1 Multi-focal Conditioned Latent Diffusion for Person Image Synthesis The Latent Diffusion Model (LDM) has demonstrated strong capabilities in high-resolution image generation and has been widely employed for Pose-Guided Person Image Synthesis (PGPIS), yielding promising results. However, the compression process of LDM often results in the deterioration of details, particularly in sensitive areas such as facial features and clothing textures. In this paper, we propose a Multi-focal Conditioned Latent Diffusion (MCLD) method to address these limitations by conditioning the model on disentangled, pose-invariant features from these sensitive regions. Our approach utilizes a multi-focal condition aggregation module, which effectively integrates facial identity and texture-specific information, enhancing the model's ability to produce appearance realistic and identity-consistent images. Our method demonstrates consistent identity and appearance generation on the DeepFashion dataset and enables flexible person image editing due to its generation consistency. The code is available at https://github.com/jqliu09/mcld. 4 authors · Mar 19, 2025
13 FlexiTex: Enhancing Texture Generation with Visual Guidance Recent texture generation methods achieve impressive results due to the powerful generative prior they leverage from large-scale text-to-image diffusion models. However, abstract textual prompts are limited in providing global textural or shape information, which results in the texture generation methods producing blurry or inconsistent patterns. To tackle this, we present FlexiTex, embedding rich information via visual guidance to generate a high-quality texture. The core of FlexiTex is the Visual Guidance Enhancement module, which incorporates more specific information from visual guidance to reduce ambiguity in the text prompt and preserve high-frequency details. To further enhance the visual guidance, we introduce a Direction-Aware Adaptation module that automatically designs direction prompts based on different camera poses, avoiding the Janus problem and maintaining semantically global consistency. Benefiting from the visual guidance, FlexiTex produces quantitatively and qualitatively sound results, demonstrating its potential to advance texture generation for real-world applications. 10 authors · Sep 18, 2024 3
- XGAN: Unsupervised Image-to-Image Translation for Many-to-Many Mappings Style transfer usually refers to the task of applying color and texture information from a specific style image to a given content image while preserving the structure of the latter. Here we tackle the more generic problem of semantic style transfer: given two unpaired collections of images, we aim to learn a mapping between the corpus-level style of each collection, while preserving semantic content shared across the two domains. We introduce XGAN ("Cross-GAN"), a dual adversarial autoencoder, which captures a shared representation of the common domain semantic content in an unsupervised way, while jointly learning the domain-to-domain image translations in both directions. We exploit ideas from the domain adaptation literature and define a semantic consistency loss which encourages the model to preserve semantics in the learned embedding space. We report promising qualitative results for the task of face-to-cartoon translation. The cartoon dataset, CartoonSet, we collected for this purpose is publicly available at google.github.io/cartoonset/ as a new benchmark for semantic style transfer. 7 authors · Nov 14, 2017
3 OmniRefiner: Reinforcement-Guided Local Diffusion Refinement Reference-guided image generation has progressed rapidly, yet current diffusion models still struggle to preserve fine-grained visual details when refining a generated image using a reference. This limitation arises because VAE-based latent compression inherently discards subtle texture information, causing identity- and attribute-specific cues to vanish. Moreover, post-editing approaches that amplify local details based on existing methods often produce results inconsistent with the original image in terms of lighting, texture, or shape. To address this, we introduce , a detail-aware refinement framework that performs two consecutive stages of reference-driven correction to enhance pixel-level consistency. We first adapt a single-image diffusion editor by fine-tuning it to jointly ingest the draft image and the reference image, enabling globally coherent refinement while maintaining structural fidelity. We then apply reinforcement learning to further strengthen localized editing capability, explicitly optimizing for detail accuracy and semantic consistency. Extensive experiments demonstrate that significantly improves reference alignment and fine-grained detail preservation, producing faithful and visually coherent edits that surpass both open-source and commercial models on challenging reference-guided restoration benchmarks. 4 authors · Nov 25, 2025 2
8 DreamActor-H1: High-Fidelity Human-Product Demonstration Video Generation via Motion-designed Diffusion Transformers In e-commerce and digital marketing, generating high-fidelity human-product demonstration videos is important for effective product presentation. However, most existing frameworks either fail to preserve the identities of both humans and products or lack an understanding of human-product spatial relationships, leading to unrealistic representations and unnatural interactions. To address these challenges, we propose a Diffusion Transformer (DiT)-based framework. Our method simultaneously preserves human identities and product-specific details, such as logos and textures, by injecting paired human-product reference information and utilizing an additional masked cross-attention mechanism. We employ a 3D body mesh template and product bounding boxes to provide precise motion guidance, enabling intuitive alignment of hand gestures with product placements. Additionally, structured text encoding is used to incorporate category-level semantics, enhancing 3D consistency during small rotational changes across frames. Trained on a hybrid dataset with extensive data augmentation strategies, our approach outperforms state-of-the-art techniques in maintaining the identity integrity of both humans and products and generating realistic demonstration motions. Project page: https://submit2025-dream.github.io/DreamActor-H1/. 7 authors · Jun 12, 2025 2