Update README.md
Browse files
README.md
CHANGED
|
@@ -9,10 +9,6 @@ tags:
|
|
| 9 |
- basnet
|
| 10 |
---
|
| 11 |
|
| 12 |
-
# PosterO Saliency Detection Models
|
| 13 |
-
|
| 14 |
-
This repository contains the saliency detection model weights for the PosterO evaluation pipeline.
|
| 15 |
-
|
| 16 |
## Models Included
|
| 17 |
|
| 18 |
### ISNet (isnet-general-use.pth)
|
|
@@ -27,64 +23,4 @@ This repository contains the saliency detection model weights for the PosterO ev
|
|
| 27 |
- **Input Size**: 256×256
|
| 28 |
- **Usage**: Secondary saliency map generation
|
| 29 |
|
| 30 |
-
## Usage
|
| 31 |
-
|
| 32 |
-
These models are automatically downloaded and used by the PosterO evaluation script:
|
| 33 |
-
|
| 34 |
-
```bash
|
| 35 |
-
# Basic usage - models download automatically
|
| 36 |
-
python run_saliency_and_eval_hf.py \
|
| 37 |
-
--input_dir ./images \
|
| 38 |
-
--predictions ./predictions.json \
|
| 39 |
-
--output_dir ./results
|
| 40 |
-
|
| 41 |
-
# Or specify the repository explicitly
|
| 42 |
-
python run_saliency_and_eval_hf.py \
|
| 43 |
-
--input_dir ./images \
|
| 44 |
-
--predictions ./predictions.json \
|
| 45 |
-
--output_dir ./results \
|
| 46 |
-
--hf_isnet_repo "pengdaica/saliency_weights" \
|
| 47 |
-
--hf_basnet_repo "pengdaica/saliency_weights"
|
| 48 |
-
```
|
| 49 |
-
|
| 50 |
-
## Evaluation Pipeline
|
| 51 |
-
|
| 52 |
-
The final saliency map used in evaluation is computed as the **element-wise maximum** of both models:
|
| 53 |
-
|
| 54 |
-
```python
|
| 55 |
-
final_saliency = np.maximum(isnet_map, basnet_map)
|
| 56 |
-
```
|
| 57 |
-
|
| 58 |
-
This approach leverages the strengths of both architectures:
|
| 59 |
-
- ISNet provides high-resolution, detailed saliency detection
|
| 60 |
-
- BASNet offers complementary detection patterns
|
| 61 |
-
- Maximum operation captures the union of salient regions
|
| 62 |
-
|
| 63 |
-
## Model Details
|
| 64 |
-
|
| 65 |
-
| Model | File | Size | Resolution | Framework |
|
| 66 |
-
|-------|------|------|------------|-----------|
|
| 67 |
-
| ISNet | `isnet-general-use.pth` | ~168 MB | 1024×1024 | PyTorch |
|
| 68 |
-
| BASNet | `gdi-basnet.pth` | ~332 MB | 256×256 | PyTorch |
|
| 69 |
-
|
| 70 |
-
## Installation
|
| 71 |
-
|
| 72 |
-
```bash
|
| 73 |
-
pip install torch torchvision huggingface_hub pillow opencv-python numpy matplotlib cairosvg tqdm
|
| 74 |
-
```
|
| 75 |
-
|
| 76 |
-
## Citation
|
| 77 |
-
|
| 78 |
-
If you use these models, please cite the original PosterO paper and the respective saliency detection methods:
|
| 79 |
-
|
| 80 |
-
- ISNet: [Intermediate Supervision Network for Salient Object Detection](https://arxiv.org/abs/2109.12172)
|
| 81 |
-
- BASNet: [Boundary-Aware Segmentation Network for Mobile and Web Applications](https://arxiv.org/abs/2101.04704)
|
| 82 |
-
|
| 83 |
-
## License
|
| 84 |
-
|
| 85 |
-
Apache 2.0
|
| 86 |
-
|
| 87 |
-
## Repository
|
| 88 |
|
| 89 |
-
- **Code**: [PosterO-CVPR2025](https://github.com/your-repo/PosterO-CVPR2025)
|
| 90 |
-
- **Models**: [pengdaica/saliency_weights](https://huggingface.co/pengdaica/saliency_weights)
|
|
|
|
| 9 |
- basnet
|
| 10 |
---
|
| 11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
## Models Included
|
| 13 |
|
| 14 |
### ISNet (isnet-general-use.pth)
|
|
|
|
| 23 |
- **Input Size**: 256×256
|
| 24 |
- **Usage**: Secondary saliency map generation
|
| 25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
|
|
|
|
|