Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeEntire Chain Uplift Modeling with Context-Enhanced Learning for Intelligent Marketing
Uplift modeling, vital in online marketing, seeks to accurately measure the impact of various strategies, such as coupons or discounts, on different users by predicting the Individual Treatment Effect (ITE). In an e-commerce setting, user behavior follows a defined sequential chain, including impression, click, and conversion. Marketing strategies exert varied uplift effects at each stage within this chain, impacting metrics like click-through and conversion rate. Despite its utility, existing research has neglected to consider the inter-task across all stages impacts within a specific treatment and has insufficiently utilized the treatment information, potentially introducing substantial bias into subsequent marketing decisions. We identify these two issues as the chain-bias problem and the treatment-unadaptive problem. This paper introduces the Entire Chain UPlift method with context-enhanced learning (ECUP), devised to tackle these issues. ECUP consists of two primary components: 1) the Entire Chain-Enhanced Network, which utilizes user behavior patterns to estimate ITE throughout the entire chain space, models the various impacts of treatments on each task, and integrates task prior information to enhance context awareness across all stages, capturing the impact of treatment on different tasks, and 2) the Treatment-Enhanced Network, which facilitates fine-grained treatment modeling through bit-level feature interactions, thereby enabling adaptive feature adjustment. Extensive experiments on public and industrial datasets validate ECUPs effectiveness. Moreover, ECUP has been deployed on the Meituan food delivery platform, serving millions of daily active users, with the related dataset released for future research.
Fairness Evaluation for Uplift Modeling in the Absence of Ground Truth
The acceleration in the adoption of AI-based automated decision-making systems poses a challenge for evaluating the fairness of algorithmic decisions, especially in the absence of ground truth. When designing interventions, uplift modeling is used extensively to identify candidates that are likely to benefit from treatment. However, these models remain particularly susceptible to fairness evaluation due to the lack of ground truth on the outcome measure since a candidate cannot be in both treatment and control simultaneously. In this article, we propose a framework that overcomes the missing ground truth problem by generating surrogates to serve as a proxy for counterfactual labels of uplift modeling campaigns. We then leverage the surrogate ground truth to conduct a more comprehensive binary fairness evaluation. We show how to apply the approach in a comprehensive study from a real-world marketing campaign for promotional offers and demonstrate its enhancement for fairness evaluation.
Is It Safe to Uplift This Patch? An Empirical Study on Mozilla Firefox
In rapid release development processes, patches that fix critical issues, or implement high-value features are often promoted directly from the development channel to a stabilization channel, potentially skipping one or more stabilization channels. This practice is called patch uplift. Patch uplift is risky, because patches that are rushed through the stabilization phase can end up introducing regressions in the code. This paper examines patch uplift operations at Mozilla, with the aim to identify the characteristics of uplifted patches that introduce regressions. Through statistical and manual analyses, we quantitatively and qualitatively investigate the reasons behind patch uplift decisions and the characteristics of uplifted patches that introduced regressions. Additionally, we interviewed three Mozilla release managers to understand organizational factors that affect patch uplift decisions and outcomes. Results show that most patches are uplifted because of a wrong functionality or a crash. Uplifted patches that lead to faults tend to have larger patch size, and most of the faults are due to semantic or memory errors in the patches. Also, release managers are more inclined to accept patch uplift requests that concern certain specific components, and-or that are submitted by certain specific developers.
Explicit Feature Interaction-aware Uplift Network for Online Marketing
As a key component in online marketing, uplift modeling aims to accurately capture the degree to which different treatments motivate different users, such as coupons or discounts, also known as the estimation of individual treatment effect (ITE). In an actual business scenario, the options for treatment may be numerous and complex, and there may be correlations between different treatments. In addition, each marketing instance may also have rich user and contextual features. However, existing methods still fall short in both fully exploiting treatment information and mining features that are sensitive to a particular treatment. In this paper, we propose an explicit feature interaction-aware uplift network (EFIN) to address these two problems. Our EFIN includes four customized modules: 1) a feature encoding module encodes not only the user and contextual features, but also the treatment features; 2) a self-interaction module aims to accurately model the user's natural response with all but the treatment features; 3) a treatment-aware interaction module accurately models the degree to which a particular treatment motivates a user through interactions between the treatment features and other features, i.e., ITE; and 4) an intervention constraint module is used to balance the ITE distribution of users between the control and treatment groups so that the model would still achieve a accurate uplift ranking on data collected from a non-random intervention marketing scenario. We conduct extensive experiments on two public datasets and one product dataset to verify the effectiveness of our EFIN. In addition, our EFIN has been deployed in a credit card bill payment scenario of a large online financial platform with a significant improvement.
Multi-Treatment Multi-Task Uplift Modeling for Enhancing User Growth
As a key component in boosting online user growth, uplift modeling aims to measure individual user responses (e.g., whether to play the game) to various treatments, such as gaming bonuses, thereby enhancing business outcomes. However, previous research typically considers a single-task, single-treatment setting, where only one treatment exists and the overall treatment effect is measured by a single type of user response. In this paper, we propose a Multi-Treatment Multi-Task (MTMT) uplift network to estimate treatment effects in a multi-task scenario. We identify the multi-treatment problem as a causal inference problem with a tiered response, comprising a base effect (from offering a treatment) and an incremental effect (from offering a specific type of treatment), where the base effect can be numerically much larger than the incremental effect. Specifically, MTMT separately encodes user features and treatments. The user feature encoder uses a multi-gate mixture of experts (MMOE) network to encode relevant user features, explicitly learning inter-task relations. The resultant embeddings are used to measure natural responses per task. Furthermore, we introduce a treatment-user feature interaction module to model correlations between each treatment and user feature. Consequently, we separately measure the base and incremental treatment effect for each task based on the produced treatment-aware representations. Experimental results based on an offline public dataset and an online proprietary dataset demonstrate the effectiveness of MTMT in single/multi-treatment and single/multi-task settings. Additionally, MTMT has been deployed in our gaming platform to improve user experience.
Uplifting Table Tennis: A Robust, Real-World Application for 3D Trajectory and Spin Estimation
Obtaining the precise 3D motion of a table tennis ball from standard monocular videos is a challenging problem, as existing methods trained on synthetic data struggle to generalize to the noisy, imperfect ball and table detections of the real world. This is primarily due to the inherent lack of 3D ground truth trajectories and spin annotations for real-world video. To overcome this, we propose a novel two-stage pipeline that divides the problem into a front-end perception task and a back-end 2D-to-3D uplifting task. This separation allows us to train the front-end components with abundant 2D supervision from our newly created TTHQ dataset, while the back-end uplifting network is trained exclusively on physically-correct synthetic data. We specifically re-engineer the uplifting model to be robust to common real-world artifacts, such as missing detections and varying frame rates. By integrating a ball detector and a table keypoint detector, our approach transforms a proof-of-concept uplifting method into a practical, robust, and high-performing end-to-end application for 3D table tennis trajectory and spin analysis.
UPLiFT: Efficient Pixel-Dense Feature Upsampling with Local Attenders
The space of task-agnostic feature upsampling has emerged as a promising area of research to efficiently create denser features from pre-trained visual backbones. These methods act as a shortcut to achieve dense features for a fraction of the cost by learning to map low-resolution features to high-resolution versions. While early works in this space used iterative upsampling approaches, more recent works have switched to cross-attention-based methods, which risk falling into the same efficiency scaling problems of the backbones they are upsampling. In this work, we demonstrate that iterative upsampling methods can still compete with cross-attention-based methods; moreover, they can achieve state-of-the-art performance with lower inference costs. We propose UPLiFT, an architecture for Universal Pixel-dense Lightweight Feature Transforms. We also propose an efficient Local Attender operator to overcome the limitations of prior iterative feature upsampling methods. This operator uses an alternative attentional pooling formulation defined fully locally. We show that our Local Attender allows UPLiFT to maintain stable features throughout upsampling, enabling state-of-the-art performance with lower inference costs than existing pixel-dense feature upsamplers. In addition, we apply UPLiFT to generative downstream tasks and show that it achieves competitive performance with state-of-the-art Coupled Flow Matching models for VAE feature upsampling. Altogether, UPLiFT offers a versatile and efficient approach to creating denser features.
