pengdaica commited on
Commit
f68ab3a
·
verified ·
1 Parent(s): 8628ef7

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +0 -64
README.md CHANGED
@@ -9,10 +9,6 @@ tags:
9
  - basnet
10
  ---
11
 
12
- # PosterO Saliency Detection Models
13
-
14
- This repository contains the saliency detection model weights for the PosterO evaluation pipeline.
15
-
16
  ## Models Included
17
 
18
  ### ISNet (isnet-general-use.pth)
@@ -27,64 +23,4 @@ This repository contains the saliency detection model weights for the PosterO ev
27
  - **Input Size**: 256×256
28
  - **Usage**: Secondary saliency map generation
29
 
30
- ## Usage
31
-
32
- These models are automatically downloaded and used by the PosterO evaluation script:
33
-
34
- ```bash
35
- # Basic usage - models download automatically
36
- python run_saliency_and_eval_hf.py \
37
- --input_dir ./images \
38
- --predictions ./predictions.json \
39
- --output_dir ./results
40
-
41
- # Or specify the repository explicitly
42
- python run_saliency_and_eval_hf.py \
43
- --input_dir ./images \
44
- --predictions ./predictions.json \
45
- --output_dir ./results \
46
- --hf_isnet_repo "pengdaica/saliency_weights" \
47
- --hf_basnet_repo "pengdaica/saliency_weights"
48
- ```
49
-
50
- ## Evaluation Pipeline
51
-
52
- The final saliency map used in evaluation is computed as the **element-wise maximum** of both models:
53
-
54
- ```python
55
- final_saliency = np.maximum(isnet_map, basnet_map)
56
- ```
57
-
58
- This approach leverages the strengths of both architectures:
59
- - ISNet provides high-resolution, detailed saliency detection
60
- - BASNet offers complementary detection patterns
61
- - Maximum operation captures the union of salient regions
62
-
63
- ## Model Details
64
-
65
- | Model | File | Size | Resolution | Framework |
66
- |-------|------|------|------------|-----------|
67
- | ISNet | `isnet-general-use.pth` | ~168 MB | 1024×1024 | PyTorch |
68
- | BASNet | `gdi-basnet.pth` | ~332 MB | 256×256 | PyTorch |
69
-
70
- ## Installation
71
-
72
- ```bash
73
- pip install torch torchvision huggingface_hub pillow opencv-python numpy matplotlib cairosvg tqdm
74
- ```
75
-
76
- ## Citation
77
-
78
- If you use these models, please cite the original PosterO paper and the respective saliency detection methods:
79
-
80
- - ISNet: [Intermediate Supervision Network for Salient Object Detection](https://arxiv.org/abs/2109.12172)
81
- - BASNet: [Boundary-Aware Segmentation Network for Mobile and Web Applications](https://arxiv.org/abs/2101.04704)
82
-
83
- ## License
84
-
85
- Apache 2.0
86
-
87
- ## Repository
88
 
89
- - **Code**: [PosterO-CVPR2025](https://github.com/your-repo/PosterO-CVPR2025)
90
- - **Models**: [pengdaica/saliency_weights](https://huggingface.co/pengdaica/saliency_weights)
 
9
  - basnet
10
  ---
11
 
 
 
 
 
12
  ## Models Included
13
 
14
  ### ISNet (isnet-general-use.pth)
 
23
  - **Input Size**: 256×256
24
  - **Usage**: Secondary saliency map generation
25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26