-of-the-art model routing without candidate inference and in real-world new model-released scenarios. The code is available at https://github.com/Now-Join-Us/CIT-LLM-Routing
SceMQA: A Scientific College Entrance Level Multimodal Question Answering Benchmark
The paper introduces SceMQA, a novel benchmark for scientific multimodal question answering at the college entrance level. It addresses a critical educational phase often overlooked in existing benchmarks, spanning high school to pre-college levels. SceMQA focuses on core science subjects including Mathematics, Physics, Chemistry, and Biology. It features a blend of multiple-choice and free-response formats, ensuring a comprehensive evaluation of AI models' abilities. Additionally, our benchmark provides specific knowledge points for each problem and detailed explanations for each answer. SceMQA also uniquely presents problems with identical contexts but varied questions to facilitate a more thorough and accurate assessment of reasoning capabilities. In the experiment, we evaluate both open-source and close-source state-of-the-art Multimodal Large Language Models (MLLMs), across various experimental settings. The results show that further research and development are needed in developing more capable MLLM, as highlighted by only 50% to 60% accuracy achieved by the strongest models. Our benchmark and analysis will be available at https://scemqa.github.io/
Difficult Task Yes but Simple Task No: Unveiling the Laziness in Multimodal LLMs
Multimodal Large Language Models (MLLMs) demonstrate a strong understanding of the real world and can even handle complex tasks. However, they still fail on some straightforward visual question-answering (VQA) problems. This paper dives deeper into this issue, revealing that models tend to err when answering easy questions (e.g. Yes/No questions) about an image, even though they can correctly describe it. We refer to this model behavior discrepancy between difficult and simple questions as model laziness. To systematically investigate model laziness, we manually construct LazyBench, a benchmark that includes Yes/No, multiple choice, short answer questions, and image description tasks that are related to the same subjects in the images. Based on LazyBench, we observe that laziness widely exists in current advanced MLLMs (e.g. GPT-4o, Gemini-1.5-pro, Claude 3 and LLaVA-v1.5-13B), and it is more pronounced on stronger models. We also analyze the VQA v2 (LLaVA-v1.5-13B) benchmark and find that about half of its failure cases are caused by model laziness, which further highlights the importance of ensuring that the model fully utilizes its capability. To this end, we conduct preliminary exploration on how to mitigate laziness and find that chain of thought (CoT) can effectively address this issue.
Towards Robust Multi-Modal Reasoning via Model Selection
The reasoning capabilities of LLM (Large Language Model) are widely acknowledged in recent research, inspiring studies on tool learning and autonomous agents. LLM serves as the "brain" of the agent, orchestrating multiple tools for collaborative multi-step task solving. Unlike methods invoking tools like calculators or weather APIs for straightforward tasks, multi-modal agents excel by integrating diverse AI models for complex challenges. However, current multi-modal agents neglect the significance of model selection: they primarily focus on the planning and execution phases, and will only invoke predefined task-specific models for each subtask, making the execution fragile. Meanwhile, other traditional model selection methods are either incompatible with or suboptimal for the multi-modal agent scenarios, due to ignorance of dependencies among subtasks arising by multi-step reasoning. To this end, we identify the key challenges therein and propose the M^3 framework as a plug-in with negligible runtime overhead at test-time. This framework improves model selection and bolsters the robustness of multi-modal agents in multi-step reasoning. In the absence of suitable benchmarks, we create MS-GQA, a new dataset specifically designed to investigate the model selection challenge in multi-modal agents. Our experiments reveal that our framework enables dynamic model selection, considering both user inputs and subtask dependencies, thereby robustifying the overall reasoning process. Our code and benchmark: https://github.com/LINs-lab/M3.
Learning Compact Representations of LLM Abilities via Item Response Theory
Recent years have witnessed a surge in the number of large language models (LLMs), yet efficiently managing and utilizing these vast resources remains a significant challenge. In this work, we explore how to learn compact representations of LLM abilities that can facilitate downstream tasks, such as model routing and performance prediction on new benchmarks. We frame this problem as estimating the probability that a given model will correctly answer a specific query. Inspired by the item response theory (IRT) in psychometrics, we model this probability as a function of three key factors: (i) the model's multi-skill ability vector, (2) the query's discrimination vector that separates models of differing skills, and (3) the query's difficulty scalar. To learn these parameters jointly, we introduce a Mixture-of-Experts (MoE) network that couples model- and query-level embeddings. Extensive experiments demonstrate that our approach leads to state-of-the-art performance in both model routing and benchmark accuracy prediction. Moreover, analysis validates that the learned parameters encode meaningful, interpretable information about model capabilities and query characteristics.
Evaluating Correctness and Faithfulness of Instruction-Following Models for Question Answering
Retriever-augmented instruction-following models are attractive alternatives to fine-tuned approaches for information-seeking tasks such as question answering (QA). By simply prepending retrieved documents in its input along with an instruction, these models can be adapted to various information domains and tasks without additional fine-tuning. While the model responses tend to be natural and fluent, the additional verbosity makes traditional QA evaluation metrics such as exact match (EM) and F1 unreliable for accurately quantifying model performance. In this work, we investigate the performance of instruction-following models across three information-seeking QA tasks. We use both automatic and human evaluation to evaluate these models along two dimensions: 1) how well they satisfy the user's information need (correctness), and 2) whether they produce a response based on the provided knowledge (faithfulness). Guided by human evaluation and analysis, we highlight the shortcomings of traditional metrics for both correctness and faithfulness. We then propose simple token-overlap based and model-based metrics that reflect the true performance of these models. Our analysis reveals that instruction-following models are competitive, and sometimes even outperform fine-tuned models for correctness. However, these models struggle to stick to the provided knowledge and often hallucinate in their responses. We hope our work encourages a more holistic evaluation of instruction-following models for QA. Our code and data is available at https://github.com/McGill-NLP/instruct-qa
Can Multimodal Foundation Models Understand Schematic Diagrams? An Empirical Study on Information-Seeking QA over Scientific Papers
This paper introduces MISS-QA, the first benchmark specifically designed to evaluate the ability of models to interpret schematic diagrams within scientific literature. MISS-QA comprises 1,500 expert-annotated examples over 465 scientific papers. In this benchmark, models are tasked with interpreting schematic diagrams that illustrate research overviews and answering corresponding information-seeking questions based on the broader context of the paper. We assess the performance of 18 frontier multimodal foundation models, including o4-mini, Gemini-2.5-Flash, and Qwen2.5-VL. We reveal a significant performance gap between these models and human experts on MISS-QA. Our analysis of model performance on unanswerable questions and our detailed error analysis further highlight the strengths and limitations of current models, offering key insights to enhance models in comprehending multimodal scientific literature.
Cascaded Information Disclosure for Generalized Evaluation of Problem Solving Capabilities
While question-answering~(QA) benchmark performance is an automatic and scalable method to compare LLMs, it is an indirect method of evaluating their underlying problem-solving capabilities. Therefore, we propose a holistic and generalizable framework based on cascaded question disclosure that provides a more accurate estimate of the models' problem-solving capabilities while maintaining the scalability and automation. This approach collects model responses in a stagewise manner with each stage revealing partial information about the question designed to elicit generalized reasoning in LLMs. We find that our approach not only provides a better comparison between LLMs, but also induces better intermediate traces in models compared to the standard QA paradigm. We empirically verify this behavior on diverse reasoning and knowledge-heavy QA datasets by comparing LLMs of varying sizes and families. Our approach narrows the performance gap observed in the standard QA evaluation settings, indicating that the prevalent indirect QA paradigm of evaluation overestimates the differences in performance between models. We further validate our findings by extensive ablation studies.
NuclearQA: A Human-Made Benchmark for Language Models for the Nuclear Domain
As LLMs have become increasingly popular, they have been used in almost every field. But as the application for LLMs expands from generic fields to narrow, focused science domains, there exists an ever-increasing gap in ways to evaluate their efficacy in those fields. For the benchmarks that do exist, a lot of them focus on questions that don't require proper understanding of the subject in question. In this paper, we present NuclearQA, a human-made benchmark of 100 questions to evaluate language models in the nuclear domain, consisting of a varying collection of questions that have been specifically designed by experts to test the abilities of language models. We detail our approach and show how the mix of several types of questions makes our benchmark uniquely capable of evaluating models in the nuclear domain. We also present our own evaluation metric for assessing LLM's performances due to the limitations of existing ones. Our experiments on state-of-the-art models suggest that even the best LLMs perform less than satisfactorily on our benchmark, demonstrating the scientific knowledge gap of existing LLMs.
PAQ: 65 Million Probably-Asked Questions and What You Can Do With Them
Open-domain Question Answering models which directly leverage question-answer (QA) pairs, such as closed-book QA (CBQA) models and QA-pair retrievers, show promise in terms of speed and memory compared to conventional models which retrieve and read from text corpora. QA-pair retrievers also offer interpretable answers, a high degree of control, and are trivial to update at test time with new knowledge. However, these models lack the accuracy of retrieve-and-read systems, as substantially less knowledge is covered by the available QA-pairs relative to text corpora like Wikipedia. To facilitate improved QA-pair models, we introduce Probably Asked Questions (PAQ), a very large resource of 65M automatically-generated QA-pairs. We introduce a new QA-pair retriever, RePAQ, to complement PAQ. We find that PAQ preempts and caches test questions, enabling RePAQ to match the accuracy of recent retrieve-and-read models, whilst being significantly faster. Using PAQ, we train CBQA models which outperform comparable baselines by 5%, but trail RePAQ by over 15%, indicating the effectiveness of explicit retrieval. RePAQ can be configured for size (under 500MB) or speed (over 1K questions per second) whilst retaining high accuracy. Lastly, we demonstrate RePAQ's strength at selective QA, abstaining from answering when it is likely to be incorrect. This enables RePAQ to ``back-off" to a more expensive state-of-the-art model, leading to a combined system which is both more accurate and 2x faster than the state-of-the-art model alone.
Davidsonian Scene Graph: Improving Reliability in Fine-grained Evaluation for Text-to-Image Generation
Evaluating text-to-image models is notoriously difficult. A strong recent approach for assessing text-image faithfulness is based on QG/A (question generation and answering), which uses pre-trained foundational models to automatically generate a set of questions and answers from the prompt, and output images are scored based on whether these answers extracted with a visual question answering model are consistent with the prompt-based answers. This kind of evaluation is naturally dependent on the quality of the underlying QG and VQA models. We identify and address several reliability challenges in existing QG/A work: (a) QG questions should respect the prompt (avoiding hallucinations, duplications, and omissions) and (b) VQA answers should be consistent (not asserting that there is no motorcycle in an image while also claiming the motorcycle is blue). We address these issues with Davidsonian Scene Graph (DSG), an empirically grounded evaluation framework inspired by formal semantics, which is adaptable to any QG/A frameworks. DSG produces atomic and unique questions organized in dependency graphs, which (i) ensure appropriate semantic coverage and (ii) sidestep inconsistent answers. With extensive experimentation and human evaluation on a range of model configurations (LLM, VQA, and T2I), we empirically demonstrate that DSG addresses the challenges noted above. Finally, we present DSG-1k, an open-sourced evaluation benchmark that includes 1,060 prompts, covering a wide range of fine-grained semantic categories with a balanced distribution. We release the DSG-1k prompts and the corresponding DSG questions.
Measuring short-form factuality in large language models
We present SimpleQA, a benchmark that evaluates the ability of language models to answer short, fact-seeking questions. We prioritized two properties in designing this eval. First, SimpleQA is challenging, as it is adversarially collected against GPT-4 responses. Second, responses are easy to grade, because questions are created such that there exists only a single, indisputable answer. Each answer in SimpleQA is graded as either correct, incorrect, or not attempted. A model with ideal behavior would get as many questions correct as possible while not attempting the questions for which it is not confident it knows the correct answer. SimpleQA is a simple, targeted evaluation for whether models "know what they know," and our hope is that this benchmark will remain relevant for the next few generations of frontier models. SimpleQA can be found at https://github.com/openai/simple-evals.
Guiding Vision-Language Model Selection for Visual Question-Answering Across Tasks, Domains, and Knowledge Types
Visual Question-Answering (VQA) has become a key use-case in several applications to aid user experience, particularly after Vision-Language Models (VLMs) achieving good results in zero-shot inference. But evaluating different VLMs for an application requirement using a standardized framework in practical settings is still challenging. This paper introduces a comprehensive framework for evaluating VLMs tailored to VQA tasks in practical settings. We present a novel dataset derived from established VQA benchmarks, annotated with task types, application domains, and knowledge types, three key practical aspects on which tasks can vary. We also introduce GoEval, a multimodal evaluation metric developed using GPT-4o, achieving a correlation factor of 56.71% with human judgments. Our experiments with ten state-of-the-art VLMs reveals that no single model excelling universally, making appropriate selection a key design decision. Proprietary models such as Gemini-1.5-Pro and GPT-4o-mini generally outperform others, though open-source models like InternVL-2-8B and CogVLM-2-Llama-3-19B demonstrate competitive strengths in specific contexts, while providing additional advantages. This study guides the selection of VLMs based on specific task requirements and resource constraints, and can also be extended to other vision-language tasks.
GQA: A New Dataset for Real-World Visual Reasoning and Compositional Question Answering
We introduce GQA, a new dataset for real-world visual reasoning and compositional question answering, seeking to address key shortcomings of previous VQA datasets. We have developed a strong and robust question engine that leverages scene graph structures to create 22M diverse reasoning questions, all come with functional programs that represent their semantics. We use the programs to gain tight control over the answer distribution and present a new tunable smoothing technique to mitigate question biases. Accompanying the dataset is a suite of new metrics that evaluate essential qualities such as consistency, grounding and plausibility. An extensive analysis is performed for baselines as well as state-of-the-art models, providing fine-grained results for different question types and topologies. Whereas a blind LSTM obtains mere 42.1%, and strong VQA models achieve 54.1%, human performance tops at 89.3%, offering ample opportunity for new research to explore. We strongly hope GQA will provide an enabling resource for the next generation of models with enhanced robustness, improved consistency, and deeper semantic understanding for images and language.
AssistGPT: A General Multi-modal Assistant that can Plan, Execute, Inspect, and Learn
Recent research on Large Language Models (LLMs) has led to remarkable advancements in general NLP AI assistants. Some studies have further explored the use of LLMs for planning and invoking models or APIs to address more general multi-modal user queries. Despite this progress, complex visual-based tasks still remain challenging due to the diverse nature of visual tasks. This diversity is reflected in two aspects: 1) Reasoning paths. For many real-life applications, it is hard to accurately decompose a query simply by examining the query itself. Planning based on the specific visual content and the results of each step is usually required. 2) Flexible inputs and intermediate results. Input forms could be flexible for in-the-wild cases, and involves not only a single image or video but a mixture of videos and images, e.g., a user-view image with some reference videos. Besides, a complex reasoning process will also generate diverse multimodal intermediate results, e.g., video narrations, segmented video clips, etc. To address such general cases, we propose a multi-modal AI assistant, AssistGPT, with an interleaved code and language reasoning approach called Plan, Execute, Inspect, and Learn (PEIL) to integrate LLMs with various tools. Specifically, the Planner is capable of using natural language to plan which tool in Executor should do next based on the current reasoning progress. Inspector is an efficient memory manager to assist the Planner to feed proper visual information into a specific tool. Finally, since the entire reasoning process is complex and flexible, a Learner is designed to enable the model to autonomously explore and discover the optimal solution. We conducted experiments on A-OKVQA and NExT-QA benchmarks, achieving state-of-the-art results. Moreover, showcases demonstrate the ability of our system to handle questions far more complex than those found in the benchmarks.
Towards VQA Models That Can Read
Studies have shown that a dominant class of questions asked by visually impaired users on images of their surroundings involves reading text in the image. But today's VQA models can not read! Our paper takes a first step towards addressing this problem. First, we introduce a new "TextVQA" dataset to facilitate progress on this important problem. Existing datasets either have a small proportion of questions about text (e.g., the VQA dataset) or are too small (e.g., the VizWiz dataset). TextVQA contains 45,336 questions on 28,408 images that require reasoning about text to answer. Second, we introduce a novel model architecture that reads text in the image, reasons about it in the context of the image and the question, and predicts an answer which might be a deduction based on the text and the image or composed of the strings found in the image. Consequently, we call our approach Look, Read, Reason & Answer (LoRRA). We show that LoRRA outperforms existing state-of-the-art VQA models on our TextVQA dataset. We find that the gap between human performance and machine performance is significantly larger on TextVQA than on VQA 2.0, suggesting that TextVQA is well-suited to benchmark progress along directions complementary to VQA 2.0.
The Mirage of Model Editing: Revisiting Evaluation in the Wild
Despite near-perfect results in artificial evaluations, the effectiveness of model editing in real-world applications remains unexplored. To bridge this gap, we propose to study model editing in question answering (QA) by establishing a rigorous evaluation practice to assess the effectiveness of editing methods in correcting LLMs' errors. It consists of QAEdit, a new benchmark derived from popular QA datasets, and a standardized evaluation framework. Our single editing experiments indicate that current editing methods perform substantially worse than previously reported (38.5% vs. ~96%). Through module analysis and controlled experiments, we demonstrate that this performance decline stems from issues in evaluation practices of prior editing research. One key issue is the inappropriate use of teacher forcing in testing prevents error propagation by feeding ground truth tokens (inaccessible in real-world scenarios) as input. Furthermore, we simulate real-world deployment by sequential editing, revealing that current approaches fail drastically with only 1000 edits. Our analysis provides a fundamental reexamination of both the real-world applicability of existing model editing methods and their evaluation practices, and establishes a rigorous evaluation framework with key insights to advance reliable and practical model editing research.
Establishing Knowledge Preference in Language Models
Language models are known to encode a great amount of factual knowledge through pretraining. However, such knowledge might be insufficient to cater to user requests, requiring the model to integrate external knowledge sources and adhere to user-provided specifications. When answering questions about ongoing events, the model should use recent news articles to update its response; when asked to provide recommendations, the model should prioritize user specifications over retrieved product reviews; when some facts are edited in the model, the updated facts should override all prior knowledge learned by the model even if they are conflicting. In all of the cases above, the model faces a decision between its own parametric knowledge, (retrieved) contextual knowledge, and user instruction knowledge. In this paper, we (1) unify such settings into the problem of knowledge preference and define a three-level preference hierarchy over these knowledge sources; (2) compile a collection of existing datasets IfQA, MQuAKE, and MRQA covering a combination of settings (with/without user specifications, with/without context documents) to systematically evaluate how well models obey the intended knowledge preference; and (3) propose a dataset synthesis method that composes diverse question-answer pairs with user assumptions and related context to directly fine-tune LMs for instilling the hierarchy of knowledge. We demonstrate that a 7B model, fine-tuned on only a few thousand examples automatically generated by our proposed method, effectively achieves superior performance (more than 18% improvement across all evaluation benchmarks) in adhering to the desired knowledge preference hierarchy.
QuestBench: Can LLMs ask the right question to acquire information in reasoning tasks?
Recently, a large amount of work has focused on improving large language models' (LLMs') performance on reasoning benchmarks such as math and logic. However, past work has largely assumed that tasks are well-defined. In the real world, queries to LLMs are often underspecified, only solvable through acquiring missing information. We formalize this as a constraint satisfaction problem (CSP) with missing variable assignments. Using a special case of this formalism where only one necessary variable assignment is missing, we can rigorously evaluate an LLM's ability to identify the minimal necessary question to ask and quantify axes of difficulty levels for each problem. We present QuestBench, a set of underspecified reasoning tasks solvable by asking at most one question, which includes: (1) Logic-Q: Logical reasoning tasks with one missing proposition, (2) Planning-Q: PDDL planning problems with initial states that are partially-observed, (3) GSM-Q: Human-annotated grade school math problems with one missing variable assignment, and (4) GSME-Q: a version of GSM-Q where word problems are translated into equations by human annotators. The LLM is tasked with selecting the correct clarification question(s) from a list of options. While state-of-the-art models excel at GSM-Q and GSME-Q, their accuracy is only 40-50% on Logic-Q and Planning-Q. Analysis demonstrates that the ability to solve well-specified reasoning problems may not be sufficient for success on our benchmark: models have difficulty identifying the right question to ask, even when they can solve the fully specified version of the problem. Furthermore, in the Planning-Q domain, LLMs tend not to hedge, even when explicitly presented with the option to predict ``not sure.'' This highlights the need for deeper investigation into models' information acquisition capabilities.
RealMedQA: A pilot biomedical question answering dataset containing realistic clinical questions
Clinical question answering systems have the potential to provide clinicians with relevant and timely answers to their questions. Nonetheless, despite the advances that have been made, adoption of these systems in clinical settings has been slow. One issue is a lack of question-answering datasets which reflect the real-world needs of health professionals. In this work, we present RealMedQA, a dataset of realistic clinical questions generated by humans and an LLM. We describe the process for generating and verifying the QA pairs and assess several QA models on BioASQ and RealMedQA to assess the relative difficulty of matching answers to questions. We show that the LLM is more cost-efficient for generating "ideal" QA pairs. Additionally, we achieve a lower lexical similarity between questions and answers than BioASQ which provides an additional challenge to the top two QA models, as per the results. We release our code and our dataset publicly to encourage further research.
Large Language Models Encode Clinical Knowledge
Large language models (LLMs) have demonstrated impressive capabilities in natural language understanding and generation, but the quality bar for medical and clinical applications is high. Today, attempts to assess models' clinical knowledge typically rely on automated evaluations on limited benchmarks. There is no standard to evaluate model predictions and reasoning across a breadth of tasks. To address this, we present MultiMedQA, a benchmark combining six existing open question answering datasets spanning professional medical exams, research, and consumer queries; and HealthSearchQA, a new free-response dataset of medical questions searched online. We propose a framework for human evaluation of model answers along multiple axes including factuality, precision, possible harm, and bias. In addition, we evaluate PaLM (a 540-billion parameter LLM) and its instruction-tuned variant, Flan-PaLM, on MultiMedQA. Using a combination of prompting strategies, Flan-PaLM achieves state-of-the-art accuracy on every MultiMedQA multiple-choice dataset (MedQA, MedMCQA, PubMedQA, MMLU clinical topics), including 67.6% accuracy on MedQA (US Medical License Exam questions), surpassing prior state-of-the-art by over 17%. However, human evaluation reveals key gaps in Flan-PaLM responses. To resolve this we introduce instruction prompt tuning, a parameter-efficient approach for aligning LLMs to new domains using a few exemplars. The resulting model, Med-PaLM, performs encouragingly, but remains inferior to clinicians. We show that comprehension, recall of knowledge, and medical reasoning improve with model scale and instruction prompt tuning, suggesting the potential utility of LLMs in medicine. Our human evaluations reveal important limitations of today's models, reinforcing the importance of both evaluation frameworks and method development in creating safe, helpful LLM models for clinical applications.
TheoremQA: A Theorem-driven Question Answering dataset
The recent LLMs like GPT-4 and PaLM-2 have made tremendous progress in solving fundamental math problems like GSM8K by achieving over 90\% accuracy. However, their capabilities to solve more challenging math problems which require domain-specific knowledge (i.e. theorem) have yet to be investigated. In this paper, we introduce TheoremQA, the first theorem-driven question-answering dataset designed to evaluate AI models' capabilities to apply theorems to solve challenging science problems. \dataset is curated by domain experts containing 800 high-quality questions covering 350 theoremse.g. Taylor's theorem, Lagrange's theorem, Huffman coding, Quantum Theorem, Elasticity Theorem, etc from Math, Physics, EE\&CS, and Finance. We evaluate a wide spectrum of 16 large language and code models with different prompting strategies like Chain-of-Thoughts and Program-of-Thoughts. We found that GPT-4's capabilities to solve these problems are unparalleled, achieving an accuracy of 51\% with Program-of-Thoughts Prompting. All the existing open-sourced models are below 15\%, barely surpassing the random-guess baseline. Given the diversity and broad coverage of \dataset, we believe it can be used as a better benchmark to evaluate LLMs' capabilities to solve challenging science problems. The data and code are released in https://github.com/wenhuchen/TheoremQA.
ConSens: Assessing context grounding in open-book question answering
Large Language Models (LLMs) have demonstrated considerable success in open-book question answering (QA), where the task requires generating answers grounded in a provided external context. A critical challenge in open-book QA is to ensure that model responses are based on the provided context rather than its parametric knowledge, which can be outdated, incomplete, or incorrect. Existing evaluation methods, primarily based on the LLM-as-a-judge approach, face significant limitations, including biases, scalability issues, and dependence on costly external systems. To address these challenges, we propose a novel metric that contrasts the perplexity of the model response under two conditions: when the context is provided and when it is not. The resulting score quantifies the extent to which the model's answer relies on the provided context. The validity of this metric is demonstrated through a series of experiments that show its effectiveness in identifying whether a given answer is grounded in the provided context. Unlike existing approaches, this metric is computationally efficient, interpretable, and adaptable to various use cases, offering a scalable and practical solution to assess context utilization in open-book QA systems.
Specializing Smaller Language Models towards Multi-Step Reasoning
The surprising ability of Large Language Models (LLMs) to perform well on complex reasoning with only few-shot chain-of-thought prompts is believed to emerge only in very large-scale models (100+ billion parameters). We show that such abilities can, in fact, be distilled down from GPT-3.5 (ge 175B) to T5 variants (le 11B). We propose model specialization, to specialize the model's ability towards a target task. The hypothesis is that large models (commonly viewed as larger than 100B) have strong modeling power, but are spread on a large spectrum of tasks. Small models (commonly viewed as smaller than 10B) have limited model capacity, but if we concentrate their capacity on a specific target task, the model can achieve a decent improved performance. We use multi-step math reasoning as our testbed because it is a very typical emergent ability. We show two important aspects of model abilities: (1). there exists a very complex balance/ tradeoff between language models' multi-dimensional abilities; (2). by paying the price of decreased generic ability, we can clearly lift up the scaling curve of models smaller than 10B towards a specialized multi-step math reasoning ability. We further give comprehensive discussions about important design choices for better generalization, including the tuning data format, the start model checkpoint, and a new model selection method. We hope our practice and discoveries can serve as an important attempt towards specialized smaller models in the new research paradigm set by LLMs.
RealCQA: Scientific Chart Question Answering as a Test-bed for First-Order Logic
We present a comprehensive study of chart visual question-answering(QA) task, to address the challenges faced in comprehending and extracting data from chart visualizations within documents. Despite efforts to tackle this problem using synthetic charts, solutions are limited by the shortage of annotated real-world data. To fill this gap, we introduce a benchmark and dataset for chart visual QA on real-world charts, offering a systematic analysis of the task and a novel taxonomy for template-based chart question creation. Our contribution includes the introduction of a new answer type, 'list', with both ranked and unranked variations. Our study is conducted on a real-world chart dataset from scientific literature, showcasing higher visual complexity compared to other works. Our focus is on template-based QA and how it can serve as a standard for evaluating the first-order logic capabilities of models. The results of our experiments, conducted on a real-world out-of-distribution dataset, provide a robust evaluation of large-scale pre-trained models and advance the field of chart visual QA and formal logic verification for neural networks in general.
"John is 50 years old, can his son be 65?" Evaluating NLP Models' Understanding of Feasibility
In current NLP research, large-scale language models and their abilities are widely being discussed. Some recent works have also found notable failures of these models. Often these failure examples involve complex reasoning abilities. This work focuses on a simple commonsense ability, reasoning about when an action (or its effect) is feasible. To this end, we introduce FeasibilityQA, a question-answering dataset involving binary classification (BCQ) and multi-choice multi-correct questions (MCQ) that test understanding of feasibility. We show that even state-of-the-art models such as GPT-3, GPT-2, and T5 struggle to answer the feasibility questions correctly. Specifically, on MCQ and BCQ questions, GPT-3 achieves an accuracy of just (19%, 62%) and (25%, 64%) in zero-shot and few-shot settings, respectively. We also evaluate models by providing relevant knowledge statements required to answer the question. We find that the additional knowledge leads to a 7% gain in performance, but the overall performance still remains low. These results make one wonder how much commonsense knowledge about action feasibility is encoded in state-of-the-art models and how well they can reason about it.
SimpleVQA: Multimodal Factuality Evaluation for Multimodal Large Language Models
The increasing application of multi-modal large language models (MLLMs) across various sectors have spotlighted the essence of their output reliability and accuracy, particularly their ability to produce content grounded in factual information (e.g. common and domain-specific knowledge). In this work, we introduce SimpleVQA, the first comprehensive multi-modal benchmark to evaluate the factuality ability of MLLMs to answer natural language short questions. SimpleVQA is characterized by six key features: it covers multiple tasks and multiple scenarios, ensures high quality and challenging queries, maintains static and timeless reference answers, and is straightforward to evaluate. Our approach involves categorizing visual question-answering items into 9 different tasks around objective events or common knowledge and situating these within 9 topics. Rigorous quality control processes are implemented to guarantee high-quality, concise, and clear answers, facilitating evaluation with minimal variance via an LLM-as-a-judge scoring system. Using SimpleVQA, we perform a comprehensive assessment of leading 18 MLLMs and 8 text-only LLMs, delving into their image comprehension and text generation abilities by identifying and analyzing error cases.
SUNAR: Semantic Uncertainty based Neighborhood Aware Retrieval for Complex QA
Complex question-answering (QA) systems face significant challenges in retrieving and reasoning over information that addresses multi-faceted queries. While large language models (LLMs) have advanced the reasoning capabilities of these systems, the bounded-recall problem persists, where procuring all relevant documents in first-stage retrieval remains a challenge. Missing pertinent documents at this stage leads to performance degradation that cannot be remedied in later stages, especially given the limited context windows of LLMs which necessitate high recall at smaller retrieval depths. In this paper, we introduce SUNAR, a novel approach that leverages LLMs to guide a Neighborhood Aware Retrieval process. SUNAR iteratively explores a neighborhood graph of documents, dynamically promoting or penalizing documents based on uncertainty estimates from interim LLM-generated answer candidates. We validate our approach through extensive experiments on two complex QA datasets. Our results show that SUNAR significantly outperforms existing retrieve-and-reason baselines, achieving up to a 31.84% improvement in performance over existing state-of-the-art methods for complex QA.
TQA-Bench: Evaluating LLMs for Multi-Table Question Answering with Scalable Context and Symbolic Extension
The advent of large language models (LLMs) has unlocked great opportunities in complex data management tasks, particularly in question answering (QA) over complicated multi-table relational data. Despite significant progress, systematically evaluating LLMs on multi-table QA remains a critical challenge due to the inherent complexity of analyzing heterogeneous table structures and potential large scale of serialized relational data. Existing benchmarks primarily focus on single-table QA, failing to capture the intricacies of reasoning across multiple relational tables, as required in real-world domains such as finance, healthcare, and e-commerce. To address this gap, we present TQA-Bench, a new multi-table QA benchmark designed to evaluate the capabilities of LLMs in tackling complex QA tasks over relational data. Our benchmark incorporates diverse relational database instances sourced from real-world public datasets and introduces a flexible sampling mechanism to create tasks with varying multi-table context lengths, ranging from 8K to 64K tokens. To ensure robustness and reliability, we integrate symbolic extensions into the evaluation framework, enabling the assessment of LLM reasoning capabilities beyond simple data retrieval or probabilistic pattern matching. We systematically evaluate a range of LLMs, both open-source and closed-source, spanning model scales from 7 billion to 70 billion parameters. Our extensive experiments reveal critical insights into the performance of LLMs in multi-table QA, highlighting both challenges and opportunities for advancing their application in complex, data-driven environments. Our benchmark implementation and results are available at https://github.com/Relaxed-System-Lab/TQA-Bench.
Model Analysis & Evaluation for Ambiguous Question Answering
Ambiguous questions are a challenge for Question Answering models, as they require answers that cover multiple interpretations of the original query. To this end, these models are required to generate long-form answers that often combine conflicting pieces of information. Although recent advances in the field have shown strong capabilities in generating fluent responses, certain research questions remain unanswered. Does model/data scaling improve the answers' quality? Do automated metrics align with human judgment? To what extent do these models ground their answers in evidence? In this study, we aim to thoroughly investigate these aspects, and provide valuable insights into the limitations of the current approaches. To aid in reproducibility and further extension of our work, we open-source our code at https://github.com/din0s/ambig_lfqa.
Self-Evaluation of Large Language Model based on Glass-box Features
The proliferation of open-source Large Language Models (LLMs) underscores the pressing need for evaluation methods. Existing works primarily rely on external evaluators, focusing on training and prompting strategies. However, a crucial aspect - model-aware glass-box features - is overlooked. In this study, we explore the utility of glass-box features under the scenario of self-evaluation, namely applying an LLM to evaluate its own output. We investigate various glass-box feature groups and discovered that the softmax distribution serves as a reliable indicator for quality evaluation. Furthermore, we propose two strategies to enhance the evaluation by incorporating features derived from references. Experimental results on public benchmarks validate the feasibility of self-evaluation of LLMs using glass-box features.
MTabVQA: Evaluating Multi-Tabular Reasoning of Language Models in Visual Space
Vision-Language Models (VLMs) have demonstrated remarkable capabilities in interpreting visual layouts and text. However, a significant challenge remains in their ability to interpret robustly and reason over multi-tabular data presented as images, a common occurrence in real-world scenarios like web pages and digital documents. Existing benchmarks typically address single tables or non-visual data (text/structured). This leaves a critical gap: they don't assess the ability to parse diverse table images, correlate information across them, and perform multi-hop reasoning on the combined visual data. We introduce MTabVQA, a novel benchmark specifically designed for multi-tabular visual question answering to bridge that gap. MTabVQA comprises 3,745 complex question-answer pairs that necessitate multi-hop reasoning across several visually rendered table images. We provide extensive benchmark results for state-of-the-art VLMs on MTabVQA, revealing significant performance limitations. We further investigate post-training techniques to enhance these reasoning abilities and release MTabVQA-Instruct, a large-scale instruction-tuning dataset. Our experiments show that fine-tuning VLMs with MTabVQA-Instruct substantially improves their performance on visual multi-tabular reasoning. Code and dataset (https://huggingface.co/datasets/mtabvqa/MTabVQA-Eval) are available online (https://anonymous.4open.science/r/MTabVQA-EMNLP-B16E).
OLMES: A Standard for Language Model Evaluations
Progress in AI is often demonstrated by new models claiming improved performance on tasks measuring model capabilities. Evaluating language models in particular is challenging, as small changes to how a model is evaluated on a task can lead to large changes in measured performance. There is no common standard setup, so different models are evaluated on the same tasks in different ways, leading to claims about which models perform best not being reproducible. We propose OLMES, a completely documented, practical, open standard for reproducible LLM evaluations. In developing this standard, we identify and review the varying factors in evaluation practices adopted by the community - such as details of prompt formatting, choice of in-context examples, probability normalizations, and task formulation. In particular, OLMES supports meaningful comparisons between smaller base models that require the unnatural "cloze" formulation of multiple-choice questions against larger models that can utilize the original formulation. OLMES includes well-considered recommendations guided by results from existing literature as well as new experiments investigating open questions.
ToolQA: A Dataset for LLM Question Answering with External Tools
Large Language Models (LLMs) have demonstrated impressive performance in various NLP tasks, but they still suffer from challenges such as hallucination and weak numerical reasoning. To overcome these challenges, external tools can be used to enhance LLMs' question-answering abilities. However, current evaluation methods do not distinguish between questions that can be answered using LLMs' internal knowledge and those that require external information through tool use. To address this issue, we introduce a new dataset called ToolQA, which is designed to faithfully evaluate LLMs' ability to use external tools for question answering. Our development of ToolQA involved a scalable, automated process for dataset curation, along with 13 specialized tools designed for interaction with external knowledge in order to answer questions. Importantly, we strive to minimize the overlap between our benchmark data and LLMs' pre-training data, enabling a more precise evaluation of LLMs' tool-use reasoning abilities. We conducted an in-depth diagnosis of existing tool-use LLMs to highlight their strengths, weaknesses, and potential improvements. Our findings set a new benchmark for evaluating LLMs and suggest new directions for future advancements. Our data and code are freely available to the broader scientific community on GitHub.
Exploring Advanced Techniques for Visual Question Answering: A Comprehensive Comparison
Visual Question Answering (VQA) has emerged as a pivotal task in the intersection of computer vision and natural language processing, requiring models to understand and reason about visual content in response to natural language questions. Analyzing VQA datasets is essential for developing robust models that can handle the complexities of multimodal reasoning. Several approaches have been developed to examine these datasets, each offering distinct perspectives on question diversity, answer distribution, and visual-textual correlations. Despite significant progress, existing VQA models face challenges related to dataset bias, limited model complexity, commonsense reasoning gaps, rigid evaluation methods, and generalization to real world scenarios. This paper offers a detailed study of the original VQA dataset, baseline models and methods along with a comparative study of five advanced VQA models, ABC-CNN, KICNLE, Masked Vision and Language Modeling, BLIP-2, and OFA, each employing distinct methods to address these ongoing challenges.
FreshLLMs: Refreshing Large Language Models with Search Engine Augmentation
Most large language models (LLMs) are trained once and never updated; thus, they lack the ability to dynamically adapt to our ever-changing world. In this work, we perform a detailed study of the factuality of LLM-generated text in the context of answering questions that test current world knowledge. Specifically, we introduce FreshQA, a novel dynamic QA benchmark encompassing a diverse range of question and answer types, including questions that require fast-changing world knowledge as well as questions with false premises that need to be debunked. We benchmark a diverse array of both closed and open-source LLMs under a two-mode evaluation procedure that allows us to measure both correctness and hallucination. Through human evaluations involving more than 50K judgments, we shed light on limitations of these models and demonstrate significant room for improvement: for instance, all models (regardless of model size) struggle on questions that involve fast-changing knowledge and false premises. Motivated by these results, we present FreshPrompt, a simple few-shot prompting method that substantially boosts the performance of an LLM on FreshQA by incorporating relevant and up-to-date information retrieved from a search engine into the prompt. Our experiments show that FreshPrompt outperforms both competing search engine-augmented prompting methods such as Self-Ask (Press et al., 2022) as well as commercial systems such as Perplexity.AI. Further analysis of FreshPrompt reveals that both the number of retrieved evidences and their order play a key role in influencing the correctness of LLM-generated answers. Additionally, instructing the LLM to generate concise and direct answers helps reduce hallucination compared to encouraging more verbose answers. To facilitate future work, we release FreshQA at github.com/freshllms/freshqa and commit to updating it at regular intervals.
On Pruning State-Space LLMs
Recent work proposed state-space models (SSMs) as an efficient alternative to transformer-based LLMs. Can these models be pruned to further reduce their computation costs? We adapt several pruning methods to the SSM structure, and apply them to four SSM-based LLMs across multiple tasks. We find that such models are quite robust to some pruning methods (e.g. WANDA), while using other methods lead to fast performance degradation.
Trust but Verify: Programmatic VLM Evaluation in the Wild
Vision-Language Models (VLMs) often generate plausible but incorrect responses to visual queries. However, reliably quantifying the effect of such hallucinations in free-form responses to open-ended queries is challenging as it requires visually verifying each claim within the response. We propose Programmatic VLM Evaluation (PROVE), a new benchmarking paradigm for evaluating VLM responses to open-ended queries. To construct PROVE, we provide a large language model (LLM) with a high-fidelity scene-graph representation constructed from a hyper-detailed image caption, and prompt it to generate diverse question-answer (QA) pairs, as well as programs that can be executed over the scene graph object to verify each QA pair. We thus construct a benchmark of 10.5k challenging but visually grounded QA pairs. Next, to evaluate free-form model responses to queries in PROVE, we propose a programmatic evaluation strategy that measures both the helpfulness and truthfulness of a response within a unified scene graph-based framework. We benchmark the helpfulness-truthfulness trade-offs of a range of VLMs on PROVE, finding that very few are in-fact able to achieve a good balance between the two. Project page: https://prove-explorer.netlify.app/.
Can Knowledge Graphs Make Large Language Models More Trustworthy? An Empirical Study Over Open-ended Question Answering
Recent works integrating Knowledge Graphs (KGs) have led to promising improvements in enhancing the reasoning accuracy of Large Language Models (LLMs). However, current benchmarks focus mainly on closed-ended tasks, leaving a gap in the assessment of more complex real-world scenarios. This gap has also obscured the evaluation of KGs' potential to mitigate the problem of hallucination in LLMs. To fill the gap, we introduce OKGQA, a new benchmark specifically designed to assess LLMs enhanced with KGs under open-ended, real-world question answering scenarios. OKGQA is designed to closely reflect the complexities of practical applications using questions from different types, and incorporates specific metrics to measure both hallucination ratio and the enhancement in reasoning capabilities. To consider the scenario in which KGs may have varying levels of mistakes, we propose another benchmark variant OKGQA-P to assess model performance when the semantics and structure of KGs are deliberately perturbed and contaminated. OKGQA aims to (1) explore whether KGs can make LLMs more trustworthy in an open-ended setting, and (2) conduct a comparative analysis to shed light on method design. We believe that this study can facilitate a more complete performance comparison and encourage continuous improvement in integrating KGs with LLMs to reduce hallucination.
Technologies on Effectiveness and Efficiency: A Survey of State Spaces Models
State Space Models (SSMs) have emerged as a promising alternative to the popular transformer-based models and have been increasingly gaining attention. Compared to transformers, SSMs excel at tasks with sequential data or longer contexts, demonstrating comparable performances with significant efficiency gains. In this survey, we provide a coherent and systematic overview for SSMs, including their theoretical motivations, mathematical formulations, comparison with existing model classes, and various applications. We divide the SSM series into three main sections, providing a detailed introduction to the original SSM, the structured SSM represented by S4, and the selective SSM typified by Mamba. We put an emphasis on technicality, and highlight the various key techniques introduced to address the effectiveness and efficiency of SSMs. We hope this manuscript serves as an introduction for researchers to explore the theoretical foundations of SSMs.
Zero-shot Benchmarking: A Framework for Flexible and Scalable Automatic Evaluation of Language Models
As language models improve and become capable of performing more complex tasks across modalities, evaluating them automatically becomes increasingly challenging. Developing strong and robust task-specific automatic metrics gets harder, and human-annotated test sets -- which are expensive to create -- saturate more quickly. A compelling alternative is to design reliable strategies to automate the creation of test data and evaluation, but previous attempts either rely on pre-existing data, or focus solely on individual tasks. We present Zero-shot Benchmarking (ZSB), a framework for creating high-quality benchmarks for any task by leveraging language models for both synthetic test data creation and evaluation. ZSB is simple and flexible: it requires only the creation of a prompt for data generation and one for evaluation; it is scalable to tasks and languages where collecting real-world data is costly or impractical; it is model-agnostic, allowing the creation of increasingly challenging benchmarks as models improve. To assess the effectiveness of our framework, we create benchmarks for five text-only tasks and a multi-modal one: general capabilities in four languages (English, Chinese, French, and Korean), translation, and general vision-language capabilities in English. We then rank a broad range of open and closed systems on our benchmarks. ZSB rankings consistently correlate strongly with human rankings, outperforming widely-adopted standard benchmarks. Through ablations, we find that strong benchmarks can be created with open models, and that judge model size and dataset variety are crucial drivers of performance. We release all our benchmarks, and code to reproduce our experiments and to produce new benchmarks.
ST-Raptor: LLM-Powered Semi-Structured Table Question Answering
Semi-structured tables, widely used in real-world applications (e.g., financial reports, medical records, transactional orders), often involve flexible and complex layouts (e.g., hierarchical headers and merged cells). These tables generally rely on human analysts to interpret table layouts and answer relevant natural language questions, which is costly and inefficient. To automate the procedure, existing methods face significant challenges. First, methods like NL2SQL require converting semi-structured tables into structured ones, which often causes substantial information loss. Second, methods like NL2Code and multi-modal LLM QA struggle to understand the complex layouts of semi-structured tables and cannot accurately answer corresponding questions. To this end, we propose ST-Raptor, a tree-based framework for semi-structured table question answering using large language models. First, we introduce the Hierarchical Orthogonal Tree (HO-Tree), a structural model that captures complex semi-structured table layouts, along with an effective algorithm for constructing the tree. Second, we define a set of basic tree operations to guide LLMs in executing common QA tasks. Given a user question, ST-Raptor decomposes it into simpler sub-questions, generates corresponding tree operation pipelines, and conducts operation-table alignment for accurate pipeline execution. Third, we incorporate a two-stage verification mechanism: forward validation checks the correctness of execution steps, while backward validation evaluates answer reliability by reconstructing queries from predicted answers. To benchmark the performance, we present SSTQA, a dataset of 764 questions over 102 real-world semi-structured tables. Experiments show that ST-Raptor outperforms nine baselines by up to 20% in answer accuracy. The code is available at https://github.com/weAIDB/ST-Raptor.
FailureSensorIQ: A Multi-Choice QA Dataset for Understanding Sensor Relationships and Failure Modes
We introduce FailureSensorIQ, a novel Multi-Choice Question-Answering (MCQA) benchmarking system designed to assess the ability of Large Language Models (LLMs) to reason and understand complex, domain-specific scenarios in Industry 4.0. Unlike traditional QA benchmarks, our system focuses on multiple aspects of reasoning through failure modes, sensor data, and the relationships between them across various industrial assets. Through this work, we envision a paradigm shift where modeling decisions are not only data-driven using statistical tools like correlation analysis and significance tests, but also domain-driven by specialized LLMs which can reason about the key contributors and useful patterns that can be captured with feature engineering. We evaluate the Industrial knowledge of over a dozen LLMs-including GPT-4, Llama, and Mistral-on FailureSensorIQ from different lens using Perturbation-Uncertainty-Complexity analysis, Expert Evaluation study, Asset-Specific Knowledge Gap analysis, ReAct agent using external knowledge-bases. Even though closed-source models with strong reasoning capabilities approach expert-level performance, the comprehensive benchmark reveals a significant drop in performance that is fragile to perturbations, distractions, and inherent knowledge gaps in the models. We also provide a real-world case study of how LLMs can drive the modeling decisions on 3 different failure prediction datasets related to various assets. We release: (a) expert-curated MCQA for various industrial assets, (b) FailureSensorIQ benchmark and Hugging Face leaderboard based on MCQA built from non-textual data found in ISO documents, and (c) LLMFeatureSelector, an LLM-based feature selection scikit-learn pipeline. The software is available at https://github.com/IBM/FailureSensorIQ.
CRAFT: Customizing LLMs by Creating and Retrieving from Specialized Toolsets
Large language models (LLMs) are often augmented with tools to solve complex tasks. By generating code snippets and executing them through task-specific Application Programming Interfaces (APIs), they can offload certain functions to dedicated external modules, such as image encoding and performing calculations. However, most existing approaches to augment LLMs with tools are constrained by general-purpose APIs and lack the flexibility for tailoring them to specific tasks. In this work, we present CRAFT, a general tool creation and retrieval framework for LLMs. It creates toolsets specifically curated for the tasks and equips LLMs with a component that retrieves tools from these sets to enhance their capability to solve complex tasks. For each task, we collect specific code solutions by prompting GPT-4 to solve the training examples. Following a validation step ensuring the correctness, these solutions are abstracted into code snippets to enhance reusability, and deduplicated for higher quality. At inference time, the language model retrieves snippets from the toolsets and then executes them or generates the output conditioning on the retrieved snippets. Our method is designed to be flexible and offers a plug-and-play approach to adapt off-the-shelf LLMs to unseen domains and modalities, without any finetuning. Experiments on vision-language, tabular processing, and mathematical reasoning tasks show that our approach achieves substantial improvements compared to strong baselines. In addition, our in-depth analysis reveals that: (1) consistent performance improvement can be achieved by scaling up the number of tools and the capability of the backbone models; (2) each component of our approach contributes to the performance gains; (3) the created tools are well-structured and reliable with low complexity and atomicity. The code is available at https://github.com/lifan-yuan/CRAFT.
UnifiedQA: Crossing Format Boundaries With a Single QA System
Question answering (QA) tasks have been posed using a variety of formats, such as extractive span selection, multiple choice, etc. This has led to format-specialized models, and even to an implicit division in the QA community. We argue that such boundaries are artificial and perhaps unnecessary, given the reasoning abilities we seek to teach are not governed by the format. As evidence, we use the latest advances in language modeling to build a single pre-trained QA model, UnifiedQA, that performs surprisingly well across 17 QA datasets spanning 4 diverse formats. UnifiedQA performs on par with 9 different models that were trained on individual datasets themselves. Even when faced with 12 unseen datasets of observed formats, UnifiedQA performs surprisingly well, showing strong generalization from its out-of-format training data. Finally, simply fine-tuning this pre-trained QA model into specialized models results in a new state of the art on 6 datasets, establishing UnifiedQA as a strong starting point for building QA systems.
KOFFVQA: An Objectively Evaluated Free-form VQA Benchmark for Large Vision-Language Models in the Korean Language
The recent emergence of Large Vision-Language Models(VLMs) has resulted in a variety of different benchmarks for evaluating such models. Despite this, we observe that most existing evaluation methods suffer from the fact that they either require the model to choose from pre-determined responses, sacrificing open-endedness, or evaluate responses using a judge model, resulting in subjective and unreliable evaluation. In addition, we observe a lack of benchmarks for VLMs in the Korean language, which are necessary as a separate metric from more common English language benchmarks, as the performance of generative language models can differ significantly based on the language being used. Therefore, we present KOFFVQA, a general-purpose free-form visual question answering benchmark in the Korean language for the evaluation of VLMs. Our benchmark consists of 275 carefully crafted questions each paired with an image and grading criteria covering 10 different aspects of VLM performance. The grading criteria eliminate the problem of unreliability by allowing the judge model to grade each response based on a pre-determined set of rules. By defining the evaluation criteria in an objective manner, even a small open-source model can be used to evaluate models on our benchmark reliably. In addition to evaluating a large number of existing VLMs on our benchmark, we also experimentally verify that our method of using pre-existing grading criteria for evaluation is much more reliable than existing methods. Our evaluation code is available at https://github.com/maum-ai/KOFFVQA
Large Language Models Meet Knowledge Graphs for Question Answering: Synthesis and Opportunities
Large language models (LLMs) have demonstrated remarkable performance on question-answering (QA) tasks because of their superior capabilities in natural language understanding and generation. However, LLM-based QA struggles with complex QA tasks due to poor reasoning capacity, outdated knowledge, and hallucinations. Several recent works synthesize LLMs and knowledge graphs (KGs) for QA to address the above challenges. In this survey, we propose a new structured taxonomy that categorizes the methodology of synthesizing LLMs and KGs for QA according to the categories of QA and the KG's role when integrating with LLMs. We systematically survey state-of-the-art advances in synthesizing LLMs and KGs for QA and compare and analyze these approaches in terms of strength, limitations, and KG requirements. We then align the approaches with QA and discuss how these approaches address the main challenges of different complex QA. Finally, we summarize the advancements, evaluation metrics, and benchmark datasets and highlight open challenges and opportunities.
The Expressive Capacity of State Space Models: A Formal Language Perspective
Recently, recurrent models based on linear state space models (SSMs) have shown promising performance in language modeling (LM), competititve with transformers. However, there is little understanding of the in-principle abilities of such models, which could provide useful guidance to the search for better LM architectures. We present a comprehensive theoretical study of the capacity of such SSMs as it compares to that of transformers and traditional RNNs. We find that SSMs and transformers have overlapping but distinct strengths. In star-free state tracking, SSMs implement straightforward and exact solutions to problems that transformers struggle to represent exactly. They can also model bounded hierarchical structure with optimal memory even without simulating a stack. On the other hand, we identify a design choice in current SSMs that limits their expressive power. We discuss implications for SSM and LM research, and verify results empirically on a recent SSM, Mamba.
When Big Models Train Small Ones: Label-Free Model Parity Alignment for Efficient Visual Question Answering using Small VLMs
Large Vision-Language Models (L-VLMs) have demonstrated remarkable performance in various vision and language tasks, including visual question answering (VQA). However, their high computational cost makes them impractical for resource-constrained settings and inference-heavy applications. In contrast, Small Vision-Language Models (S-VLMs) offer efficiency but suffer from a significant performance gap compared to their larger counterparts. In this work, we introduce the Model Parity Aligner (MPA), a novel framework designed to systematically improve S-VLMs by leveraging unlabeled images and effective knowledge transfer from L-VLMs. Instead of traditional knowledge distillation methods that rely on labeled training data, MPA employs a strategic parity-based approach that precisely identifies the knowledge disparities between S-VLMs and L-VLMs, and optimizes training by targeting only these disparities. We conduct extensive experiments on four diverse VQA benchmarks, namely TextVQA, ST-VQA, ChartQA, and OKVQA, each of which requires specialized reasoning capabilities such as text recognition, chart interpretation, and commonsense and factual understanding. Our results demonstrate that MPA consistently enhances the performance of S-VLMs on all benchmarks, reducing the performance gap while maintaining computational efficiency. We make our code publicly available.
Triad: A Framework Leveraging a Multi-Role LLM-based Agent to Solve Knowledge Base Question Answering
Recent progress with LLM-based agents has shown promising results across various tasks. However, their use in answering questions from knowledge bases remains largely unexplored. Implementing a KBQA system using traditional methods is challenging due to the shortage of task-specific training data and the complexity of creating task-focused model structures. In this paper, we present Triad, a unified framework that utilizes an LLM-based agent with three roles for KBQA tasks. The agent is assigned three roles to tackle different KBQA subtasks: agent as a generalist for mastering various subtasks, as a decision maker for the selection of candidates, and as an advisor for answering questions with knowledge. Our KBQA framework is executed in four phases, involving the collaboration of the agent's multiple roles. We evaluated the performance of our framework using three benchmark datasets, and the results show that our framework outperforms state-of-the-art systems on the LC-QuAD and YAGO-QA benchmarks, yielding F1 scores of 11.8% and 20.7%, respectively.
SG-FSM: A Self-Guiding Zero-Shot Prompting Paradigm for Multi-Hop Question Answering Based on Finite State Machine
Large Language Models with chain-of-thought prompting, such as OpenAI-o1, have shown impressive capabilities in natural language inference tasks. However, Multi-hop Question Answering (MHQA) remains challenging for many existing models due to issues like hallucination, error propagation, and limited context length. To address these challenges and enhance LLMs' performance on MHQA, we propose the Self-Guiding prompting Finite State Machine (SG-FSM), designed to strengthen multi-hop reasoning abilities. Unlike traditional chain-of-thought methods, SG-FSM tackles MHQA by iteratively breaking down complex questions into sub-questions, correcting itself to improve accuracy. It processes one sub-question at a time, dynamically deciding the next step based on the current context and results, functioning much like an automaton. Experiments across various benchmarks demonstrate the effectiveness of our approach, outperforming strong baselines on challenging datasets such as Musique. SG-FSM reduces hallucination, enabling recovery of the correct final answer despite intermediate errors. It also improves adherence to specified output formats, simplifying evaluation significantly.
VLR-Bench: Multilingual Benchmark Dataset for Vision-Language Retrieval Augmented Generation
We propose the VLR-Bench, a visual question answering (VQA) benchmark for evaluating vision language models (VLMs) based on retrieval augmented generation (RAG). Unlike existing evaluation datasets for external knowledge-based VQA, the proposed VLR-Bench includes five input passages. This allows testing of the ability to determine which passage is useful for answering a given query, a capability lacking in previous research. In this context, we constructed a dataset of 32,000 automatically generated instruction-following examples, which we denote as VLR-IF. This dataset is specifically designed to enhance the RAG capabilities of VLMs by enabling them to learn how to generate appropriate answers based on input passages. We evaluated the validity of the proposed benchmark and training data and verified its performance using the state-of-the-art Llama3-based VLM, the Llava-Llama-3 model. The proposed VLR-Bench and VLR-IF datasets are publicly available online.
AutoBench-V: Can Large Vision-Language Models Benchmark Themselves?
Large Vision-Language Models (LVLMs) have become essential for advancing the integration of visual and linguistic information. However, the evaluation of LVLMs presents significant challenges as the evaluation benchmark always demands lots of human cost for its construction, and remains static, lacking flexibility once constructed. Even though automatic evaluation has been explored in textual modality, the visual modality remains under-explored. As a result, in this work, we address a question: "Can LVLMs themselves be used to benchmark each other in the visual automatically domain?". We introduce AutoBench-V, an automated framework for serving evaluation on demand, i.e., benchmarking LVLMs based on specific aspects of model capability. AutoBench-V leverages text-to-image models to generate relevant image samples and then utilizes LVLMs to orchestrate visual question-answering (VQA) tasks, completing the evaluation process efficiently and flexibly. Through an extensive evaluation of nine popular LVLMs across five demanded user inputs (i.e., evaluation capabilities), the framework shows effectiveness and reliability.
Quality Estimation with k-nearest Neighbors and Automatic Evaluation for Model-specific Quality Estimation
Providing quality scores along with Machine Translation (MT) output, so-called reference-free Quality Estimation (QE), is crucial to inform users about the reliability of the translation. We propose a model-specific, unsupervised QE approach, termed kNN-QE, that extracts information from the MT model's training data using k-nearest neighbors. Measuring the performance of model-specific QE is not straightforward, since they provide quality scores on their own MT output, thus cannot be evaluated using benchmark QE test sets containing human quality scores on premade MT output. Therefore, we propose an automatic evaluation method that uses quality scores from reference-based metrics as gold standard instead of human-generated ones. We are the first to conduct detailed analyses and conclude that this automatic method is sufficient, and the reference-based MetricX-23 is best for the task.
Quizbowl: The Case for Incremental Question Answering
Scholastic trivia competitions test knowledge and intelligence through mastery of question answering. Modern question answering benchmarks are one variant of the Turing test. Specifically, answering a set of questions as well as a human is a minimum bar towards demonstrating human-like intelligence. This paper makes the case that the format of one competition -- where participants can answer in the middle of hearing a question (incremental) -- better differentiates the skill between (human or machine) players. Additionally, merging a sequential decision-making sub-task with question answering (QA) provides a good setting for research in model calibration and opponent modeling. Thus, embedded in this task are three machine learning challenges: (1) factoid QA over thousands of Wikipedia-like answers, (2) calibration of the QA model's confidence scores, and (3) sequential decision-making that incorporates knowledge of the QA model, its calibration, and what the opponent may do. We make two contributions: (1) collecting and curating a large factoid QA dataset and an accompanying gameplay dataset, and (2) developing a model that addresses these three machine learning challenges. In addition to offline evaluation, we pitted our model against some of the most accomplished trivia players in the world in a series of exhibition matches spanning several years. Throughout this paper, we show that collaborations with the vibrant trivia community have contributed to the quality of our dataset, spawned new research directions, and doubled as an exciting way to engage the public with research in machine learning and natural language processing.
UDKAG: Augmenting Large Vision-Language Models with Up-to-Date Knowledge
Large vision-language models (LVLMs) are ignorant of the up-to-date knowledge, such as LLaVA series, because they cannot be updated frequently due to the large amount of resources required, and therefore fail in many cases. For example, if a LVLM was released on January 2024, and it wouldn't know the detailed plot of the new movie Dune 2, which wasn't released until February 2024. To solve the problem, a promising solution is to provide LVLMs with up-to-date knowledge via internet search during inference, i.e., internet-augmented generation (IAG), which is already integrated in some closed-source commercial LVLMs such as GPT-4V. However, the specific mechanics underpinning them remain a mystery. In this paper, we propose a plug-and-play framework, for augmenting existing LVLMs in handling visual question answering (VQA) about up-to-date knowledge, dubbed UDKAG. A hierarchical filtering model is trained to effectively and efficiently find the most helpful content from the websites returned by a search engine to prompt LVLMs with up-to-date knowledge. To train the model and evaluate our framework's performance, we propose a pipeline to automatically generate news-related VQA samples to construct a dataset, dubbed UDK-VQA. A multi-model voting mechanism is introduced to label the usefulness of website/content for VQA samples to construct the training set. Experimental results demonstrate the effectiveness of our framework, outperforming GPT-4V by about 25% in accuracy.
O^2-Searcher: A Searching-based Agent Model for Open-Domain Open-Ended Question Answering
Large Language Models (LLMs), despite their advancements, are fundamentally limited by their static parametric knowledge, hindering performance on tasks requiring open-domain up-to-date information. While enabling LLMs to interact with external knowledge environments is a promising solution, current efforts primarily address closed-end problems. Open-ended questions, which characterized by lacking a standard answer or providing non-unique and diverse answers, remain underexplored. To bridge this gap, we present O^2-Searcher, a novel search agent leveraging reinforcement learning to effectively tackle both open-ended and closed-ended questions in the open domain. O^2-Searcher leverages an efficient, locally simulated search environment for dynamic knowledge acquisition, effectively decoupling the external world knowledge from model's sophisticated reasoning processes. It employs a unified training mechanism with meticulously designed reward functions, enabling the agent to identify problem types and adapt different answer generation strategies. Furthermore, to evaluate performance on complex open-ended tasks, we construct O^2-QA, a high-quality benchmark featuring 300 manually curated, multi-domain open-ended questions with associated web page caches. Extensive experiments show that O^2-Searcher, using only a 3B model, significantly surpasses leading LLM agents on O^2-QA. It also achieves SOTA results on various closed-ended QA benchmarks against similarly-sized models, while performing on par with much larger ones.
Time to Revist Exact Match
Temporal question answering is an established method for evaluating temporal reasoning in large language models. Expected answers are often numeric (e.g., dates or durations), yet model responses are evaluated like regular text with exact match (EM), unable to distinguish small from large errors. In this investigative work, we frame temporal question answering as a numerical estimation task to assess the shortcomings of EM. We introduce TempAnswerQA, a benchmark distilled from Test of Time and TempTabQA, where all questions require a numerical, temporal answer, allowing us to evaluate models beyond EM. We use the forecasting metrics symmetric mean absolute percentage error (sMAPE) and mean absolute scaled error (MASE). With sMAPE, we find that error size and EM are decoupled. Models with low EM still have low sMAPE (both ~20%), and some models have high sMAPE despite high EM. Scaling errors by the deviation of the ground truth data with MASE reshuffles model rankings compared to EM, revealing gaps in models' understanding of temporal domain knowledge, especially when trained with synthetic data. Lastly, the models' most frequent error is to deviate by only pm1 from the ground truth. sMAPE and MASE, unlike EM, adequately weight these errors. Our findings underscore the need for specialised metrics for temporal QA tasks. Code and data are available on https://github.com/aauss/temporal-answer-qa.
Pyramid Coder: Hierarchical Code Generator for Compositional Visual Question Answering
Visual question answering (VQA) is the task of providing accurate answers to natural language questions based on visual input. Programmatic VQA (PVQA) models have been gaining attention recently. These use large language models (LLMs) to formulate executable programs that address questions requiring complex visual reasoning. However, there are challenges in enabling LLMs to comprehend the usage of image processing modules and generate relevant code. To overcome these challenges, this paper introduces PyramidCoder, a novel prompting framework for PVQA models. PyramidCoder consists of three hierarchical levels, each serving a distinct purpose: query rephrasing, code generation, and answer aggregation. Notably, PyramidCoder utilizes a single frozen LLM and pre-defined prompts at each level, eliminating the need for additional training and ensuring flexibility across various LLM architectures. Compared to the state-of-the-art PVQA model, our approach improves accuracy by at least 0.5% on the GQA dataset, 1.4% on the VQAv2 dataset, and 2.9% on the NLVR2 dataset.
Editing Large Language Models: Problems, Methods, and Opportunities
Despite the ability to train capable LLMs, the methodology for maintaining their relevancy and rectifying errors remains elusive. To this end, the past few years have witnessed a surge in techniques for editing LLMs, the objective of which is to efficiently alter the behavior of LLMs within a specific domain without negatively impacting performance across other inputs. This paper embarks on a deep exploration of the problems, methods, and opportunities related to model editing for LLMs. In particular, we provide an exhaustive overview of the task definition and challenges associated with model editing, along with an in-depth empirical analysis of the most progressive methods currently at our disposal. We also build a new benchmark dataset to facilitate a more robust evaluation and pinpoint enduring issues intrinsic to existing techniques. Our objective is to provide valuable insights into the effectiveness and feasibility of each editing technique, thereby assisting the community in making informed decisions on the selection of the most appropriate method for a specific task or context. Code and datasets are available at https://github.com/zjunlp/EasyEdit.
Can LLMs Fix Issues with Reasoning Models? Towards More Likely Models for AI Planning
This is the first work to look at the application of large language models (LLMs) for the purpose of model space edits in automated planning tasks. To set the stage for this union, we explore two different flavors of model space problems that have been studied in the AI planning literature and explore the effect of an LLM on those tasks. We empirically demonstrate how the performance of an LLM contrasts with combinatorial search (CS) -- an approach that has been traditionally used to solve model space tasks in planning, both with the LLM in the role of a standalone model space reasoner as well as in the role of a statistical signal in concert with the CS approach as part of a two-stage process. Our experiments show promising results suggesting further forays of LLMs into the exciting world of model space reasoning for planning tasks in the future.
Won't Get Fooled Again: Answering Questions with False Premises
Pre-trained language models (PLMs) have shown unprecedented potential in various fields, especially as the backbones for question-answering (QA) systems. However, they tend to be easily deceived by tricky questions such as "How many eyes does the sun have?". Such frailties of PLMs often allude to the lack of knowledge within them. In this paper, we find that the PLMs already possess the knowledge required to rebut such questions, and the key is how to activate the knowledge. To systematize this observation, we investigate the PLMs' responses to one kind of tricky questions, i.e., the false premises questions (FPQs). We annotate a FalseQA dataset containing 2365 human-written FPQs, with the corresponding explanations for the false premises and the revised true premise questions. Using FalseQA, we discover that PLMs are capable of discriminating FPQs by fine-tuning on moderate numbers (e.g., 256) of examples. PLMs also generate reasonable explanations for the false premise, which serve as rebuttals. Further replaying a few general questions during training allows PLMs to excel on FPQs and general questions simultaneously. Our work suggests that once the rebuttal ability is stimulated, knowledge inside the PLMs can be effectively utilized to handle FPQs, which incentivizes the research on PLM-based QA systems.
Reasoning or Simply Next Token Prediction? A Benchmark for Stress-Testing Large Language Models
We propose MMLU-SR, a novel dataset designed to measure the true comprehension abilities of Large Language Models (LLMs) by challenging their performance in question-answering tasks with modified terms. We reasoned that an agent that ``truly'' understands a concept can still evaluate it when key terms are replaced by suitably defined alternate terms, and sought to differentiate such comprehension from mere text replacement. In our study, we modified standardized test questions by replacing a key term with a dummy word along with its definition. The key term could be in the context of questions, answers, or both questions and answers. Notwithstanding the high scores achieved by recent popular LLMs on the MMLU leaderboard, we found a substantial reduction in model performance after such replacement, suggesting poor comprehension. This new benchmark provides a rigorous benchmark for testing true model comprehension, and poses a challenge to the broader scientific community.
TextSquare: Scaling up Text-Centric Visual Instruction Tuning
Text-centric visual question answering (VQA) has made great strides with the development of Multimodal Large Language Models (MLLMs), yet open-source models still fall short of leading models like GPT4V and Gemini, partly due to a lack of extensive, high-quality instruction tuning data. To this end, we introduce a new approach for creating a massive, high-quality instruction-tuning dataset, Square-10M, which is generated using closed-source MLLMs. The data construction process, termed Square, consists of four steps: Self-Questioning, Answering, Reasoning, and Evaluation. Our experiments with Square-10M led to three key findings: 1) Our model, TextSquare, considerably surpasses open-source previous state-of-the-art Text-centric MLLMs and sets a new standard on OCRBench(62.2%). It even outperforms top-tier models like GPT4V and Gemini in 6 of 10 text-centric benchmarks. 2) Additionally, we demonstrate the critical role of VQA reasoning data in offering comprehensive contextual insights for specific questions. This not only improves accuracy but also significantly mitigates hallucinations. Specifically, TextSquare scores an average of 75.1% across four general VQA and hallucination evaluation datasets, outperforming previous state-of-the-art models. 3) Notably, the phenomenon observed in scaling text-centric VQA datasets reveals a vivid pattern: the exponential increase of instruction tuning data volume is directly proportional to the improvement in model performance, thereby validating the necessity of the dataset scale and the high quality of Square-10M.
GSM-Symbolic: Understanding the Limitations of Mathematical Reasoning in Large Language Models
Recent advancements in Large Language Models (LLMs) have sparked interest in their formal reasoning capabilities, particularly in mathematics. The GSM8K benchmark is widely used to assess the mathematical reasoning of models on grade-school-level questions. While the performance of LLMs on GSM8K has significantly improved in recent years, it remains unclear whether their mathematical reasoning capabilities have genuinely advanced, raising questions about the reliability of the reported metrics. To address these concerns, we conduct a large-scale study on several SOTA open and closed models. To overcome the limitations of existing evaluations, we introduce GSM-Symbolic, an improved benchmark created from symbolic templates that allow for the generation of a diverse set of questions. GSM-Symbolic enables more controllable evaluations, providing key insights and more reliable metrics for measuring the reasoning capabilities of models.Our findings reveal that LLMs exhibit noticeable variance when responding to different instantiations of the same question. Specifically, the performance of all models declines when only the numerical values in the question are altered in the GSM-Symbolic benchmark. Furthermore, we investigate the fragility of mathematical reasoning in these models and show that their performance significantly deteriorates as the number of clauses in a question increases. We hypothesize that this decline is because current LLMs cannot perform genuine logical reasoning; they replicate reasoning steps from their training data. Adding a single clause that seems relevant to the question causes significant performance drops (up to 65%) across all state-of-the-art models, even though the clause doesn't contribute to the reasoning chain needed for the final answer. Overall, our work offers a more nuanced understanding of LLMs' capabilities and limitations in mathematical reasoning.
Question Answering as Programming for Solving Time-Sensitive Questions
Question answering plays a pivotal role in human daily life because it involves our acquisition of knowledge about the world. However, due to the dynamic and ever-changing nature of real-world facts, the answer can be completely different when the time constraint in the question changes. Recently, Large Language Models (LLMs) have shown remarkable intelligence in question answering, while our experiments reveal that the aforementioned problems still pose a significant challenge to existing LLMs. This can be attributed to the LLMs' inability to perform rigorous reasoning based on surface-level text semantics. To overcome this limitation, rather than requiring LLMs to directly answer the question, we propose a novel approach where we reframe the Question Answering task as Programming (QAaP). Concretely, by leveraging modern LLMs' superior capability in understanding both natural language and programming language, we endeavor to harness LLMs to represent diversely expressed text as well-structured code and select the best matching answer from multiple candidates through programming. We evaluate our QAaP framework on several time-sensitive question answering datasets and achieve decent improvement, up to 14.5% over strong baselines. Our codes and data are available at https://github.com/TianHongZXY/qaap
Open-ended VQA benchmarking of Vision-Language models by exploiting Classification datasets and their semantic hierarchy
The evaluation of text-generative vision-language models is a challenging yet crucial endeavor. By addressing the limitations of existing Visual Question Answering (VQA) benchmarks and proposing innovative evaluation methodologies, our research seeks to advance our understanding of these models' capabilities. We propose a novel VQA benchmark based on well-known visual classification datasets which allows a granular evaluation of text-generative vision-language models and their comparison with discriminative vision-language models. To improve the assessment of coarse answers on fine-grained classification tasks, we suggest using the semantic hierarchy of the label space to ask automatically generated follow-up questions about the ground-truth category. Finally, we compare traditional NLP and LLM-based metrics for the problem of evaluating model predictions given ground-truth answers. We perform a human evaluation study upon which we base our decision on the final metric. We apply our benchmark to a suite of vision-language models and show a detailed comparison of their abilities on object, action, and attribute classification. Our contributions aim to lay the foundation for more precise and meaningful assessments, facilitating targeted progress in the exciting field of vision-language modeling.
SPARKLE: Enhancing SPARQL Generation with Direct KG Integration in Decoding
Existing KBQA methods have traditionally relied on multi-stage methodologies, involving tasks such as entity linking, subgraph retrieval and query structure generation. However, multi-stage approaches are dependent on the accuracy of preceding steps, leading to cascading errors and increased inference time. Although a few studies have explored the use of end-to-end models, they often suffer from lower accuracy and generate inoperative query that is not supported by the underlying data. Furthermore, most prior approaches are limited to the static training data, potentially overlooking the evolving nature of knowledge bases over time. To address these challenges, we present a novel end-to-end natural language to SPARQL framework, SPARKLE. Notably SPARKLE leverages the structure of knowledge base directly during the decoding, effectively integrating knowledge into the query generation. Our study reveals that simply referencing knowledge base during inference significantly reduces the occurrence of inexecutable query generations. SPARKLE achieves new state-of-the-art results on SimpleQuestions-Wiki and highest F1 score on LCQuAD 1.0 (among models not using gold entities), while getting slightly lower result on the WebQSP dataset. Finally, we demonstrate SPARKLE's fast inference speed and its ability to adapt when the knowledge base differs between the training and inference stages.
Automatic Model Selection with Large Language Models for Reasoning
Chain-of-Thought and Program-Aided Language Models represent two distinct reasoning methods, each with its own strengths and weaknesses. We demonstrate that it is possible to combine the best of both worlds by using different models for different problems, employing a large language model (LLM) to perform model selection. Through a theoretical analysis, we discover that the performance improvement is determined by the differences between the combined methods and the success rate of choosing the correct model. On eight reasoning datasets, our proposed approach shows significant improvements. Furthermore, we achieve new state-of-the-art results on GSM8K and SVAMP with accuracies of 96.5% and 93.7%, respectively. Our code is publicly available at https://github.com/XuZhao0/Model-Selection-Reasoning.
2nd Place Solution to the GQA Challenge 2019
We present a simple method that achieves unexpectedly superior performance for Complex Reasoning involved Visual Question Answering. Our solution collects statistical features from high-frequency words of all the questions asked about an image and use them as accurate knowledge for answering further questions of the same image. We are fully aware that this setting is not ubiquitously applicable, and in a more common setting one should assume the questions are asked separately and they cannot be gathered to obtain a knowledge base. Nonetheless, we use this method as an evidence to demonstrate our observation that the bottleneck effect is more severe on the feature extraction part than it is on the knowledge reasoning part. We show significant gaps when using the same reasoning model with 1) ground-truth features; 2) statistical features; 3) detected features from completely learned detectors, and analyze what these gaps mean to researches on visual reasoning topics. Our model with the statistical features achieves the 2nd place in the GQA Challenge 2019.
Multilingual State Space Models for Structured Question Answering in Indic Languages
The diversity and complexity of Indic languages present unique challenges for natural language processing (NLP) tasks, particularly in the domain of question answering (QA).To address these challenges, this paper explores the application of State Space Models (SSMs),to build efficient and contextually aware QA systems tailored for Indic languages. SSMs are particularly suited for this task due to their ability to model long-term and short-term dependencies in sequential data, making them well-equipped to handle the rich morphology, complex syntax, and contextual intricacies characteristic of Indian languages. We evaluated multiple SSM architectures across diverse datasets representing various Indic languages and conducted a comparative analysis of their performance. Our results demonstrate that these models effectively capture linguistic subtleties, leading to significant improvements in question interpretation, context alignment, and answer generation. This work represents the first application of SSMs to question answering tasks in Indic languages, establishing a foundational benchmark for future research in this domain. We propose enhancements to existing SSM frameworks, optimizing their applicability to low-resource settings and multilingual scenarios prevalent in Indic languages.
ReasonAgain: Using Extractable Symbolic Programs to Evaluate Mathematical Reasoning
Existing math datasets evaluate the reasoning abilities of large language models (LLMs) by either using the final answer or the intermediate reasoning steps derived from static examples. However, the former approach fails to surface model's uses of shortcuts and wrong reasoning while the later poses challenges in accommodating alternative solutions. In this work, we seek to use symbolic programs as a means for automated evaluation if a model can consistently produce correct final answers across various inputs to the program. We begin by extracting programs for popular math datasets (GSM8K and MATH) using GPT4-o. For those executable programs verified using the original input-output pairs, they are found to encapsulate the proper reasoning required to solve the original text questions. We then prompt GPT4-o to generate new questions using alternative input-output pairs based the extracted program. We apply the resulting datasets to evaluate a collection of LLMs. In our experiments, we observe significant accuracy drops using our proposed evaluation compared with original static examples, suggesting the fragility of math reasoning in state-of-the-art LLMs.
Think you have Solved Question Answering? Try ARC, the AI2 Reasoning Challenge
We present a new question set, text corpus, and baselines assembled to encourage AI research in advanced question answering. Together, these constitute the AI2 Reasoning Challenge (ARC), which requires far more powerful knowledge and reasoning than previous challenges such as SQuAD or SNLI. The ARC question set is partitioned into a Challenge Set and an Easy Set, where the Challenge Set contains only questions answered incorrectly by both a retrieval-based algorithm and a word co-occurence algorithm. The dataset contains only natural, grade-school science questions (authored for human tests), and is the largest public-domain set of this kind (7,787 questions). We test several baselines on the Challenge Set, including leading neural models from the SQuAD and SNLI tasks, and find that none are able to significantly outperform a random baseline, reflecting the difficult nature of this task. We are also releasing the ARC Corpus, a corpus of 14M science sentences relevant to the task, and implementations of the three neural baseline models tested. Can your model perform better? We pose ARC as a challenge to the community.
Shared Imagination: LLMs Hallucinate Alike
Despite the recent proliferation of large language models (LLMs), their training recipes -- model architecture, pre-training data and optimization algorithm -- are often very similar. This naturally raises the question of the similarity among the resulting models. In this paper, we propose a novel setting, imaginary question answering (IQA), to better understand model similarity. In IQA, we ask one model to generate purely imaginary questions (e.g., on completely made-up concepts in physics) and prompt another model to answer. Surprisingly, despite the total fictionality of these questions, all models can answer each other's questions with remarkable success, suggesting a "shared imagination space" in which these models operate during such hallucinations. We conduct a series of investigations into this phenomenon and discuss implications on model homogeneity, hallucination, and computational creativity.
Explain-Query-Test: Self-Evaluating LLMs Via Explanation and Comprehension Discrepancy
Large language models (LLMs) have demonstrated remarkable proficiency in generating detailed and coherent explanations of complex concepts. However, the extent to which these models truly comprehend the concepts they articulate remains unclear. To assess the level of comprehension of a model relative to the content it generates, we implemented a self-evaluation pipeline where models: (i) given a topic generate an excerpt with information about the topic, (ii) given an excerpt generate question-answer pairs, and finally (iii) given a question generate an answer. We refer to this self-evaluation approach as Explain-Query-Test (EQT). Interestingly, the accuracy on generated questions resulting from running the EQT pipeline correlates strongly with the model performance as verified by typical benchmarks such as MMLU-Pro. In other words, EQT's performance is predictive of MMLU-Pro's, and EQT can be used to rank models without the need for any external source of evaluation data other than lists of topics of interest. Moreover, our results reveal a disparity between the models' ability to produce detailed explanations and their performance on questions related to those explanations. This gap highlights fundamental limitations in the internal knowledge representation and reasoning abilities of current LLMs. We release the code at https://github.com/asgsaeid/EQT.
MaRVL-QA: A Benchmark for Mathematical Reasoning over Visual Landscapes
A key frontier for Multimodal Large Language Models (MLLMs) is the ability to perform deep mathematical and spatial reasoning directly from images, moving beyond their established success in semantic description. Mathematical surface plots provide a rigorous testbed for this capability, as they isolate the task of reasoning from the semantic noise common in natural images. To measure progress on this frontier, we introduce MaRVL-QA (Mathematical Reasoning over Visual Landscapes), a new benchmark designed to quantitatively evaluate these core reasoning skills. The benchmark comprises two novel tasks: Topological Counting, identifying and enumerating features like local maxima; and Transformation Recognition, recognizing applied geometric transformations. Generated from a curated library of functions with rigorous ambiguity filtering, our evaluation on MaRVL-QA reveals that even state-of-the-art MLLMs struggle significantly, often resorting to superficial heuristics instead of robust spatial reasoning. MaRVL-QA provides a challenging new tool for the research community to measure progress, expose model limitations, and guide the development of MLLMs with more profound reasoning abilities.
Jupiter: Enhancing LLM Data Analysis Capabilities via Notebook and Inference-Time Value-Guided Search
Large language models (LLMs) have shown great promise in automating data science workflows, but existing models still struggle with multi-step reasoning and tool use, which limits their effectiveness on complex data analysis tasks. To address this, we propose a scalable pipeline that extracts high-quality, tool-based data analysis tasks and their executable multi-step solutions from real-world Jupyter notebooks and associated data files. Using this pipeline, we introduce NbQA, a large-scale dataset of standardized task-solution pairs that reflect authentic tool-use patterns in practical data science scenarios. To further enhance multi-step reasoning, we present Jupiter, a framework that formulates data analysis as a search problem and applies Monte Carlo Tree Search (MCTS) to generate diverse solution trajectories for value model learning. During inference, Jupiter combines the value model and node visit counts to efficiently collect executable multi-step plans with minimal search steps. Experimental results show that Qwen2.5-7B and 14B-Instruct models on NbQA solve 77.82% and 86.38% of tasks on InfiAgent-DABench, respectively-matching or surpassing GPT-4o and advanced agent frameworks. Further evaluations demonstrate improved generalization and stronger tool-use reasoning across diverse multi-step reasoning tasks.
Testing the Limits of Unified Sequence to Sequence LLM Pretraining on Diverse Table Data Tasks
Tables stored in databases and tables which are present in web pages and articles account for a large part of semi-structured data that is available on the internet. It then becomes pertinent to develop a modeling approach with large language models (LLMs) that can be used to solve diverse table tasks such as semantic parsing, question answering as well as classification problems. Traditionally, there existed separate models specialized for each task individually. It raises the question of how far can we go to build a unified model that works well on some table tasks without significant degradation on others. To that end, we attempt at creating a shared modeling approach in the pretraining stage with encoder-decoder style LLMs that can cater to diverse tasks. We evaluate our approach that continually pretrains and finetunes different model families of T5 with data from tables and surrounding context, on these downstream tasks at different model scales. Through multiple ablation studies, we observe that our pretraining with self-supervised objectives can significantly boost the performance of the models on these tasks. As an example of one improvement, we observe that the instruction finetuned public models which come specialized on text question answering (QA) and have been trained on table data still have room for improvement when it comes to table specific QA. Our work is the first attempt at studying the advantages of a unified approach to table specific pretraining when scaled from 770M to 11B sequence to sequence models while also comparing the instruction finetuned variants of the models.
A Simple Approach to Jointly Rank Passages and Select Relevant Sentences in the OBQA Context
In the open book question answering (OBQA) task, selecting the relevant passages and sentences from distracting information is crucial to reason the answer to a question. HotpotQA dataset is designed to teach and evaluate systems to do both passage ranking and sentence selection. Many existing frameworks use separate models to select relevant passages and sentences respectively. Such systems not only have high complexity in terms of the parameters of models but also fail to take the advantage of training these two tasks together since one task can be beneficial for the other one. In this work, we present a simple yet effective framework to address these limitations by jointly ranking passages and selecting sentences. Furthermore, we propose consistency and similarity constraints to promote the correlation and interaction between passage ranking and sentence selection.The experiments demonstrate that our framework can achieve competitive results with previous systems and outperform the baseline by 28\% in terms of exact matching of relevant sentences on the HotpotQA dataset.
Proof2Hybrid: Automatic Mathematical Benchmark Synthesis for Proof-Centric Problems
Evaluating the mathematical capability of Large Language Models (LLMs) is a critical yet challenging frontier. Existing benchmarks fall short, particularly for proof-centric problems, as manual creation is unscalable and costly, leaving the true mathematical abilities of LLMs largely unassessed. To overcome these barriers, we propose Proof2Hybrid, the first fully automated framework that synthesizes high-quality, proof-centric benchmarks from natural language mathematical corpora. The key novelty of our solution is Proof2X, a roadmap of converting mathematical proofs into various kinds of questions that are easy to verify. Instructed by this roadmap, we propose a new type of hybrid-formatted questions, named ``m-out-of-n multiple judge questions'', specifically designed to enable robust, automatic evaluation while being resilient to guessing and superficial pattern matching inherent in traditional formats. As a demonstration of our framework, we introduce AlgGeoTest, a benchmark for algebraic geometry--a frontier domain of modern mathematics--comprising 456 challenging items. Our extensive evaluations on state-of-the-art LLMs using AlgGeoTest reveal profound deficits in their comprehension of algebraic geometry, providing a more precise measure of their true mathematical capabilities. Our framework and benchmark pave the way for a new wave of in-depth research into the mathematical intelligence of AI systems.
Becoming self-instruct: introducing early stopping criteria for minimal instruct tuning
In this paper, we introduce the Instruction Following Score (IFS), a metric that detects language models' ability to follow instructions. The metric has a dual purpose. First, IFS can be used to distinguish between base and instruct models. We benchmark publicly available base and instruct models, and show that the ratio of well formatted responses to partial and full sentences can be an effective measure between those two model classes. Secondly, the metric can be used as an early stopping criteria for instruct tuning. We compute IFS for Supervised Fine-Tuning (SFT) of 7B and 13B LLaMA models, showing that models learn to follow instructions relatively early in the training process, and the further finetuning can result in changes in the underlying base model semantics. As an example of semantics change we show the objectivity of model predictions, as defined by an auxiliary metric ObjecQA. We show that in this particular case, semantic changes are the steepest when the IFS tends to plateau. We hope that decomposing instruct tuning into IFS and semantic factors starts a new trend in better controllable instruct tuning and opens possibilities for designing minimal instruct interfaces querying foundation models.
ORBIT: An Object Property Reasoning Benchmark for Visual Inference Tasks
While vision-language models (VLMs) have made remarkable progress on many popular visual question answering (VQA) benchmarks, it remains unclear whether they abstract and reason over depicted objects. Inspired by human object categorisation, object property reasoning involves identifying and recognising low-level details and higher-level abstractions. While current VQA benchmarks consider a limited set of object property attributes like size, they typically blend perception and reasoning, and lack representativeness in terms of reasoning and image categories. To this end, we introduce a systematic evaluation framework with images of three representative types, three reasoning levels of increasing complexity, and four object property dimensions driven by prior work on commonsense reasoning. We develop a procedure to instantiate this benchmark into ORBIT, a multi-level reasoning VQA benchmark for object properties comprising 360 images paired with a total of 1,080 count-based questions. Experiments with 12 state-of-the-art VLMs in zero-shot settings reveal significant limitations compared to humans, with the best-performing model only reaching 40\% accuracy. VLMs struggle particularly with realistic (photographic) images, counterfactual reasoning about physical and functional properties, and higher counts. ORBIT points to the need to develop methods for scalable benchmarking, generalize annotation guidelines, and explore additional reasoning VLMs. We make the ORBIT benchmark and the experimental code available to support such endeavors.
Advancing Surgical VQA with Scene Graph Knowledge
Modern operating room is becoming increasingly complex, requiring innovative intra-operative support systems. While the focus of surgical data science has largely been on video analysis, integrating surgical computer vision with language capabilities is emerging as a necessity. Our work aims to advance Visual Question Answering (VQA) in the surgical context with scene graph knowledge, addressing two main challenges in the current surgical VQA systems: removing question-condition bias in the surgical VQA dataset and incorporating scene-aware reasoning in the surgical VQA model design. First, we propose a Surgical Scene Graph-based dataset, SSG-QA, generated by employing segmentation and detection models on publicly available datasets. We build surgical scene graphs using spatial and action information of instruments and anatomies. These graphs are fed into a question engine, generating diverse QA pairs. Our SSG-QA dataset provides a more complex, diverse, geometrically grounded, unbiased, and surgical action-oriented dataset compared to existing surgical VQA datasets. We then propose SSG-QA-Net, a novel surgical VQA model incorporating a lightweight Scene-embedded Interaction Module (SIM), which integrates geometric scene knowledge in the VQA model design by employing cross-attention between the textual and the scene features. Our comprehensive analysis of the SSG-QA dataset shows that SSG-QA-Net outperforms existing methods across different question types and complexities. We highlight that the primary limitation in the current surgical VQA systems is the lack of scene knowledge to answer complex queries. We present a novel surgical VQA dataset and model and show that results can be significantly improved by incorporating geometric scene features in the VQA model design. The source code and the dataset will be made publicly available at: https://github.com/CAMMA-public/SSG-QA
Reimagining Retrieval Augmented Language Models for Answering Queries
We present a reality check on large language models and inspect the promise of retrieval augmented language models in comparison. Such language models are semi-parametric, where models integrate model parameters and knowledge from external data sources to make their predictions, as opposed to the parametric nature of vanilla large language models. We give initial experimental findings that semi-parametric architectures can be enhanced with views, a query analyzer/planner, and provenance to make a significantly more powerful system for question answering in terms of accuracy and efficiency, and potentially for other NLP tasks
SearchQA: A New Q&A Dataset Augmented with Context from a Search Engine
We publicly release a new large-scale dataset, called SearchQA, for machine comprehension, or question-answering. Unlike recently released datasets, such as DeepMind CNN/DailyMail and SQuAD, the proposed SearchQA was constructed to reflect a full pipeline of general question-answering. That is, we start not from an existing article and generate a question-answer pair, but start from an existing question-answer pair, crawled from J! Archive, and augment it with text snippets retrieved by Google. Following this approach, we built SearchQA, which consists of more than 140k question-answer pairs with each pair having 49.6 snippets on average. Each question-answer-context tuple of the SearchQA comes with additional meta-data such as the snippet's URL, which we believe will be valuable resources for future research. We conduct human evaluation as well as test two baseline methods, one simple word selection and the other deep learning based, on the SearchQA. We show that there is a meaningful gap between the human and machine performances. This suggests that the proposed dataset could well serve as a benchmark for question-answering.
Evaluating LLM Reasoning in the Operations Research Domain with ORQA
In this paper, we introduce and apply Operations Research Question Answering (ORQA), a new benchmark designed to assess the generalization capabilities of Large Language Models (LLMs) in the specialized technical domain of Operations Research (OR). This benchmark evaluates whether LLMs can emulate the knowledge and reasoning skills of OR experts when confronted with diverse and complex optimization problems. The dataset, developed by OR experts, features real-world optimization problems that demand multistep reasoning to construct their mathematical models. Our evaluations of various open source LLMs, such as LLaMA 3.1, DeepSeek, and Mixtral, reveal their modest performance, highlighting a gap in their ability to generalize to specialized technical domains. This work contributes to the ongoing discourse on LLMs generalization capabilities, offering valuable insights for future research in this area. The dataset and evaluation code are publicly available.
GeomVerse: A Systematic Evaluation of Large Models for Geometric Reasoning
Large language models have shown impressive results for multi-hop mathematical reasoning when the input question is only textual. Many mathematical reasoning problems, however, contain both text and image. With the ever-increasing adoption of vision language models (VLMs), understanding their reasoning abilities for such problems is crucial. In this paper, we evaluate the reasoning capabilities of VLMs along various axes through the lens of geometry problems. We procedurally create a synthetic dataset of geometry questions with controllable difficulty levels along multiple axes, thus enabling a systematic evaluation. The empirical results obtained using our benchmark for state-of-the-art VLMs indicate that these models are not as capable in subjects like geometry (and, by generalization, other topics requiring similar reasoning) as suggested by previous benchmarks. This is made especially clear by the construction of our benchmark at various depth levels, since solving higher-depth problems requires long chains of reasoning rather than additional memorized knowledge. We release the dataset for further research in this area.
TableVQA-Bench: A Visual Question Answering Benchmark on Multiple Table Domains
In this paper, we establish a benchmark for table visual question answering, referred to as the TableVQA-Bench, derived from pre-existing table question-answering (QA) and table structure recognition datasets. It is important to note that existing datasets have not incorporated images or QA pairs, which are two crucial components of TableVQA. As such, the primary objective of this paper is to obtain these necessary components. Specifically, images are sourced either through the application of a stylesheet or by employing the proposed table rendering system. QA pairs are generated by exploiting the large language model (LLM) where the input is a text-formatted table. Ultimately, the completed TableVQA-Bench comprises 1,500 QA pairs. We comprehensively compare the performance of various multi-modal large language models (MLLMs) on TableVQA-Bench. GPT-4V achieves the highest accuracy among commercial and open-sourced MLLMs from our experiments. Moreover, we discover that the number of vision queries plays a significant role in TableVQA performance. To further analyze the capabilities of MLLMs in comparison to their LLM backbones, we investigate by presenting image-formatted tables to MLLMs and text-formatted tables to LLMs, respectively. Our findings suggest that processing visual inputs is more challenging than text inputs, as evidenced by the lower performance of MLLMs, despite generally requiring higher computational costs than LLMs. The proposed TableVQA-Bench and evaluation codes are available at https://github.com/naver-ai/tablevqabench{https://github.com/naver-ai/tablevqabench}.
BlackMamba: Mixture of Experts for State-Space Models
State-space models (SSMs) have recently demonstrated competitive performance to transformers at large-scale language modeling benchmarks while achieving linear time and memory complexity as a function of sequence length. Mamba, a recently released SSM model, shows impressive performance in both language modeling and long sequence processing tasks. Simultaneously, mixture-of-expert (MoE) models have shown remarkable performance while significantly reducing the compute and latency costs of inference at the expense of a larger memory footprint. In this paper, we present BlackMamba, a novel architecture that combines the Mamba SSM with MoE to obtain the benefits of both. We demonstrate that BlackMamba performs competitively against both Mamba and transformer baselines, and outperforms in inference and training FLOPs. We fully train and open-source 340M/1.5B and 630M/2.8B BlackMamba models on 300B tokens of a custom dataset. We show that BlackMamba inherits and combines both of the benefits of SSM and MoE architectures, combining linear-complexity generation from SSM with cheap and fast inference from MoE. We release all weights, checkpoints, and inference code open-source. Inference code at: https://github.com/Zyphra/BlackMamba
OK-VQA: A Visual Question Answering Benchmark Requiring External Knowledge
Visual Question Answering (VQA) in its ideal form lets us study reasoning in the joint space of vision and language and serves as a proxy for the AI task of scene understanding. However, most VQA benchmarks to date are focused on questions such as simple counting, visual attributes, and object detection that do not require reasoning or knowledge beyond what is in the image. In this paper, we address the task of knowledge-based visual question answering and provide a benchmark, called OK-VQA, where the image content is not sufficient to answer the questions, encouraging methods that rely on external knowledge resources. Our new dataset includes more than 14,000 questions that require external knowledge to answer. We show that the performance of the state-of-the-art VQA models degrades drastically in this new setting. Our analysis shows that our knowledge-based VQA task is diverse, difficult, and large compared to previous knowledge-based VQA datasets. We hope that this dataset enables researchers to open up new avenues for research in this domain. See http://okvqa.allenai.org to download and browse the dataset.
KaPQA: Knowledge-Augmented Product Question-Answering
Question-answering for domain-specific applications has recently attracted much interest due to the latest advancements in large language models (LLMs). However, accurately assessing the performance of these applications remains a challenge, mainly due to the lack of suitable benchmarks that effectively simulate real-world scenarios. To address this challenge, we introduce two product question-answering (QA) datasets focused on Adobe Acrobat and Photoshop products to help evaluate the performance of existing models on domain-specific product QA tasks. Additionally, we propose a novel knowledge-driven RAG-QA framework to enhance the performance of the models in the product QA task. Our experiments demonstrated that inducing domain knowledge through query reformulation allowed for increased retrieval and generative performance when compared to standard RAG-QA methods. This improvement, however, is slight, and thus illustrates the challenge posed by the datasets introduced.
MTQA:Matrix of Thought for Enhanced Reasoning in Complex Question Answering
Complex Question Answering (QA) is a fundamental and challenging task in NLP. While large language models (LLMs) exhibit impressive performance in QA, they suffer from significant performance degradation when facing complex and abstract QA tasks due to insufficient reasoning capabilities. Works such as Chain-of-Thought (CoT) and Tree-of-Thought (ToT) aim to enhance LLMs' reasoning abilities, but they face issues such as in-layer redundancy in tree structures and single paths in chain structures. Although some studies utilize Retrieval-Augmented Generation (RAG) methods to assist LLMs in reasoning, the challenge of effectively utilizing large amounts of information involving multiple entities and hops remains critical. To address this, we propose the Matrix of Thought (MoT), a novel and efficient LLM thought structure. MoT explores the problem in both horizontal and vertical dimensions through the "column-cell communication" mechanism, enabling LLMs to actively engage in multi-strategy and deep-level thinking, reducing redundancy within the column cells and enhancing reasoning capabilities. Furthermore, we develop a fact-correction mechanism by constructing knowledge units from retrieved knowledge graph triples and raw text to enhance the initial knowledge for LLM reasoning and correct erroneous answers. This leads to the development of an efficient and accurate QA framework (MTQA). Experimental results show that our framework outperforms state-of-the-art methods on four widely-used datasets in terms of F1 and EM scores, with reasoning time only 14.4\% of the baseline methods, demonstrating both its efficiency and accuracy. The code for this framework is available at https://github.com/lyfiter/mtqa.
StructTest: Benchmarking LLMs' Reasoning through Compositional Structured Outputs
The rapid advancement of large language models (LLMs) demands robust, unbiased, and scalable evaluation methods. However, human annotations are costly to scale, model-based evaluations are susceptible to stylistic biases, and target-answer-based benchmarks are vulnerable to data contamination and cheating. To address these limitations, we propose StructTest, a novel benchmark that evaluates LLMs on their ability to follow compositional instructions and generate structured outputs, providing an unbiased, cost-effective, and difficult-to-cheat evaluation framework. Assessments are conducted deterministically using a rule-based evaluator, which can be easily extended to new tasks and datasets. By testing structured outputs across diverse domains including Summarization, Code, HTML, and Math, and evaluating 17 popular LLMs, we demonstrate that StructTest remains challenging even for top-performing models like Deepseek-V3/R1 and GPT-4o, establishing it as a robust proxy for measuring reasoning capabilities. We believe StructTest offers a critical and complementary approach to achieving objective and comprehensive model evaluation.
Rethinking Generative Large Language Model Evaluation for Semantic Comprehension
Despite their sophisticated capabilities, large language models (LLMs) encounter a major hurdle in effective assessment. This paper first revisits the prevalent evaluation method-multiple choice question answering (MCQA), which allows for straightforward accuracy measurement. Through a comprehensive evaluation of 24 models across 11 benchmarks, we highlight several potential drawbacks of MCQA, for instance, the inconsistency between the MCQA evaluation and the generation of open-ended responses in practical scenarios. In response, we introduce an RWQ-Elo rating system, engaging 24 LLMs such as GPT-4, GPT-3.5, Google-Gemini-Pro and LLaMA-1/-2, in a two-player competitive format, with GPT-4 serving as the judge. Each LLM receives an Elo rating thereafter. This system is designed to mirror real-world usage, and for this purpose, we have compiled a new benchmark called ``Real-world questions'' (RWQ), comprising 20,772 authentic user inquiries. Additionally, we thoroughly analyze the characteristics of our system and compare it with prior leaderboards like AlpacaEval and MT-Bench. Our analysis reveals the stability of our RWQ-Elo system, the feasibility of registering new models, and its potential to reshape LLM leaderboards.
Wrong Answers Can Also Be Useful: PlausibleQA -- A Large-Scale QA Dataset with Answer Plausibility Scores
Large Language Models (LLMs) are revolutionizing information retrieval, with chatbots becoming an important source for answering user queries. As by their design, LLMs prioritize generating correct answers, the value of highly plausible yet incorrect answers (candidate answers) tends to be overlooked. However, such answers can still prove useful, for example, they can play a crucial role in tasks like Multiple-Choice Question Answering (MCQA) and QA Robustness Assessment (QARA). Existing QA datasets primarily focus on correct answers without explicit consideration of the plausibility of other candidate answers, limiting opportunity for more nuanced evaluations of models. To address this gap, we introduce PlausibleQA, a large-scale dataset comprising 10,000 questions and 100,000 candidate answers, each annotated with plausibility scores and justifications for their selection. Additionally, the dataset includes 900,000 justifications for pairwise comparisons between candidate answers, further refining plausibility assessments. We evaluate PlausibleQA through human assessments and empirical experiments, demonstrating its utility in MCQA and QARA analysis. Our findings show that plausibility-aware approaches are effective for MCQA distractor generation and QARA. We release PlausibleQA as a resource for advancing QA research and enhancing LLM performance in distinguishing plausible distractors from correct answers.
MicroVQA: A Multimodal Reasoning Benchmark for Microscopy-Based Scientific Research
Scientific research demands sophisticated reasoning over multimodal data, a challenge especially prevalent in biology. Despite recent advances in multimodal large language models (MLLMs) for AI-assisted research, existing multimodal reasoning benchmarks only target up to college-level difficulty, while research-level benchmarks emphasize lower-level perception, falling short of the complex multimodal reasoning needed for scientific discovery. To bridge this gap, we introduce MicroVQA, a visual-question answering (VQA) benchmark designed to assess three reasoning capabilities vital in research workflows: expert image understanding, hypothesis generation, and experiment proposal. MicroVQA consists of 1,042 multiple-choice questions (MCQs) curated by biology experts across diverse microscopy modalities, ensuring VQA samples represent real scientific practice. In constructing the benchmark, we find that standard MCQ generation methods induce language shortcuts, motivating a new two-stage pipeline: an optimized LLM prompt structures question-answer pairs into MCQs; then, an agent-based `RefineBot' updates them to remove shortcuts. Benchmarking on state-of-the-art MLLMs reveal a peak performance of 53\%; models with smaller LLMs only slightly underperform top models, suggesting that language-based reasoning is less challenging than multimodal reasoning; and tuning with scientific articles enhances performance. Expert analysis of chain-of-thought responses shows that perception errors are the most frequent, followed by knowledge errors and then overgeneralization errors. These insights highlight the challenges in multimodal scientific reasoning, showing MicroVQA is a valuable resource advancing AI-driven biomedical research. MicroVQA is available at https://huggingface.co/datasets/jmhb/microvqa, and project page at https://jmhb0.github.io/microvqa.
MUST-VQA: MUltilingual Scene-text VQA
In this paper, we present a framework for Multilingual Scene Text Visual Question Answering that deals with new languages in a zero-shot fashion. Specifically, we consider the task of Scene Text Visual Question Answering (STVQA) in which the question can be asked in different languages and it is not necessarily aligned to the scene text language. Thus, we first introduce a natural step towards a more generalized version of STVQA: MUST-VQA. Accounting for this, we discuss two evaluation scenarios in the constrained setting, namely IID and zero-shot and we demonstrate that the models can perform on a par on a zero-shot setting. We further provide extensive experimentation and show the effectiveness of adapting multilingual language models into STVQA tasks.
Right Answer, Wrong Score: Uncovering the Inconsistencies of LLM Evaluation in Multiple-Choice Question Answering
One of the most widely used tasks to evaluate Large Language Models (LLMs) is Multiple-Choice Question Answering (MCQA). While open-ended question answering tasks are more challenging to evaluate, MCQA tasks are, in principle, easier to assess, as the model's answer is thought to be simple to extract and is directly compared to a set of predefined choices. However, recent studies have started to question the reliability of MCQA evaluation, showing that multiple factors can significantly impact the reported performance of LLMs, especially when the model generates free-form text before selecting one of the answer choices. In this work, we shed light on the inconsistencies of MCQA evaluation strategies, which can lead to inaccurate and misleading model comparisons. We systematically analyze whether existing answer extraction methods are aligned with human judgment, and how they are influenced by answer constraints in the prompt across different domains. Our experiments demonstrate that traditional evaluation strategies often underestimate LLM capabilities, while LLM-based answer extractors are prone to systematic errors. Moreover, we reveal a fundamental trade-off between including format constraints in the prompt to simplify answer extraction and allowing models to generate free-form text to improve reasoning. Our findings call for standardized evaluation methodologies and highlight the need for more reliable and consistent MCQA evaluation practices.
Rethinking Fine-Tuning when Scaling Test-Time Compute: Limiting Confidence Improves Mathematical Reasoning
Recent progress in large language models (LLMs) highlights the power of scaling test-time compute to achieve strong performance on complex tasks, such as mathematical reasoning and code generation. This raises a critical question: how should model training be modified to optimize performance under a subsequent test-time compute strategy and budget? To explore this, we focus on pass@N, a simple test-time strategy that searches for a correct answer in N independent samples. We show, surprisingly, that training with cross-entropy (CE) loss can be {it misaligned} with pass@N in that pass@N accuracy {it decreases} with longer training. We explain the origins of this misalignment in terms of model overconfidence induced by CE, and experimentally verify our prediction of overconfidence as an impediment to scaling test-time compute via pass@N. Furthermore we suggest a principled, modified training loss that is better aligned to pass@N by limiting model confidence and rescuing pass@N test performance. Our algorithm demonstrates improved mathematical reasoning on MATH and MiniF2F benchmarks under several scenarios: (1) providing answers to math questions; and (2) proving theorems by searching over proof trees of varying shapes. Overall our work underscores the importance of co-designing two traditionally separate phases of LLM development: training-time protocols and test-time search and reasoning strategies.
Classification-Regression for Chart Comprehension
Chart question answering (CQA) is a task used for assessing chart comprehension, which is fundamentally different from understanding natural images. CQA requires analyzing the relationships between the textual and the visual components of a chart, in order to answer general questions or infer numerical values. Most existing CQA datasets and models are based on simplifying assumptions that often enable surpassing human performance. In this work, we address this outcome and propose a new model that jointly learns classification and regression. Our language-vision setup uses co-attention transformers to capture the complex real-world interactions between the question and the textual elements. We validate our design with extensive experiments on the realistic PlotQA dataset, outperforming previous approaches by a large margin, while showing competitive performance on FigureQA. Our model is particularly well suited for realistic questions with out-of-vocabulary answers that require regression.
CoSineVerifier: Tool-Augmented Answer Verification for Computation-Oriented Scientific Questions
Answer verification methods are widely employed in language model training pipelines spanning data curation, evaluation, and reinforcement learning with verifiable rewards (RLVR). While prior work focus on developing unified verifiers applicable across multiple reasoning scenarios, significant challenges remain in computation-oriented scientific domains, such as algebraic equivalence checking and physical constant substitution. In this paper, we introduce \model, a tool-augmented verifier that leverages external executors to perform precise computations and symbolic simplifications. \model enables robust verification that goes beyond simple semantic matching. We propose a novel two-stage pipeline, which begin with cold-start fine-tuning and followed by multi-turn reinforcement learning with tool integration. Extensive experiments conducted on STEM subjects, general QA, and long-form reasoning tasks demonstrates strong generalization of \model. The results shows that the \model achieves state-of-the-art performance on VerifyBench-Hard and SCI-Bench. And we also employ our \model in RLVR as a reward model, the results show that it consistently outperforms both rubric-based and model-based verifiers on AIME'24 and AIME'25, demonstrating strong potential to enhance reasoning capabilities of LLM. Our model is released at https://huggingface.co/Nanbeige/CoSineVerifier-Tool-4B{https://huggingface.co/Nanbeige/CoSineVerifier-Tool-4B}.
Are Large Language Models Good Statisticians?
Large Language Models (LLMs) have demonstrated impressive capabilities across a range of scientific tasks including mathematics, physics, and chemistry. Despite their successes, the effectiveness of LLMs in handling complex statistical tasks remains systematically under-explored. To bridge this gap, we introduce StatQA, a new benchmark designed for statistical analysis tasks. StatQA comprises 11,623 examples tailored to evaluate LLMs' proficiency in specialized statistical tasks and their applicability assessment capabilities, particularly for hypothesis testing methods. We systematically experiment with representative LLMs using various prompting strategies and show that even state-of-the-art models such as GPT-4o achieve a best performance of only 64.83%, indicating significant room for improvement. Notably, while open-source LLMs (e.g. LLaMA-3) show limited capability, those fine-tuned ones exhibit marked improvements, outperforming all in-context learning-based methods (e.g. GPT-4o). Moreover, our comparative human experiments highlight a striking contrast in error types between LLMs and humans: LLMs primarily make applicability errors, whereas humans mostly make statistical task confusion errors. This divergence highlights distinct areas of proficiency and deficiency, suggesting that combining LLM and human expertise could lead to complementary strengths, inviting further investigation into their collaborative potential.
Unlocking Model Insights: A Dataset for Automated Model Card Generation
Language models (LMs) are no longer restricted to ML community, and instruction-tuned LMs have led to a rise in autonomous AI agents. As the accessibility of LMs grows, it is imperative that an understanding of their capabilities, intended usage, and development cycle also improves. Model cards are a popular practice for documenting detailed information about an ML model. To automate model card generation, we introduce a dataset of 500 question-answer pairs for 25 ML models that cover crucial aspects of the model, such as its training configurations, datasets, biases, architecture details, and training resources. We employ annotators to extract the answers from the original paper. Further, we explore the capabilities of LMs in generating model cards by answering questions. Our initial experiments with ChatGPT-3.5, LLaMa, and Galactica showcase a significant gap in the understanding of research papers by these aforementioned LMs as well as generating factual textual responses. We posit that our dataset can be used to train models to automate the generation of model cards from paper text and reduce human effort in the model card curation process. The complete dataset is available on https://osf.io/hqt7p/?view_only=3b9114e3904c4443bcd9f5c270158d37
CaptionQA: Is Your Caption as Useful as the Image Itself?
Image captions serve as efficient surrogates for visual content in multimodal systems such as retrieval, recommendation, and multi-step agentic inference pipelines. Yet current evaluation practices miss a fundamental question: Can captions stand-in for images in real downstream tasks? We propose a utility-based benchmark, CaptionQA, to evaluate model-generated captions, where caption quality is measured by how well it supports downstream tasks. CaptionQA is an extensible domain-dependent benchmark covering 4 domains--Natural, Document, E-commerce, and Embodied AI--each with fine-grained taxonomies (25 top-level and 69 subcategories) that identify useful information for domain-specific tasks. CaptionQA builds 33,027 densely annotated multiple-choice questions (50.3 per image on average) that explicitly require visual information to answer, providing a comprehensive probe of caption utility. In our evaluation protocol, an LLM answers these questions using captions alone, directly measuring whether captions preserve image-level utility and are utilizable by a downstream LLM. Evaluating state-of-the-art MLLMs reveals substantial gaps between the image and its caption utility. Notably, models nearly identical on traditional image-QA benchmarks lower by up to 32% in caption utility. We release CaptionQA along with an open-source pipeline for extension to new domains. The code is available at https://github.com/bronyayang/CaptionQA.
TIARA: Multi-grained Retrieval for Robust Question Answering over Large Knowledge Bases
Pre-trained language models (PLMs) have shown their effectiveness in multiple scenarios. However, KBQA remains challenging, especially regarding coverage and generalization settings. This is due to two main factors: i) understanding the semantics of both questions and relevant knowledge from the KB; ii) generating executable logical forms with both semantic and syntactic correctness. In this paper, we present a new KBQA model, TIARA, which addresses those issues by applying multi-grained retrieval to help the PLM focus on the most relevant KB contexts, viz., entities, exemplary logical forms, and schema items. Moreover, constrained decoding is used to control the output space and reduce generation errors. Experiments over important benchmarks demonstrate the effectiveness of our approach. TIARA outperforms previous SOTA, including those using PLMs or oracle entity annotations, by at least 4.1 and 1.1 F1 points on GrailQA and WebQuestionsSP, respectively.
FineQuest: Adaptive Knowledge-Assisted Sports Video Understanding via Agent-of-Thoughts Reasoning
Video Question Answering (VideoQA) based on Large Language Models (LLMs) has shown potential in general video understanding but faces significant challenges when applied to the inherently complex domain of sports videos. In this work, we propose FineQuest, the first training-free framework that leverages dual-mode reasoning inspired by cognitive science: i) Reactive Reasoning for straightforward sports queries and ii) Deliberative Reasoning for more complex ones. To bridge the knowledge gap between general-purpose models and domain-specific sports understanding, FineQuest incorporates SSGraph, a multimodal sports knowledge scene graph spanning nine sports, which encodes both visual instances and domain-specific terminology to enhance reasoning accuracy. Furthermore, we introduce two new sports VideoQA benchmarks, Gym-QA and Diving-QA, derived from the FineGym and FineDiving datasets, enabling diverse and comprehensive evaluation. FineQuest achieves state-of-the-art performance on these benchmarks as well as the existing SPORTU dataset, while maintains strong general VideoQA capabilities.
Learning to Reason Across Parallel Samples for LLM Reasoning
Scaling test-time compute brings substantial performance gains for large language models (LLMs). By sampling multiple answers and heuristically aggregate their answers (e.g., either through majority voting or using verifiers to rank the answers), one can achieve consistent performance gains in math domains. In this paper, we propose a new way to leverage such multiple sample set. We train a compact LLM, called Sample Set Aggregator (SSA), that takes a concatenated sequence of multiple samples and output the final answer, optimizing it for the answer accuracy with reinforcement learning. Experiments on multiple reasoning datasets show that SSA outperforms other test-time scaling methods such as reward model-based re-ranking. Our approach also shows a promising generalization ability, across sample set sizes, base model families and scales, and tasks. By separating LLMs to generate answers and LLMs to analyze and aggregate sampled answers, our approach can work with the outputs from premier black box models easily and efficiently.
Lucy: edgerunning agentic web search on mobile with machine generated task vectors
Small language models (SLMs) are inherently limited in knowledge-intensive tasks due to their constrained capacity. While test-time computation offers a path to enhanced performance, most approaches treat reasoning as a fixed or heuristic process. In this work, we propose a new paradigm: viewing the model's internal reasoning, delimited by <think> and </think> tags, as a dynamic task vector machine. Rather than treating the content inside these tags as a mere trace of thought, we interpret the generation process itself as a mechanism through which the model constructs and refines its own task vectors on the fly. We developed a method to optimize this dynamic task vector machine through RLVR and successfully trained an agentic web-search model. We present Lucy, a 1.7B-parameter SLM that leverages this dynamic reasoning mechanism with MCP integration to achieve 78.3% accuracy on the SimpleQA benchmark, performing on par with much larger models such as DeepSeek-V3. This demonstrates that small models can rival large ones when equipped with structured, self-constructed task reasoning.
DEXTER: A Benchmark for open-domain Complex Question Answering using LLMs
Open-domain complex Question Answering (QA) is a difficult task with challenges in evidence retrieval and reasoning. The complexity of such questions could stem from questions being compositional, hybrid evidence, or ambiguity in questions. While retrieval performance for classical QA tasks is well explored, their capabilities for heterogeneous complex retrieval tasks, especially in an open-domain setting, and the impact on downstream QA performance, are relatively unexplored. To address this, in this work, we propose a benchmark composing diverse complex QA tasks and provide a toolkit to evaluate state-of-the-art pre-trained dense and sparse retrieval models in an open-domain setting. We observe that late interaction models and surprisingly lexical models like BM25 perform well compared to other pre-trained dense retrieval models. In addition, since context-based reasoning is critical for solving complex QA tasks, we also evaluate the reasoning capabilities of LLMs and the impact of retrieval performance on their reasoning capabilities. Through experiments, we observe that much progress is to be made in retrieval for complex QA to improve downstream QA performance. Our software and related data can be accessed at https://github.com/VenkteshV/DEXTER
Benchmarking Open-Source Language Models for Efficient Question Answering in Industrial Applications
In the rapidly evolving landscape of Natural Language Processing (NLP), Large Language Models (LLMs) have demonstrated remarkable capabilities in tasks such as question answering (QA). However, the accessibility and practicality of utilizing these models for industrial applications pose significant challenges, particularly concerning cost-effectiveness, inference speed, and resource efficiency. This paper presents a comprehensive benchmarking study comparing open-source LLMs with their non-open-source counterparts on the task of question answering. Our objective is to identify open-source alternatives capable of delivering comparable performance to proprietary models while being lightweight in terms of resource requirements and suitable for Central Processing Unit (CPU)-based inference. Through rigorous evaluation across various metrics including accuracy, inference speed, and resource consumption, we aim to provide insights into selecting efficient LLMs for real-world applications. Our findings shed light on viable open-source alternatives that offer acceptable performance and efficiency, addressing the pressing need for accessible and efficient NLP solutions in industry settings.
CSVQA: A Chinese Multimodal Benchmark for Evaluating STEM Reasoning Capabilities of VLMs
Vision-Language Models (VLMs) have demonstrated remarkable progress in multimodal understanding, yet their capabilities for scientific reasoning remains inadequately assessed. Current multimodal benchmarks predominantly evaluate generic image comprehension or text-driven reasoning, lacking authentic scientific contexts that require domain-specific knowledge integration with visual evidence analysis. To fill this gap, we present CSVQA, a diagnostic multimodal benchmark specifically designed for evaluating scientific reasoning through domain-grounded visual question answering.Our benchmark features 1,378 carefully constructed question-answer pairs spanning diverse STEM disciplines, each demanding domain knowledge, integration of visual evidence, and higher-order reasoning. Compared to prior multimodal benchmarks, CSVQA places greater emphasis on real-world scientific content and complex reasoning.We additionally propose a rigorous evaluation protocol to systematically assess whether model predictions are substantiated by valid intermediate reasoning steps based on curated explanations. Our comprehensive evaluation of 15 VLMs on this benchmark reveals notable performance disparities, as even the top-ranked proprietary model attains only 49.6\% accuracy.This empirical evidence underscores the pressing need for advancing scientific reasoning capabilities in VLMs. Our CSVQA is released at https://huggingface.co/datasets/Skywork/CSVQA.
SuperGPQA: Scaling LLM Evaluation across 285 Graduate Disciplines
Large language models (LLMs) have demonstrated remarkable proficiency in mainstream academic disciplines such as mathematics, physics, and computer science. However, human knowledge encompasses over 200 specialized disciplines, far exceeding the scope of existing benchmarks. The capabilities of LLMs in many of these specialized fields-particularly in light industry, agriculture, and service-oriented disciplines-remain inadequately evaluated. To address this gap, we present SuperGPQA, a comprehensive benchmark that evaluates graduate-level knowledge and reasoning capabilities across 285 disciplines. Our benchmark employs a novel Human-LLM collaborative filtering mechanism to eliminate trivial or ambiguous questions through iterative refinement based on both LLM responses and expert feedback. Our experimental results reveal significant room for improvement in the performance of current state-of-the-art LLMs across diverse knowledge domains (e.g., the reasoning-focused model DeepSeek-R1 achieved the highest accuracy of 61.82% on SuperGPQA), highlighting the considerable gap between current model capabilities and artificial general intelligence. Additionally, we present comprehensive insights from our management of a large-scale annotation process, involving over 80 expert annotators and an interactive Human-LLM collaborative system, offering valuable methodological guidance for future research initiatives of comparable scope.
MilkQA: a Dataset of Consumer Questions for the Task of Answer Selection
We introduce MilkQA, a question answering dataset from the dairy domain dedicated to the study of consumer questions. The dataset contains 2,657 pairs of questions and answers, written in the Portuguese language and originally collected by the Brazilian Agricultural Research Corporation (Embrapa). All questions were motivated by real situations and written by thousands of authors with very different backgrounds and levels of literacy, while answers were elaborated by specialists from Embrapa's customer service. Our dataset was filtered and anonymized by three human annotators. Consumer questions are a challenging kind of question that is usually employed as a form of seeking information. Although several question answering datasets are available, most of such resources are not suitable for research on answer selection models for consumer questions. We aim to fill this gap by making MilkQA publicly available. We study the behavior of four answer selection models on MilkQA: two baseline models and two convolutional neural network archictetures. Our results show that MilkQA poses real challenges to computational models, particularly due to linguistic characteristics of its questions and to their unusually longer lengths. Only one of the experimented models gives reasonable results, at the cost of high computational requirements.
Complex QA and language models hybrid architectures, Survey
This paper reviews the state-of-the-art of language models architectures and strategies for "complex" question-answering (QA, CQA, CPS) with a focus on hybridization. Large Language Models (LLM) are good at leveraging public data on standard problems but once you want to tackle more specific complex questions or problems (e.g. How does the concept of personal freedom vary between different cultures ? What is the best mix of power generation methods to reduce climate change ?) you may need specific architecture, knowledge, skills, methods, sensitive data protection, explainability, human approval and versatile feedback... Recent projects like ChatGPT and GALACTICA have allowed non-specialists to grasp the great potential as well as the equally strong limitations of LLM in complex QA. In this paper, we start by reviewing required skills and evaluation techniques. We integrate findings from the robust community edited research papers BIG, BLOOM and HELM which open source, benchmark and analyze limits and challenges of LLM in terms of tasks complexity and strict evaluation on accuracy (e.g. fairness, robustness, toxicity, ...) as a baseline. We discuss some challenges associated with complex QA, including domain adaptation, decomposition and efficient multi-step QA, long form and non-factoid QA, safety and multi-sensitivity data protection, multimodal search, hallucinations, explainability and truthfulness, temporal reasoning. We analyze current solutions and promising research trends, using elements such as: hybrid LLM architectural patterns, training and prompting strategies, active human reinforcement learning supervised with AI, neuro-symbolic and structured knowledge grounding, program synthesis, iterated decomposition and others.
DomainCQA: Crafting Expert-Level QA from Domain-Specific Charts
Chart Question Answering (CQA) benchmarks are essential for evaluating the capability of Multimodal Large Language Models (MLLMs) to interpret visual data. However, current benchmarks focus primarily on the evaluation of general-purpose CQA but fail to adequately capture domain-specific challenges. We introduce DomainCQA, a systematic methodology for constructing domain-specific CQA benchmarks, and demonstrate its effectiveness by developing AstroChart, a CQA benchmark in the field of astronomy. Our evaluation shows that chart reasoning and combining chart information with domain knowledge for deeper analysis and summarization, rather than domain-specific knowledge, pose the primary challenge for existing MLLMs, highlighting a critical gap in current benchmarks. By providing a scalable and rigorous framework, DomainCQA enables more precise assessment and improvement of MLLMs for domain-specific applications.
Question Aware Vision Transformer for Multimodal Reasoning
Vision-Language (VL) models have gained significant research focus, enabling remarkable advances in multimodal reasoning. These architectures typically comprise a vision encoder, a Large Language Model (LLM), and a projection module that aligns visual features with the LLM's representation space. Despite their success, a critical limitation persists: the vision encoding process remains decoupled from user queries, often in the form of image-related questions. Consequently, the resulting visual features may not be optimally attuned to the query-specific elements of the image. To address this, we introduce QA-ViT, a Question Aware Vision Transformer approach for multimodal reasoning, which embeds question awareness directly within the vision encoder. This integration results in dynamic visual features focusing on relevant image aspects to the posed question. QA-ViT is model-agnostic and can be incorporated efficiently into any VL architecture. Extensive experiments demonstrate the effectiveness of applying our method to various multimodal architectures, leading to consistent improvement across diverse tasks and showcasing its potential for enhancing visual and scene-text understanding.
