new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 18

A Different Approach to AI Safety: Proceedings from the Columbia Convening on Openness in Artificial Intelligence and AI Safety

The rapid rise of open-weight and open-source foundation models is intensifying the obligation and reshaping the opportunity to make AI systems safe. This paper reports outcomes from the Columbia Convening on AI Openness and Safety (San Francisco, 19 Nov 2024) and its six-week preparatory programme involving more than forty-five researchers, engineers, and policy leaders from academia, industry, civil society, and government. Using a participatory, solutions-oriented process, the working groups produced (i) a research agenda at the intersection of safety and open source AI; (ii) a mapping of existing and needed technical interventions and open source tools to safely and responsibly deploy open foundation models across the AI development workflow; and (iii) a mapping of the content safety filter ecosystem with a proposed roadmap for future research and development. We find that openness -- understood as transparent weights, interoperable tooling, and public governance -- can enhance safety by enabling independent scrutiny, decentralized mitigation, and culturally plural oversight. However, significant gaps persist: scarce multimodal and multilingual benchmarks, limited defenses against prompt-injection and compositional attacks in agentic systems, and insufficient participatory mechanisms for communities most affected by AI harms. The paper concludes with a roadmap of five priority research directions, emphasizing participatory inputs, future-proof content filters, ecosystem-wide safety infrastructure, rigorous agentic safeguards, and expanded harm taxonomies. These recommendations informed the February 2025 French AI Action Summit and lay groundwork for an open, plural, and accountable AI safety discipline.

  • 20 authors
·
Jun 27

Ethically-Aware Participatory Design of a Productivity Social Robot for College Students

College students often face academic and life stressors affecting productivity, especially students with Attention Deficit Hyperactivity Disorder (ADHD) who experience executive functioning challenges. Conventional productivity tools typically demand sustained self-discipline and consistent use, which many students struggle with, leading to disruptive app-switching behaviors. Socially Assistive Robots (SARs), known for their intuitive and interactive nature, offer promising potential to support productivity in academic environments, having been successfully utilized in domains like education, cognitive development, and mental health. To leverage SARs effectively in addressing student productivity, this study employed a Participatory Design (PD) approach, directly involving college students and a Student Success and Well-Being Coach in the design process. Through interviews and a collaborative workshop, we gathered detailed insights on productivity challenges and identified desirable features for a productivity-focused SAR. Importantly, ethical considerations were integrated from the onset, facilitating responsible and user-aligned design choices. Our contributions include comprehensive insights into student productivity challenges, SAR design preferences, and actionable recommendations for effective robot characteristics. Additionally, we present stakeholder-derived ethical guidelines to inform responsible future implementations of productivity-focused SARs in higher education.

  • 2 authors
·
Nov 30

Citizen Centered Climate Intelligence: Operationalizing Open Tree Data for Urban Cooling and Eco-Routing in Indian Cities

Urban climate resilience requires more than high-resolution data; it demands systems that embed data collection, interpretation, and action within the daily lives of citizens. This chapter presents a scalable, citizen-centric framework that reimagines environmental infrastructure through participatory sensing, open analytics, and prescriptive urban planning tools. Applied in Pune, India, the framework comprises three interlinked modules: (1) a smartphone-based measurement toolkit enhanced by AI segmentation to extract tree height, canopy diameter, and trunk girth; (2) a percentile-based model using satellite-derived Land Surface Temperature to calculate localized cooling through two new metrics, Cooling Efficacy and Ambient Heat Relief; and (3) an eco-routing engine that guides mobility using a Static Environmental Quality score, based on tree density, species diversity, and cumulative carbon sequestration. Together, these modules form a closed feedback loop where citizens generate actionable data and benefit from personalized, sustainable interventions. This framework transforms open data from a passive repository into an active platform for shared governance and environmental equity. In the face of growing ecological inequality and data centralization, this chapter presents a replicable model for citizen-driven urban intelligence, reframing planning as a co-produced, climate-resilient, and radically local practice.

  • 2 authors
·
Aug 25

Negotiative Alignment: Embracing Disagreement to Achieve Fairer Outcomes -- Insights from Urban Studies

Urban assessments often compress diverse needs into single scores, which can obscure minority perspectives. We present a community-centered study in Montreal (n=35; wheelchair users, seniors, LGBTQIA2+ residents, and immigrants). Participants rated 20 streets (accessibility, inclusivity, aesthetics, practicality) and ranked 7 images on 12 interview-elicited criteria. Disagreement patterns were systematic in our sample: wheelchair users diverged most on accessibility and practicality; LGBTQIA2+ participants emphasized inclusion and liveliness; seniors prioritized security. Group discussion reduced information gaps but not value conflicts; ratings conveyed intensity, while rankings forced trade-offs. We then formalize negotiative alignment, a transparent, budget-aware bargaining procedure, and pilot it with role-played stakeholder agents plus a neutral mediator. Relative to the best base design under the same public rubric, the negotiated package increased total utility (21.10 to 24.55), raised the worst-group utility (3.20 to 3.90), improved twentieth percentile satisfaction (0.86 to 1.00; min-max normalized within the scenario), and reduced inequality (Gini 0.036 to 0.025). Treating disagreement as signal and reporting worst-group outcomes alongside totals may help planners and AI practitioners surface trade-offs and preserve minority priorities while maintaining efficiency.

  • 3 authors
·
Mar 16

Revisiting Citizen Science Through the Lens of Hybrid Intelligence

Artificial Intelligence (AI) can augment and sometimes even replace human cognition. Inspired by efforts to value human agency alongside productivity, we discuss the benefits of solving Citizen Science (CS) tasks with Hybrid Intelligence (HI), a synergetic mixture of human and artificial intelligence. Currently there is no clear framework or methodology on how to create such an effective mixture. Due to the unique participant-centered set of values and the abundance of tasks drawing upon both human common sense and complex 21st century skills, we believe that the field of CS offers an invaluable testbed for the development of HI and human-centered AI of the 21st century, while benefiting CS as well. In order to investigate this potential, we first relate CS to adjacent computational disciplines. Then, we demonstrate that CS projects can be grouped according to their potential for HI-enhancement by examining two key dimensions: the level of digitization and the amount of knowledge or experience required for participation. Finally, we propose a framework for types of human-AI interaction in CS based on established criteria of HI. This "HI lens" provides the CS community with an overview of several ways to utilize the combination of AI and human intelligence in their projects. It also allows the AI community to gain ideas on how developing AI in CS projects can further their own field.

  • 16 authors
·
Apr 30, 2021

From Individual to Society: A Survey on Social Simulation Driven by Large Language Model-based Agents

Traditional sociological research often relies on human participation, which, though effective, is expensive, challenging to scale, and with ethical concerns. Recent advancements in large language models (LLMs) highlight their potential to simulate human behavior, enabling the replication of individual responses and facilitating studies on many interdisciplinary studies. In this paper, we conduct a comprehensive survey of this field, illustrating the recent progress in simulation driven by LLM-empowered agents. We categorize the simulations into three types: (1) Individual Simulation, which mimics specific individuals or demographic groups; (2) Scenario Simulation, where multiple agents collaborate to achieve goals within specific contexts; and (3) Society Simulation, which models interactions within agent societies to reflect the complexity and variety of real-world dynamics. These simulations follow a progression, ranging from detailed individual modeling to large-scale societal phenomena. We provide a detailed discussion of each simulation type, including the architecture or key components of the simulation, the classification of objectives or scenarios and the evaluation method. Afterward, we summarize commonly used datasets and benchmarks. Finally, we discuss the trends across these three types of simulation. A repository for the related sources is at {https://github.com/FudanDISC/SocialAgent}.

  • 11 authors
·
Dec 4, 2024

ResearchTown: Simulator of Human Research Community

Large Language Models (LLMs) have demonstrated remarkable potential in scientific domains, yet a fundamental question remains unanswered: Can we simulate human research communities with LLMs? Addressing this question can deepen our understanding of the processes behind idea brainstorming and inspire the automatic discovery of novel scientific insights. In this work, we propose ResearchTown, a multi-agent framework for research community simulation. Within this framework, the human research community is simplified and modeled as an agent-data graph, where researchers and papers are represented as agent-type and data-type nodes, respectively, and connected based on their collaboration relationships. We also introduce TextGNN, a text-based inference framework that models various research activities (e.g., paper reading, paper writing, and review writing) as special forms of a unified message-passing process on the agent-data graph. To evaluate the quality of the research simulation, we present ResearchBench, a benchmark that uses a node-masking prediction task for scalable and objective assessment based on similarity. Our experiments reveal three key findings: (1) ResearchTown can provide a realistic simulation of collaborative research activities, including paper writing and review writing; (2) ResearchTown can maintain robust simulation with multiple researchers and diverse papers; (3) ResearchTown can generate interdisciplinary research ideas that potentially inspire novel research directions.

  • 8 authors
·
Dec 23, 2024 2

WeDesign: Generative AI-Facilitated Community Consultations for Urban Public Space Design

Community consultations are integral to urban planning processes intended to incorporate diverse stakeholder perspectives. However, limited resources, visual and spoken language barriers, and uneven power dynamics frequently constrain inclusive decision-making. This paper examines how generative text-to-image methods, specifically Stable Diffusion XL integrated into a custom platform (WeDesign), may support equitable consultations. A half-day workshop in Montreal involved five focus groups, each consisting of architects, urban designers, AI specialists, and residents from varied demographic groups. Additional data was gathered through semi-structured interviews with six urban planning professionals. Participants indicated that immediate visual outputs facilitated creativity and dialogue, yet noted issues in visualizing specific needs of marginalized groups, such as participants with reduced mobility, accurately depicting local architectural elements, and accommodating bilingual prompts. Participants recommended the development of an open-source platform incorporating in-painting tools, multilingual support, image voting functionalities, and preference indicators. The results indicate that generative AI can broaden participation and enable iterative interactions but requires structured facilitation approaches. The findings contribute to discussions on generative AI's role and limitations in participatory urban design.

  • 3 authors
·
Aug 13

Image-based Treatment Effect Heterogeneity

Randomized controlled trials (RCTs) are considered the gold standard for estimating the average treatment effect (ATE) of interventions. One use of RCTs is to study the causes of global poverty -- a subject explicitly cited in the 2019 Nobel Memorial Prize awarded to Duflo, Banerjee, and Kremer "for their experimental approach to alleviating global poverty." Because the ATE is a population summary, anti-poverty experiments often seek to unpack the effect variation around the ATE by conditioning (CATE) on tabular variables such as age and ethnicity that were measured during the RCT data collection. Although such variables are key to unpacking CATE, using only such variables may fail to capture historical, geographical, or neighborhood-specific contributors to effect variation, as tabular RCT data are often only observed near the time of the experiment. In global poverty research, when the location of the experiment units is approximately known, satellite imagery can provide a window into such factors important for understanding heterogeneity. However, there is no method that specifically enables applied researchers to analyze CATE from images. In this paper, using a deep probabilistic modeling framework, we develop such a method that estimates latent clusters of images by identifying images with similar treatment effects distributions. Our interpretable image CATE model also includes a sensitivity factor that quantifies the importance of image segments contributing to the effect cluster prediction. We compare the proposed methods against alternatives in simulation; also, we show how the model works in an actual RCT, estimating the effects of an anti-poverty intervention in northern Uganda and obtaining a posterior predictive distribution over effects for the rest of the country where no experimental data was collected. We make all models available in open-source software.

From Google Gemini to OpenAI Q* (Q-Star): A Survey of Reshaping the Generative Artificial Intelligence (AI) Research Landscape

This comprehensive survey explored the evolving landscape of generative Artificial Intelligence (AI), with a specific focus on the transformative impacts of Mixture of Experts (MoE), multimodal learning, and the speculated advancements towards Artificial General Intelligence (AGI). It critically examined the current state and future trajectory of generative Artificial Intelligence (AI), exploring how innovations like Google's Gemini and the anticipated OpenAI Q* project are reshaping research priorities and applications across various domains, including an impact analysis on the generative AI research taxonomy. It assessed the computational challenges, scalability, and real-world implications of these technologies while highlighting their potential in driving significant progress in fields like healthcare, finance, and education. It also addressed the emerging academic challenges posed by the proliferation of both AI-themed and AI-generated preprints, examining their impact on the peer-review process and scholarly communication. The study highlighted the importance of incorporating ethical and human-centric methods in AI development, ensuring alignment with societal norms and welfare, and outlined a strategy for future AI research that focuses on a balanced and conscientious use of MoE, multimodality, and AGI in generative AI.

  • 5 authors
·
Dec 17, 2023

CIVICS: Building a Dataset for Examining Culturally-Informed Values in Large Language Models

This paper introduces the "CIVICS: Culturally-Informed & Values-Inclusive Corpus for Societal impacts" dataset, designed to evaluate the social and cultural variation of Large Language Models (LLMs) across multiple languages and value-sensitive topics. We create a hand-crafted, multilingual dataset of value-laden prompts which address specific socially sensitive topics, including LGBTQI rights, social welfare, immigration, disability rights, and surrogacy. CIVICS is designed to generate responses showing LLMs' encoded and implicit values. Through our dynamic annotation processes, tailored prompt design, and experiments, we investigate how open-weight LLMs respond to value-sensitive issues, exploring their behavior across diverse linguistic and cultural contexts. Using two experimental set-ups based on log-probabilities and long-form responses, we show social and cultural variability across different LLMs. Specifically, experiments involving long-form responses demonstrate that refusals are triggered disparately across models, but consistently and more frequently in English or translated statements. Moreover, specific topics and sources lead to more pronounced differences across model answers, particularly on immigration, LGBTQI rights, and social welfare. As shown by our experiments, the CIVICS dataset aims to serve as a tool for future research, promoting reproducibility and transparency across broader linguistic settings, and furthering the development of AI technologies that respect and reflect global cultural diversities and value pluralism. The CIVICS dataset and tools will be made available upon publication under open licenses; an anonymized version is currently available at https://huggingface.co/CIVICS-dataset.

  • 6 authors
·
May 22, 2024 1

This Thing Called Fairness: Disciplinary Confusion Realizing a Value in Technology

The explosion in the use of software in important sociotechnical systems has renewed focus on the study of the way technical constructs reflect policies, norms, and human values. This effort requires the engagement of scholars and practitioners from many disciplines. And yet, these disciplines often conceptualize the operative values very differently while referring to them using the same vocabulary. The resulting conflation of ideas confuses discussions about values in technology at disciplinary boundaries. In the service of improving this situation, this paper examines the value of shared vocabularies, analytics, and other tools that facilitate conversations about values in light of these disciplinary specific conceptualizations, the role such tools play in furthering research and practice, outlines different conceptions of "fairness" deployed in discussions about computer systems, and provides an analytic tool for interdisciplinary discussions and collaborations around the concept of fairness. We use a case study of risk assessments in criminal justice applications to both motivate our effort--describing how conflation of different concepts under the banner of "fairness" led to unproductive confusion--and illustrate the value of the fairness analytic by demonstrating how the rigorous analysis it enables can assist in identifying key areas of theoretical, political, and practical misunderstanding or disagreement, and where desired support alignment or collaboration in the absence of consensus.

  • 4 authors
·
Sep 25, 2019

CycleResearcher: Improving Automated Research via Automated Review

The automation of scientific discovery has been a long-standing goal within the research community, driven by the potential to accelerate knowledge creation. While significant progress has been made using commercial large language models (LLMs) as research assistants or idea generators, the possibility of automating the entire research process with open-source LLMs remains largely unexplored. This paper explores the feasibility of using open-source post-trained LLMs as autonomous agents capable of performing the full cycle of automated research and review, from literature review and manuscript preparation to peer review and paper revision. Our iterative preference training framework consists of CycleResearcher, which conducts research tasks, and CycleReviewer, which simulates the peer review process, providing iterative feedback via reinforcement learning. To train these models, we develop two new datasets, Review-5k and Research-14k, reflecting real-world machine learning research and peer review dynamics. Our results demonstrate that CycleReviewer achieves a 26.89\% improvement in mean absolute error (MAE) over individual human reviewers in predicting paper scores, indicating that LLMs can surpass expert-level performance in research evaluation. In research, the papers generated by the CycleResearcher model achieved a score of 5.36 in simulated peer reviews, surpassing the preprint level of 5.24 from human experts and approaching the accepted paper level of 5.69. This work represents a significant step toward fully automated scientific inquiry, providing ethical safeguards and advancing AI-driven research capabilities. The code, dataset and model weight are released at http://github/minjun-zhu/Researcher.

  • 7 authors
·
Oct 28, 2024

Decade of Natural Language Processing in Chronic Pain: A Systematic Review

In recent years, the intersection of Natural Language Processing (NLP) and public health has opened innovative pathways for investigating various domains, including chronic pain in textual datasets. Despite the promise of NLP in chronic pain, the literature is dispersed across various disciplines, and there is a need to consolidate existing knowledge, identify knowledge gaps in the literature, and inform future research directions in this emerging field. This review aims to investigate the state of the research on NLP-based interventions designed for chronic pain research. A search strategy was formulated and executed across PubMed, Web of Science, IEEE Xplore, Scopus, and ACL Anthology to find studies published in English between 2014 and 2024. After screening 132 papers, 26 studies were included in the final review. Key findings from this review underscore the significant potential of NLP techniques to address pressing challenges in chronic pain research. The past 10 years in this field have showcased the utilization of advanced methods (transformers like RoBERTa and BERT) achieving high-performance metrics (e.g., F1>0.8) in classification tasks, while unsupervised approaches like Latent Dirichlet Allocation (LDA) and k-means clustering have proven effective for exploratory analyses. Results also reveal persistent challenges such as limited dataset diversity, inadequate sample sizes, and insufficient representation of underrepresented populations. Future research studies should explore multimodal data validation systems, context-aware mechanistic modeling, and the development of standardized evaluation metrics to enhance reproducibility and equity in chronic pain research.

  • 1 authors
·
Dec 19, 2024

Disagreement as a way to study misinformation and its effects

Misinformation - false or misleading information - is considered a significant societal concern due to its associated "misinformation effects," such as political polarization, erosion of trust in institutions, problematic behavior, and public health challenges. However, the prevailing concept is misaligned with what is studied. While misinformation focuses on instances of information about factual matters, the broad spectrum of effects often manifests at a societal level and is shaped by a wide range of interdependent factors such as identity, values, opinions, epistemologies, and disagreements. Unsurprisingly, misinformation effects can occur without the prevalence of misinformation, and misinformation does not necessarily increase the effects studied. Here, we propose using disagreement - conflicting attitudes and beliefs between individuals and communities - as a way to study misinformation effects because it addresses the identified conceptual limitations of misinformation. Furthermore, unlike misinformation, disagreement does not require researchers to determine whether a given information is false or misleading. Thus, it can be studied and, more importantly, measured without the need to make a normative judgment about a given information, even when the specific topic is entirely removed, as we show in a longitudinal disagreement measurement. We demonstrate that disagreement, as a holistic concept, provides better explanations for the occurrence of misinformation effects, enhances precision in developing appropriate interventions, and offers a promising approach for evaluating them through quantification. Finally, we show how disagreement addresses current misinformation research questions and conclude with recommendations for research practice.

  • 2 authors
·
Aug 15, 2024

The Ethics of ChatGPT in Medicine and Healthcare: A Systematic Review on Large Language Models (LLMs)

With the introduction of ChatGPT, Large Language Models (LLMs) have received enormous attention in healthcare. Despite their potential benefits, researchers have underscored various ethical implications. While individual instances have drawn much attention, the debate lacks a systematic overview of practical applications currently researched and ethical issues connected to them. Against this background, this work aims to map the ethical landscape surrounding the current stage of deployment of LLMs in medicine and healthcare. Electronic databases and preprint servers were queried using a comprehensive search strategy. Studies were screened and extracted following a modified rapid review approach. Methodological quality was assessed using a hybrid approach. For 53 records, a meta-aggregative synthesis was performed. Four fields of applications emerged and testify to a vivid exploration phase. Advantages of using LLMs are attributed to their capacity in data analysis, personalized information provisioning, support in decision-making, mitigating information loss and enhancing information accessibility. However, we also identifies recurrent ethical concerns connected to fairness, bias, non-maleficence, transparency, and privacy. A distinctive concern is the tendency to produce harmful misinformation or convincingly but inaccurate content. A recurrent plea for ethical guidance and human oversight is evident. Given the variety of use cases, it is suggested that the ethical guidance debate be reframed to focus on defining what constitutes acceptable human oversight across the spectrum of applications. This involves considering diverse settings, varying potentials for harm, and different acceptable thresholds for performance and certainty in healthcare. In addition, a critical inquiry is necessary to determine the extent to which the current experimental use of LLMs is necessary and justified.

  • 2 authors
·
Mar 21, 2024

AI4Research: A Survey of Artificial Intelligence for Scientific Research

Recent advancements in artificial intelligence (AI), particularly in large language models (LLMs) such as OpenAI-o1 and DeepSeek-R1, have demonstrated remarkable capabilities in complex domains such as logical reasoning and experimental coding. Motivated by these advancements, numerous studies have explored the application of AI in the innovation process, particularly in the context of scientific research. These AI technologies primarily aim to develop systems that can autonomously conduct research processes across a wide range of scientific disciplines. Despite these significant strides, a comprehensive survey on AI for Research (AI4Research) remains absent, which hampers our understanding and impedes further development in this field. To address this gap, we present a comprehensive survey and offer a unified perspective on AI4Research. Specifically, the main contributions of our work are as follows: (1) Systematic taxonomy: We first introduce a systematic taxonomy to classify five mainstream tasks in AI4Research. (2) New frontiers: Then, we identify key research gaps and highlight promising future directions, focusing on the rigor and scalability of automated experiments, as well as the societal impact. (3) Abundant applications and resources: Finally, we compile a wealth of resources, including relevant multidisciplinary applications, data corpora, and tools. We hope our work will provide the research community with quick access to these resources and stimulate innovative breakthroughs in AI4Research.

  • 16 authors
·
Jul 2

The PRISM Alignment Project: What Participatory, Representative and Individualised Human Feedback Reveals About the Subjective and Multicultural Alignment of Large Language Models

Human feedback plays a central role in the alignment of Large Language Models (LLMs). However, open questions remain about the methods (how), domains (where), people (who) and objectives (to what end) of human feedback collection. To navigate these questions, we introduce PRISM, a new dataset which maps the sociodemographics and stated preferences of 1,500 diverse participants from 75 countries, to their contextual preferences and fine-grained feedback in 8,011 live conversations with 21 LLMs. PRISM contributes (i) wide geographic and demographic participation in human feedback data; (ii) two census-representative samples for understanding collective welfare (UK and US); and (iii) individualised feedback where every rating is linked to a detailed participant profile, thus permitting exploration of personalisation and attribution of sample artefacts. We focus on collecting conversations that centre subjective and multicultural perspectives on value-laden and controversial topics, where we expect the most interpersonal and cross-cultural disagreement. We demonstrate the usefulness of PRISM via three case studies of dialogue diversity, preference diversity, and welfare outcomes, showing that it matters which humans set alignment norms. As well as offering a rich community resource, we advocate for broader participation in AI development and a more inclusive approach to technology design.

  • 12 authors
·
Apr 24, 2024

AIssistant: An Agentic Approach for Human--AI Collaborative Scientific Work on Reviews and Perspectives in Machine Learning

Advances in AI-assisted research have introduced powerful tools for literature retrieval, hypothesis generation, experimentation, and manuscript preparation. However, systems remain fragmented and lack human-centred workflows. To address these gaps, we introduce AIssistant, an agentic, open-source Human-AI collaborative framework designed to simplify the end-to-end creation of scientific workflows. Since our development is still in an early stage, we present here the first experiments with AIssistant for perspective and review research papers in machine learning. Our system integrates modular tools and agents for literature synthesis, section-wise experimentation, citation management, and automatic LaTeX paper text generation, while maintaining human oversight at every stage to ensure accuracy, coherence, and scholarly rigour. We conducted a comprehensive evaluation across three layers: (1) Independent Human Review, following NeurIPS double-blind standards; (2) Automated LLM Review, using GPT-5 as a scalable human review proxy; and (3) Program Chair Oversight, where the chair monitors the entire review process and makes final validation and acceptance decisions. The results demonstrate that AIssistant improves drafting efficiency and thematic consistency. Nonetheless, Human-AI collaboration remains essential for maintaining factual correctness, methodological soundness, and ethical compliance. Despite its effectiveness, we identify key limitations, including hallucinated citations, difficulty adapting to dynamic paper structures, and incomplete integration of multimodal content.

  • 4 authors
·
Sep 14

A Cartography of Open Collaboration in Open Source AI: Mapping Practices, Motivations, and Governance in 14 Open Large Language Model Projects

The proliferation of open large language models (LLMs) is fostering a vibrant ecosystem of research and innovation in artificial intelligence (AI). However, the methods of collaboration used to develop open LLMs both before and after their public release have not yet been comprehensively studied, limiting our understanding of how open LLM projects are initiated, organized, and governed as well as what opportunities there are to foster this ecosystem even further. We address this gap through an exploratory analysis of open collaboration throughout the development and reuse lifecycle of open LLMs, drawing on semi-structured interviews with the developers of 14 open LLMs from grassroots projects, research institutes, startups, and Big Tech companies in North America, Europe, Africa, and Asia. We make three key contributions to research and practice. First, collaboration in open LLM projects extends far beyond the LLMs themselves, encompassing datasets, benchmarks, open source frameworks, leaderboards, knowledge sharing and discussion forums, and compute partnerships, among others. Second, open LLM developers have a variety of social, economic, and technological motivations, from democratizing AI access and promoting open science to building regional ecosystems and expanding language representation. Third, the sampled open LLM projects exhibit five distinct organizational models, ranging from single company projects to non-profit-sponsored grassroots projects, which vary in their centralization of control and community engagement strategies used throughout the open LLM lifecycle. We conclude with practical recommendations for stakeholders seeking to support the global community building a more open future for AI.

  • 4 authors
·
Sep 29 2

Effect Heterogeneity with Earth Observation in Randomized Controlled Trials: Exploring the Role of Data, Model, and Evaluation Metric Choice

Many social and environmental phenomena are associated with macroscopic changes in the built environment, captured by satellite imagery on a global scale and with daily temporal resolution. While widely used for prediction, these images and especially image sequences remain underutilized for causal inference, especially in the context of randomized controlled trials (RCTs), where causal identification is established by design. In this paper, we develop and compare a set of general tools for analyzing Conditional Average Treatment Effects (CATEs) from temporal satellite data that can be applied to any RCT where geographical identifiers are available. Through a simulation study, we analyze different modeling strategies for estimating CATE in sequences of satellite images. We find that image sequence representation models with more parameters generally yield a greater ability to detect heterogeneity. To explore the role of model and data choice in practice, we apply the approaches to two influential RCTs -- Banerjee et al. (2015), a poverty study in Cusco, Peru, and Bolsen et al. (2014), a water conservation experiment in Georgia, USA. We benchmark our image sequence models against image-only, tabular-only, and combined image-tabular data sources, summarizing practical implications for investigators in a multivariate analysis. Land cover classifications over satellite images facilitate interpretation of what image features drive heterogeneity. We also show robustness to data and model choice of satellite-based generalization of the RCT results to larger geographical areas outside the original. Overall, this paper shows how satellite sequence data can be incorporated into the analysis of RCTs, and provides evidence about the implications of data, model, and evaluation metric choice for causal analysis.

The Evolving Role of Large Language Models in Scientific Innovation: Evaluator, Collaborator, and Scientist

Scientific innovation is undergoing a paradigm shift driven by the rapid advancement of Large Language Models (LLMs). As science faces mounting challenges including information overload, disciplinary silos, and diminishing returns on conventional research methods, LLMs are emerging as powerful agents capable not only of enhancing scientific workflows but also of participating in and potentially leading the innovation process. Existing surveys mainly focus on different perspectives, phrases, and tasks in scientific research and discovery, while they have limitations in understanding the transformative potential and role differentiation of LLM. This survey proposes a comprehensive framework to categorize the evolving roles of LLMs in scientific innovation across three hierarchical levels: Evaluator, Collaborator, and Scientist. We distinguish between LLMs' contributions to structured scientific research processes and open-ended scientific discovery, thereby offering a unified taxonomy that clarifies capability boundaries, evaluation criteria, and human-AI interaction patterns at each level. Through an extensive analysis of current methodologies, benchmarks, systems, and evaluation metrics, this survey delivers an in-depth and systematic synthesis on LLM-driven scientific innovation. We present LLMs not only as tools for automating existing processes, but also as catalysts capable of reshaping the epistemological foundations of science itself. This survey offers conceptual clarity, practical guidance, and theoretical foundations for future research, while also highlighting open challenges and ethical considerations in the pursuit of increasingly autonomous AI-driven science. Resources related to this survey can be accessed on GitHub at: https://github.com/haoxuan-unt2024/llm4innovation.

  • 7 authors
·
Jul 15

Enforcing public data archiving policies in academic publishing: A study of ecology journals

To improve the quality and efficiency of research, groups within the scientific community seek to exploit the value of data sharing. Funders, institutions, and specialist organizations are developing and implementing strategies to encourage or mandate data sharing within and across disciplines, with varying degrees of success. Academic journals in ecology and evolution have adopted several types of public data archiving policies requiring authors to make data underlying scholarly manuscripts freely available. Yet anecdotes from the community and studies evaluating data availability suggest that these policies have not obtained the desired effects, both in terms of quantity and quality of available datasets. We conducted a qualitative, interview-based study with journal editorial staff and other stakeholders in the academic publishing process to examine how journals enforce data archiving policies. We specifically sought to establish who editors and other stakeholders perceive as responsible for ensuring data completeness and quality in the peer review process. Our analysis revealed little consensus with regard to how data archiving policies should be enforced and who should hold authors accountable for dataset submissions. Themes in interviewee responses included hopefulness that reviewers would take the initiative to review datasets and trust in authors to ensure the completeness and quality of their datasets. We highlight problematic aspects of these thematic responses and offer potential starting points for improvement of the public data archiving process.

  • 4 authors
·
Oct 30, 2018

Integrating Earth Observation Data into Causal Inference: Challenges and Opportunities

Observational studies require adjustment for confounding factors that are correlated with both the treatment and outcome. In the setting where the observed variables are tabular quantities such as average income in a neighborhood, tools have been developed for addressing such confounding. However, in many parts of the developing world, features about local communities may be scarce. In this context, satellite imagery can play an important role, serving as a proxy for the confounding variables otherwise unobserved. In this paper, we study confounder adjustment in this non-tabular setting, where patterns or objects found in satellite images contribute to the confounder bias. Using the evaluation of anti-poverty aid programs in Africa as our running example, we formalize the challenge of performing causal adjustment with such unstructured data -- what conditions are sufficient to identify causal effects, how to perform estimation, and how to quantify the ways in which certain aspects of the unstructured image object are most predictive of the treatment decision. Via simulation, we also explore the sensitivity of satellite image-based observational inference to image resolution and to misspecification of the image-associated confounder. Finally, we apply these tools in estimating the effect of anti-poverty interventions in African communities from satellite imagery.

A Reliable Knowledge Processing Framework for Combustion Science using Foundation Models

This research explores the integration of large language models (LLMs) into scientific data assimilation, focusing on combustion science as a case study. Leveraging foundational models integrated with Retrieval-Augmented Generation (RAG) framework, the study introduces an approach to process diverse combustion research data, spanning experimental studies, simulations, and literature. The multifaceted nature of combustion research emphasizes the critical role of knowledge processing in navigating and extracting valuable information from a vast and diverse pool of sources. The developed approach minimizes computational and economic expenses while optimizing data privacy and accuracy. It incorporates prompt engineering and offline open-source LLMs, offering user autonomy in selecting base models. The study provides a thorough examination of text segmentation strategies, conducts comparative studies between LLMs, and explores various optimized prompts to demonstrate the effectiveness of the framework. By incorporating an external database, the framework outperforms a conventional LLM in generating accurate responses and constructing robust arguments. Additionally, the study delves into the investigation of optimized prompt templates for the purpose of efficient extraction of scientific literature. The research addresses concerns related to hallucinations and false research articles by introducing a custom workflow developed with a detection algorithm to filter out inaccuracies. Despite identified areas for improvement, the framework consistently delivers accurate domain-specific responses with minimal human oversight. The prompt-agnostic approach introduced holds promise for future deliberations. The study underscores the significance of integrating LLMs and knowledge processing techniques in scientific research, providing a foundation for advancements in data assimilation and utilization.

  • 2 authors
·
Dec 31, 2023

O1 Replication Journey: A Strategic Progress Report -- Part 1

This paper introduces a pioneering approach to artificial intelligence research, embodied in our O1 Replication Journey. In response to the announcement of OpenAI's groundbreaking O1 model, we embark on a transparent, real-time exploration to replicate its capabilities while reimagining the process of conducting and communicating AI research. Our methodology addresses critical challenges in modern AI research, including the insularity of prolonged team-based projects, delayed information sharing, and the lack of recognition for diverse contributions. By providing comprehensive, real-time documentation of our replication efforts, including both successes and failures, we aim to foster open science, accelerate collective advancement, and lay the groundwork for AI-driven scientific discovery. Our research progress report diverges significantly from traditional research papers, offering continuous updates, full process transparency, and active community engagement throughout the research journey. Technologically, we proposed the journey learning paradigm, which encourages models to learn not just shortcuts, but the complete exploration process, including trial and error, reflection, and backtracking. With only 327 training samples and without any additional tricks, journey learning outperformed conventional supervised learning by over 8\% on the MATH dataset, demonstrating its extremely powerful potential. We believe this to be the most crucial component of O1 technology that we have successfully decoded. We share valuable resources including technical hypotheses and insights, cognitive exploration maps, custom-developed tools, etc at https://github.com/GAIR-NLP/O1-Journey.

  • 11 authors
·
Oct 8, 2024

Rapid Biomedical Research Classification: The Pandemic PACT Advanced Categorisation Engine

This paper introduces the Pandemic PACT Advanced Categorisation Engine (PPACE) along with its associated dataset. PPACE is a fine-tuned model developed to automatically classify research abstracts from funded biomedical projects according to WHO-aligned research priorities. This task is crucial for monitoring research trends and identifying gaps in global health preparedness and response. Our approach builds on human-annotated projects, which are allocated one or more categories from a predefined list. A large language model is then used to generate `rationales' explaining the reasoning behind these annotations. This augmented data, comprising expert annotations and rationales, is subsequently used to fine-tune a smaller, more efficient model. Developed as part of the Pandemic PACT project, which aims to track and analyse research funding and clinical evidence for a wide range of diseases with outbreak potential, PPACE supports informed decision-making by research funders, policymakers, and independent researchers. We introduce and release both the trained model and the instruction-based dataset used for its training. Our evaluation shows that PPACE significantly outperforms its baselines. The release of PPACE and its associated dataset offers valuable resources for researchers in multilabel biomedical document classification and supports advancements in aligning biomedical research with key global health priorities.

  • 14 authors
·
Jul 14, 2024

AgentSociety: Large-Scale Simulation of LLM-Driven Generative Agents Advances Understanding of Human Behaviors and Society

Understanding human behavior and society is a central focus in social sciences, with the rise of generative social science marking a significant paradigmatic shift. By leveraging bottom-up simulations, it replaces costly and logistically challenging traditional experiments with scalable, replicable, and systematic computational approaches for studying complex social dynamics. Recent advances in large language models (LLMs) have further transformed this research paradigm, enabling the creation of human-like generative social agents and realistic simulacra of society. In this paper, we propose AgentSociety, a large-scale social simulator that integrates LLM-driven agents, a realistic societal environment, and a powerful large-scale simulation engine. Based on the proposed simulator, we generate social lives for over 10k agents, simulating their 5 million interactions both among agents and between agents and their environment. Furthermore, we explore the potential of AgentSociety as a testbed for computational social experiments, focusing on four key social issues: polarization, the spread of inflammatory messages, the effects of universal basic income policies, and the impact of external shocks such as hurricanes. These four issues serve as valuable cases for assessing AgentSociety's support for typical research methods -- such as surveys, interviews, and interventions -- as well as for investigating the patterns, causes, and underlying mechanisms of social issues. The alignment between AgentSociety's outcomes and real-world experimental results not only demonstrates its ability to capture human behaviors and their underlying mechanisms, but also underscores its potential as an important platform for social scientists and policymakers.

  • 16 authors
·
Feb 12

OmniScientist: Toward a Co-evolving Ecosystem of Human and AI Scientists

With the rapid development of Large Language Models (LLMs), AI agents have demonstrated increasing proficiency in scientific tasks, ranging from hypothesis generation and experimental design to manuscript writing. Such agent systems are commonly referred to as "AI Scientists." However, existing AI Scientists predominantly formulate scientific discovery as a standalone search or optimization problem, overlooking the fact that scientific research is inherently a social and collaborative endeavor. Real-world science relies on a complex scientific infrastructure composed of collaborative mechanisms, contribution attribution, peer review, and structured scientific knowledge networks. Due to the lack of modeling for these critical dimensions, current systems struggle to establish a genuine research ecosystem or interact deeply with the human scientific community. To bridge this gap, we introduce OmniScientist, a framework that explicitly encodes the underlying mechanisms of human research into the AI scientific workflow. OmniScientist not only achieves end-to-end automation across data foundation, literature review, research ideation, experiment automation, scientific writing, and peer review, but also provides comprehensive infrastructural support by simulating the human scientific system, comprising: (1) a structured knowledge system built upon citation networks and conceptual correlations; (2) a collaborative research protocol (OSP), which enables seamless multi-agent collaboration and human researcher participation; and (3) an open evaluation platform (ScienceArena) based on blind pairwise user voting and Elo rankings. This infrastructure empowers agents to not only comprehend and leverage human knowledge systems but also to collaborate and co-evolve, fostering a sustainable and scalable innovation ecosystem.

Exploring the Potential of AI-Generated Synthetic Datasets: A Case Study on Telematics Data with ChatGPT

This research delves into the construction and utilization of synthetic datasets, specifically within the telematics sphere, leveraging OpenAI's powerful language model, ChatGPT. Synthetic datasets present an effective solution to challenges pertaining to data privacy, scarcity, and control over variables - characteristics that make them particularly valuable for research pursuits. The utility of these datasets, however, largely depends on their quality, measured through the lenses of diversity, relevance, and coherence. To illustrate this data creation process, a hands-on case study is conducted, focusing on the generation of a synthetic telematics dataset. The experiment involved an iterative guidance of ChatGPT, progressively refining prompts and culminating in the creation of a comprehensive dataset for a hypothetical urban planning scenario in Columbus, Ohio. Upon generation, the synthetic dataset was subjected to an evaluation, focusing on the previously identified quality parameters and employing descriptive statistics and visualization techniques for a thorough analysis. Despite synthetic datasets not serving as perfect replacements for actual world data, their potential in specific use-cases, when executed with precision, is significant. This research underscores the potential of AI models like ChatGPT in enhancing data availability for complex sectors like telematics, thus paving the way for a myriad of new research opportunities.

  • 1 authors
·
Jun 23, 2023

Chain of Ideas: Revolutionizing Research in Novel Idea Development with LLM Agents

Effective research ideation is a critical step for scientific research. However, the exponential increase in scientific literature makes it challenging for researchers to stay current with recent advances and identify meaningful research directions. Recent developments in large language models~(LLMs) suggest a promising avenue for automating the generation of novel research ideas. However, existing methods for idea generation either trivially prompt LLMs or directly expose LLMs to extensive literature without indicating useful information. Inspired by the research process of human researchers, we propose a Chain-of-Ideas~(CoI) agent, an LLM-based agent that organizes relevant literature in a chain structure to effectively mirror the progressive development in a research domain. This organization facilitates LLMs to capture the current advancements in research, thereby enhancing their ideation capabilities. Furthermore, we propose Idea Arena, an evaluation protocol that can comprehensively evaluate idea generation methods from different perspectives, aligning closely with the preferences of human researchers. Experimental results indicate that the CoI agent consistently outperforms other methods and shows comparable quality as humans in research idea generation. Moreover, our CoI agent is budget-friendly, with a minimum cost of \$0.50 to generate a candidate idea and its corresponding experimental design.

  • 14 authors
·
Oct 16, 2024

Iterative Service-Learning: A Computing-Based Case-study Applied to Small Rural Organizations

This paper describes the iterative use of service learning to develop, review, and improve computing-based artifacts. It is well-known that computing students benefit from service-learning experiences as do the community partners. It is also well-known that computing artifacts rarely function well long-term without versioning and updates. Service-learning projects are often one-time engagements, completed by single teams of students over the course of a semester course. This limits the benefit for community partners that do not have the expertise or resources to review and update a project on their own. Over several years, teams of undergraduate students in a capstone course created tailored social media plans for numerous small rural organizations. The projects were required to meet client specific needs, with identified audiences, measurable goals, and strategies and tactics to reach the identified goals. This paper builds on previously results for 60 projects conducted over several years. Nine clients were selected to participate in the iterative follow-up process, where new student teams conducted client interviews, reviewed the initial plans, and analyzed metrics from the current strategies and tactics to provide updated, improved artifacts. Using ABET learning objectives as a basis, clients reviewed the student teams and artifacts. This longitudinal study discusses the impact of this intervention to increase implementation and sustained use rates of computing artifacts developed through service learning. Both students and clients reported high satisfaction levels, and clients were particularly satisfied with the iterative improvement process. This research demonstrates an innovative practice for creating and maintaining computing artifacts through iterative service learning, while addressing the resource constraints of small organizations.

  • 1 authors
·
Jun 21, 2024

Carbon and Silicon, Coexist or Compete? A Survey on Human-AI Interactions in Agent-based Modeling and Simulation

Recent interest in human-AI interactions in agent-based modeling and simulation (ABMS) has grown rapidly due to the widespread utilization of large language models (LLMs). ABMS is an intelligent approach that simulates autonomous agents' behaviors within a defined environment to research emergent phenomena. Integrating LLMs into ABMS enables natural language interaction between humans and models. Meanwhile, it introduces new challenges that rely on human interaction to address. Human involvement can assist ABMS in adapting to flexible and complex research demands. However, systematic reviews of interactions that examine how humans and AI interact in ABMS are lacking. In this paper, we investigate existing works and propose a novel taxonomy to categorize the interactions derived from them. Specifically, human users refer to researchers who utilize ABMS tools to conduct their studies in our survey. We decompose interactions into five dimensions: the goals that users want to achieve (Why), the phases that users are involved (When), the components of the system (What), the roles of users (Who), and the means of interactions (How). Our analysis summarizes the findings that reveal existing interaction patterns. They provide researchers who develop interactions with comprehensive guidance on how humans and AI interact. We further discuss the unexplored interactions and suggest future research directions.

  • 5 authors
·
Feb 25

Assessing Historical Structural Oppression Worldwide via Rule-Guided Prompting of Large Language Models

Traditional efforts to measure historical structural oppression struggle with cross-national validity due to the unique, locally specified histories of exclusion, colonization, and social status in each country, and often have relied on structured indices that privilege material resources while overlooking lived, identity-based exclusion. We introduce a novel framework for oppression measurement that leverages Large Language Models (LLMs) to generate context-sensitive scores of lived historical disadvantage across diverse geopolitical settings. Using unstructured self-identified ethnicity utterances from a multilingual COVID-19 global study, we design rule-guided prompting strategies that encourage models to produce interpretable, theoretically grounded estimations of oppression. We systematically evaluate these strategies across multiple state-of-the-art LLMs. Our results demonstrate that LLMs, when guided by explicit rules, can capture nuanced forms of identity-based historical oppression within nations. This approach provides a complementary measurement tool that highlights dimensions of systemic exclusion, offering a scalable, cross-cultural lens for understanding how oppression manifests in data-driven research and public health contexts. To support reproducible evaluation, we release an open-sourced benchmark dataset for assessing LLMs on oppression measurement (https://github.com/chattergpt/llm-oppression-benchmark).

  • 9 authors
·
Sep 18

BARS: Towards Open Benchmarking for Recommender Systems

The past two decades have witnessed the rapid development of personalized recommendation techniques. Despite significant progress made in both research and practice of recommender systems, to date, there is a lack of a widely-recognized benchmarking standard in this field. Many existing studies perform model evaluations and comparisons in an ad-hoc manner, for example, by employing their own private data splits or using different experimental settings. Such conventions not only increase the difficulty in reproducing existing studies, but also lead to inconsistent experimental results among them. This largely limits the credibility and practical value of research results in this field. To tackle these issues, we present an initiative project (namely BARS) aiming for open benchmarking for recommender systems. In comparison to some earlier attempts towards this goal, we take a further step by setting up a standardized benchmarking pipeline for reproducible research, which integrates all the details about datasets, source code, hyper-parameter settings, running logs, and evaluation results. The benchmark is designed with comprehensiveness and sustainability in mind. It covers both matching and ranking tasks, and also enables researchers to easily follow and contribute to the research in this field. This project will not only reduce the redundant efforts of researchers to re-implement or re-run existing baselines, but also drive more solid and reproducible research on recommender systems. We would like to call upon everyone to use the BARS benchmark for future evaluation, and contribute to the project through the portal at: https://openbenchmark.github.io/BARS.

  • 8 authors
·
May 19, 2022

Panacea: A foundation model for clinical trial search, summarization, design, and recruitment

Clinical trials are fundamental in developing new drugs, medical devices, and treatments. However, they are often time-consuming and have low success rates. Although there have been initial attempts to create large language models (LLMs) for clinical trial design and patient-trial matching, these models remain task-specific and not adaptable to diverse clinical trial tasks. To address this challenge, we propose a clinical trial foundation model named Panacea, designed to handle multiple tasks, including trial search, trial summarization, trial design, and patient-trial matching. We also assemble a large-scale dataset, named TrialAlign, of 793,279 trial documents and 1,113,207 trial-related scientific papers, to infuse clinical knowledge into the model by pre-training. We further curate TrialInstruct, which has 200,866 of instruction data for fine-tuning. These resources enable Panacea to be widely applicable for a range of clinical trial tasks based on user requirements. We evaluated Panacea on a new benchmark, named TrialPanorama, which covers eight clinical trial tasks. Our method performed the best on seven of the eight tasks compared to six cutting-edge generic or medicine-specific LLMs. Specifically, Panacea showed great potential to collaborate with human experts in crafting the design of eligibility criteria, study arms, and outcome measures, in multi-round conversations. In addition, Panacea achieved 14.42% improvement in patient-trial matching, 41.78% to 52.02% improvement in trial search, and consistently ranked at the top for five aspects of trial summarization. Our approach demonstrates the effectiveness of Panacea in clinical trials and establishes a comprehensive resource, including training data, model, and benchmark, for developing clinical trial foundation models, paving the path for AI-based clinical trial development.

  • 5 authors
·
Jun 25, 2024

Multimodal Fusion with LLMs for Engagement Prediction in Natural Conversation

Over the past decade, wearable computing devices (``smart glasses'') have undergone remarkable advancements in sensor technology, design, and processing power, ushering in a new era of opportunity for high-density human behavior data. Equipped with wearable cameras, these glasses offer a unique opportunity to analyze non-verbal behavior in natural settings as individuals interact. Our focus lies in predicting engagement in dyadic interactions by scrutinizing verbal and non-verbal cues, aiming to detect signs of disinterest or confusion. Leveraging such analyses may revolutionize our understanding of human communication, foster more effective collaboration in professional environments, provide better mental health support through empathetic virtual interactions, and enhance accessibility for those with communication barriers. In this work, we collect a dataset featuring 34 participants engaged in casual dyadic conversations, each providing self-reported engagement ratings at the end of each conversation. We introduce a novel fusion strategy using Large Language Models (LLMs) to integrate multiple behavior modalities into a ``multimodal transcript'' that can be processed by an LLM for behavioral reasoning tasks. Remarkably, this method achieves performance comparable to established fusion techniques even in its preliminary implementation, indicating strong potential for further research and optimization. This fusion method is one of the first to approach ``reasoning'' about real-world human behavior through a language model. Smart glasses provide us the ability to unobtrusively gather high-density multimodal data on human behavior, paving the way for new approaches to understanding and improving human communication with the potential for important societal benefits. The features and data collected during the studies will be made publicly available to promote further research.

  • 9 authors
·
Sep 13, 2024