- Find Your Optimal Teacher: Personalized Data Synthesis via Router-Guided Multi-Teacher Distillation Training student models on synthetic data generated by strong teacher models is a promising way to distilling the capabilities of teachers. However, recent studies show that stronger models are not always optimal teachers, revealing a mismatch between teacher outputs and student learnability. To address this issue, we propose PerSyn (Personalized data Synthesis), a novel synthesis strategy that operates under a new ``Route then Generate'' paradigm to create data tailored to each student model, enabling it to learn more effectively. Specifically, PerSyn first assigns each prompt to its optimal teacher via a query-level router that jointly considers student learnability and teacher response quality. Each teacher then synthesizes data only for its assigned prompts, making the process more efficient than the conventional ``Generate then Select'' paradigm, where all teachers must generate parallel responses for the entire prompt set before constructing the final dataset. Extensive experiments across different model families and scales demonstrate that PerSyn consistently achieves superior or comparable performance to all baselines in instruct tuning and math reasoning settings. Further analysis verifies the effectiveness of PerSyn and offers extra insights to propel future research. 11 authors · Oct 12, 2025
1 Fusing LLM Capabilities with Routing Data The rapid advancement of large language models (LLMs) has created a vibrant ecosystem of diverse architectures, each with unique strengths due to differences in design, training data, and objectives. However, most applications still rely on a single backend model, limiting coverage of capabilities and leading to inefficiencies in performance and token cost when tackling complex tasks. We highlight an underexploited opportunity: LLM routing data, produced when hosting platforms route diverse queries to different models, which can reveal comparative strengths across tasks. To address this, we propose FusionBench, a comprehensive routing benchmark covering 14 tasks across five domains with 20 open-source LLMs (8B to 671B parameters), capturing 103M tokens and summarizing reusable thought templates from top models. Building on this, we introduce FusionFactory, a systematic fusion framework with three levels: (1) query-level fusion, tailoring routers for each query using both direct responses and reasoning-augmented outputs; (2) thought-level fusion, leveraging abstract templates derived from top-performing LLMs' answers to similar queries; and (3) model-level fusion, transferring capabilities between models via distillation, using top responses or highest judge scores as training data. Experiments show FusionFactory consistently outperforms the best individual LLM across all 14 benchmarks, with optimal fusion configurations varying by benchmark, demonstrating the value of systematic LLM fusion in harnessing complementary strengths and improving overall performance. 8 authors · Jul 14, 2025
- Hybrid LLM: Cost-Efficient and Quality-Aware Query Routing Large language models (LLMs) excel in most NLP tasks but also require expensive cloud servers for deployment due to their size, while smaller models that can be deployed on lower cost (e.g., edge) devices, tend to lag behind in terms of response quality. Therefore in this work we propose a hybrid inference approach which combines their respective strengths to save cost and maintain quality. Our approach uses a router that assigns queries to the small or large model based on the predicted query difficulty and the desired quality level. The desired quality level can be tuned dynamically at test time to seamlessly trade quality for cost as per the scenario requirements. In experiments our approach allows us to make up to 40% fewer calls to the large model, with no drop in response quality. 8 authors · Apr 22, 2024
- BiFormer: Vision Transformer with Bi-Level Routing Attention As the core building block of vision transformers, attention is a powerful tool to capture long-range dependency. However, such power comes at a cost: it incurs a huge computation burden and heavy memory footprint as pairwise token interaction across all spatial locations is computed. A series of works attempt to alleviate this problem by introducing handcrafted and content-agnostic sparsity into attention, such as restricting the attention operation to be inside local windows, axial stripes, or dilated windows. In contrast to these approaches, we propose a novel dynamic sparse attention via bi-level routing to enable a more flexible allocation of computations with content awareness. Specifically, for a query, irrelevant key-value pairs are first filtered out at a coarse region level, and then fine-grained token-to-token attention is applied in the union of remaining candidate regions (\ie, routed regions). We provide a simple yet effective implementation of the proposed bi-level routing attention, which utilizes the sparsity to save both computation and memory while involving only GPU-friendly dense matrix multiplications. Built with the proposed bi-level routing attention, a new general vision transformer, named BiFormer, is then presented. As BiFormer attends to a small subset of relevant tokens in a query adaptive manner without distraction from other irrelevant ones, it enjoys both good performance and high computational efficiency, especially in dense prediction tasks. Empirical results across several computer vision tasks such as image classification, object detection, and semantic segmentation verify the effectiveness of our design. Code is available at https://github.com/rayleizhu/BiFormer. 5 authors · Mar 15, 2023