Upload train_log.txt
Browse files- ccvid-49-1245/train_log.txt +1481 -0
ccvid-49-1245/train_log.txt
ADDED
|
@@ -0,0 +1,1481 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
EVA-attribure:
|
| 2 |
+
Why load pretrained weights when training e2e
|
| 3 |
+
NoneType: None
|
| 4 |
+
space(cal_eval=False, config_file='configs/ccvid_eva02_l_cloth.yml', env='nccl', eval=False, local_rank=0, multi_node=False, no_head=False, opts=['DATA.ROOT', '/home/c3-0/datasets/CCVID', 'TRAIN.TRAIN_VIDEO', 'True', 'MODEL.MOTION_LOSS', 'True', 'TRAIN.TEACH1', 'ccvid', 'TEST.WEIGHT', 'logs/CCVID/CCVID_IMG/eva02_l_cloth_best.pth', 'TRAIN.HYBRID', 'True', 'TRAIN.DIR_TEACH1', '/home/c3-0/datasets/CCVID', 'TRAIN.TEACH1_MODEL', 'None', 'TRAIN.TEACH1_LOAD_AS_IMG', 'True', 'TRAIN.TEACH_DATASET_FIX', 'color_adv', 'TRAIN.COLOR_ADV', 'True', 'MODEL.NAME', 'ez_eva02_vid_hybrid_extra', 'TRAIN.COLOR_PROFILE', '49', 'SOLVER.SEED', '1245', 'OUTPUT_DIR', 'ccvid-49-1245', 'SOLVER.MAX_EPOCHS', '100', 'SOLVER.LOG_PERIOD', '800'], resume=True, return_index=False, save5=False)
|
| 5 |
+
EVA-attribure: Loaded configuration file configs/ccvid_eva02_l_cloth.yml
|
| 6 |
+
EVA-attribure:
|
| 7 |
+
MODEL:
|
| 8 |
+
META_DIMS: [ 105, ]
|
| 9 |
+
|
| 10 |
+
DATA:
|
| 11 |
+
DATASET: 'ccvid'
|
| 12 |
+
TEST_BATCH: 100
|
| 13 |
+
|
| 14 |
+
SOLVER:
|
| 15 |
+
CHECKPOINT_PERIOD: 60
|
| 16 |
+
LOG_PERIOD: 50
|
| 17 |
+
EVAL_PERIOD: 2
|
| 18 |
+
|
| 19 |
+
OUTPUT_DIR: ''
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
EVA-attribure: Running with config:
|
| 24 |
+
ANALYSIS_STATS: None
|
| 25 |
+
AUG:
|
| 26 |
+
RC_PROB: 0.5
|
| 27 |
+
RE_PROB: 0.5
|
| 28 |
+
RF_PROB: 0.5
|
| 29 |
+
SAMPLING_STRIDE: 4
|
| 30 |
+
SEQ_LEN: 4
|
| 31 |
+
TEMPORAL_SAMPLING_MODE: stride
|
| 32 |
+
AUX_DUMP: None
|
| 33 |
+
DATA:
|
| 34 |
+
ADD_META: False
|
| 35 |
+
AUX_INFO: True
|
| 36 |
+
BATCH_SIZE: 8
|
| 37 |
+
DATASET: ccvid
|
| 38 |
+
DATASET_FIX: None
|
| 39 |
+
DATASET_SAMPLING_PERCENTAGE: None
|
| 40 |
+
DENNIS_MODE: False
|
| 41 |
+
F8: None
|
| 42 |
+
GREY_SCALE: None
|
| 43 |
+
IMG_HEIGHT: 224
|
| 44 |
+
IMG_WIDTH: 224
|
| 45 |
+
MASK_META: False
|
| 46 |
+
META_DIR: PAR_PETA_105.txt
|
| 47 |
+
NUM_INSTANCES: 2
|
| 48 |
+
NUM_WORKERS: 4
|
| 49 |
+
PIN_MEMORY: True
|
| 50 |
+
RANDOM_FRAMES: None
|
| 51 |
+
ROOT: /home/c3-0/datasets/CCVID
|
| 52 |
+
SAMPLER: softmax_triplet
|
| 53 |
+
SAMPLING_PERCENTAGE: None
|
| 54 |
+
TEST_BATCH: 100
|
| 55 |
+
GRAD_CAM: None
|
| 56 |
+
MODEL:
|
| 57 |
+
ADD_META: True
|
| 58 |
+
ATT_AS_INPUT: None
|
| 59 |
+
ATT_DIRECT: None
|
| 60 |
+
Adapter: None
|
| 61 |
+
CLOTH_EMBED: None
|
| 62 |
+
CLOTH_ONLY: True
|
| 63 |
+
CLOTH_XISHU: 3
|
| 64 |
+
COS_LAYER: False
|
| 65 |
+
DEVICE: cuda
|
| 66 |
+
DEVICE_ID: 0
|
| 67 |
+
DIST_TRAIN: True
|
| 68 |
+
EMBED_DIM: 1024
|
| 69 |
+
EXTRA_DIM: 12288
|
| 70 |
+
EXTRA_DISENTANGLE: None
|
| 71 |
+
ID_LOSS_TYPE: softmax
|
| 72 |
+
ID_LOSS_WEIGHT: 1.0
|
| 73 |
+
IF_LABELSMOOTH: off
|
| 74 |
+
IF_WITH_CENTER: no
|
| 75 |
+
Joint: None
|
| 76 |
+
MASKED_SEP_ATTN: None
|
| 77 |
+
MASK_META: False
|
| 78 |
+
META_DIMS: [105]
|
| 79 |
+
METRIC_LOSS_TYPE: triplet
|
| 80 |
+
MOTION_LOSS: True
|
| 81 |
+
NAME: ez_eva02_vid_hybrid_extra
|
| 82 |
+
NO_MARGIN: True
|
| 83 |
+
PRETRAIN: True
|
| 84 |
+
RETURN_EARLY: None
|
| 85 |
+
SPATIAL_AVG: None
|
| 86 |
+
TEMPORAL_AVG: None
|
| 87 |
+
TIM_DIM: 4
|
| 88 |
+
TRIPLET_LOSS_WEIGHT: 1.0
|
| 89 |
+
TYPE: eva02_cloth
|
| 90 |
+
UNIFIED_DIST: None
|
| 91 |
+
OUTPUT_DIR: Dump/ccvid-49-1245
|
| 92 |
+
SOLVER:
|
| 93 |
+
BASE_LR: 2e-05
|
| 94 |
+
BIAS_LR_FACTOR: 2
|
| 95 |
+
CENTER_LOSS_WEIGHT: 0.0005
|
| 96 |
+
CENTER_LR: 0.5
|
| 97 |
+
CHECKPOINT_PERIOD: 60
|
| 98 |
+
COSINE_MARGIN: 0.5
|
| 99 |
+
COSINE_SCALE: 30
|
| 100 |
+
EVAL_PERIOD: 2
|
| 101 |
+
GAMMA: 0.1
|
| 102 |
+
LARGE_FC_LR: False
|
| 103 |
+
LOG_PERIOD: 800
|
| 104 |
+
MARGIN: 0.3
|
| 105 |
+
MAX_EPOCHS: 100
|
| 106 |
+
MOMENTUM: 0.9
|
| 107 |
+
OPTIMIZER_NAME: SGD
|
| 108 |
+
SEED: 1245
|
| 109 |
+
STEPS: (40, 60)
|
| 110 |
+
WARMUP_EPOCHS: 20
|
| 111 |
+
WARMUP_FACTOR: 0.01
|
| 112 |
+
WARMUP_LR: 7.8125e-07
|
| 113 |
+
WARMUP_METHOD: linear
|
| 114 |
+
WEIGHT_DECAY: 0.05
|
| 115 |
+
WEIGHT_DECAY_BIAS: 0.05
|
| 116 |
+
TAG: None
|
| 117 |
+
TENSORBOARD: None
|
| 118 |
+
TEST:
|
| 119 |
+
CONCAT_COLORS: None
|
| 120 |
+
FEAT_NORM: yes
|
| 121 |
+
MODE: None
|
| 122 |
+
TYPE: image_only
|
| 123 |
+
WEIGHT: logs/CCVID/CCVID_IMG/eva02_l_cloth_best.pth
|
| 124 |
+
TRAIN:
|
| 125 |
+
COLOR_ADV: True
|
| 126 |
+
COLOR_LOSS: None
|
| 127 |
+
COLOR_PROFILE: 49
|
| 128 |
+
CONT_ONLY: None
|
| 129 |
+
DEBUG: None
|
| 130 |
+
DIR_TEACH1: /home/c3-0/datasets/CCVID
|
| 131 |
+
E2E: True
|
| 132 |
+
GENDER: None
|
| 133 |
+
HYBRID: True
|
| 134 |
+
LAYER_DISESNTANGLE: None
|
| 135 |
+
PAIR_MSE: None
|
| 136 |
+
POSE: None
|
| 137 |
+
POSE_ONLY: None
|
| 138 |
+
START_EPOCH: 1
|
| 139 |
+
TEACH1: ccvid
|
| 140 |
+
TEACH1_LOAD_AS_IMG: True
|
| 141 |
+
TEACH1_MODEL: None
|
| 142 |
+
TEACH1_MODEL_WT: None
|
| 143 |
+
TEACH1_NUMCLASSES: None
|
| 144 |
+
TEACH_DATASET_FIX: color_adv
|
| 145 |
+
TEACH_METHOD: None
|
| 146 |
+
TRAIN_VIDEO: True
|
| 147 |
+
TRAIN_DUMP: None
|
| 148 |
+
EVA-attribure: => CCVID loaded
|
| 149 |
+
EVA-attribure: Dataset statistics:
|
| 150 |
+
EVA-attribure: ---------------------------------------------
|
| 151 |
+
EVA-attribure: subset | # ids | # tracklets | # clothes
|
| 152 |
+
EVA-attribure: ---------------------------------------------
|
| 153 |
+
EVA-attribure: train | 75 | 948 | 159
|
| 154 |
+
EVA-attribure: train_dense | 75 | 1409 | 159
|
| 155 |
+
EVA-attribure: query | 151 | 834 | 160
|
| 156 |
+
EVA-attribure: gallery | 151 | 1074 | 252
|
| 157 |
+
EVA-attribure: ---------------------------------------------
|
| 158 |
+
EVA-attribure: total | 226 | 2856 | 480
|
| 159 |
+
EVA-attribure: number of images per tracklet: 27 ~ 410, average 121.8
|
| 160 |
+
EVA-attribure: ---------------------------------------------
|
| 161 |
+
EVA-attribure: ---------------------------------------------------------------
|
| 162 |
+
EVA-attribure: Partition | <32 | '32-64' | '64-128' | '128-256' | '>256'
|
| 163 |
+
EVA-attribure: train.txt | 0 | 13799 | 49577 | 55237 | 0
|
| 164 |
+
EVA-attribure: query.txt | 0 | 26702 | 41930 | 48167 | 0
|
| 165 |
+
EVA-attribure: gallery.txt | 0 | 11776 | 32958 | 67687 | 0
|
| 166 |
+
EVA-attribure: ---------------------------------------------------------------
|
| 167 |
+
EVA-attribure: => CCVID loaded
|
| 168 |
+
EVA-attribure: Dataset statistics:
|
| 169 |
+
EVA-attribure: ---------------------------------------------
|
| 170 |
+
EVA-attribure: subset | # ids | # tracklets | # clothes
|
| 171 |
+
EVA-attribure: ---------------------------------------------
|
| 172 |
+
EVA-attribure: train | 75 | 948 | 159
|
| 173 |
+
EVA-attribure: train_dense | 75 | 1409 | 159
|
| 174 |
+
EVA-attribure: query | 151 | 834 | 160
|
| 175 |
+
EVA-attribure: gallery | 151 | 1074 | 252
|
| 176 |
+
EVA-attribure: ---------------------------------------------
|
| 177 |
+
EVA-attribure: total | 226 | 2856 | 480
|
| 178 |
+
EVA-attribure: number of images per tracklet: 27 ~ 410, average 121.8
|
| 179 |
+
EVA-attribure: ---------------------------------------------
|
| 180 |
+
EVA-attribure: ---------------------------------------------------------------
|
| 181 |
+
EVA-attribure: Partition | <32 | '32-64' | '64-128' | '128-256' | '>256'
|
| 182 |
+
EVA-attribure: train.txt | 0 | 13799 | 49577 | 55237 | 0
|
| 183 |
+
EVA-attribure: query.txt | 0 | 26702 | 41930 | 48167 | 0
|
| 184 |
+
EVA-attribure: gallery.txt | 0 | 11776 | 32958 | 67687 | 0
|
| 185 |
+
EVA-attribure: ---------------------------------------------------------------
|
| 186 |
+
EVA-attribure:
|
| 187 |
+
*** Resuming From : logs/CCVID/CCVID_IMG/eva02_l_cloth_best.pth ***
|
| 188 |
+
|
| 189 |
+
EVA-attribure:
|
| 190 |
+
Why load pretrained weights when training e2e
|
| 191 |
+
NoneType: None
|
| 192 |
+
EVA-attribure.train: start training
|
| 193 |
+
EVA-attribure.train: Train Start !!
|
| 194 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 195 |
+
EVA-attribure.train: ==> Student Training ....
|
| 196 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 197 |
+
EVA-attribure.train: ==> Student Training ....
|
| 198 |
+
EVA-attribure: Extracted features for query set, obtained torch.Size([834, 1024]) matrix
|
| 199 |
+
EVA-attribure: Extracted features for gallery set, obtained torch.Size([1074, 1024]) matrix
|
| 200 |
+
EVA-attribure: Extracting features complete in 12m 27s
|
| 201 |
+
EVA-attribure: Distance computing in 0m 0s
|
| 202 |
+
EVA-attribure: Mean Distance : (834, 1074), [-0.24769731 -0.26944467 -0.2668455 -0.24908061 -0.26834354 -0.2681482
|
| 203 |
+
-0.24310766 -0.2688375 -0.26854113 -0.2640222 ] , Mean Query : tensor([0.0002, 0.0002, 0.0003, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002,
|
| 204 |
+
0.0002], device='cuda:0') Mean Gallery: tensor([0.0002, 0.0002, 0.0003, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002,
|
| 205 |
+
0.0002], device='cuda:0')
|
| 206 |
+
EVA-attribure: Computing CMC and mAP
|
| 207 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 208 |
+
EVA-attribure: top1:86.0% top5:90.4% top10:92.0% top20:93.6% mAP:85.9%
|
| 209 |
+
EVA-attribure: -----------------------------------------------------------
|
| 210 |
+
EVA-attribure: Using 0m 0s
|
| 211 |
+
EVA-attribure: Computing CMC and mAP only for the same clothes setting
|
| 212 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 213 |
+
EVA-attribure: top1:100.0% top5:100.0% top10:100.0% top20:100.0% mAP:100.0%
|
| 214 |
+
EVA-attribure: -----------------------------------------------------------
|
| 215 |
+
EVA-attribure: Computing CMC and mAP only for clothes-changing
|
| 216 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 217 |
+
EVA-attribure: top1:83.9% top5:89.0% top10:91.4% top20:93.3% mAP:84.4%
|
| 218 |
+
EVA-attribure: -----------------------------------------------------------
|
| 219 |
+
EVA-attribure.train: ==> Best Rank-1 83.9%, Best Map 84.4% achieved at epoch 2
|
| 220 |
+
EVA-attribure.train: Saving the model Now ....., 0.8393, 0.8440
|
| 221 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 222 |
+
EVA-attribure.train: ==> Student Training ....
|
| 223 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 224 |
+
EVA-attribure.train: ==> Student Training ....
|
| 225 |
+
EVA-attribure: Extracted features for query set, obtained torch.Size([834, 1024]) matrix
|
| 226 |
+
EVA-attribure: Extracted features for gallery set, obtained torch.Size([1074, 1024]) matrix
|
| 227 |
+
EVA-attribure: Extracting features complete in 12m 26s
|
| 228 |
+
EVA-attribure: Distance computing in 0m 0s
|
| 229 |
+
EVA-attribure: Mean Distance : (834, 1074), [-0.21166998 -0.23439142 -0.22547273 -0.21502177 -0.2328893 -0.22969769
|
| 230 |
+
-0.20922586 -0.23316137 -0.22958338 -0.23157628] , Mean Query : tensor([0.0002, 0.0002, 0.0003, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002,
|
| 231 |
+
0.0002], device='cuda:0') Mean Gallery: tensor([0.0002, 0.0002, 0.0003, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002,
|
| 232 |
+
0.0002], device='cuda:0')
|
| 233 |
+
EVA-attribure: Computing CMC and mAP
|
| 234 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 235 |
+
EVA-attribure: top1:86.2% top5:91.0% top10:92.3% top20:93.8% mAP:87.1%
|
| 236 |
+
EVA-attribure: -----------------------------------------------------------
|
| 237 |
+
EVA-attribure: Using 0m 0s
|
| 238 |
+
EVA-attribure: Computing CMC and mAP only for the same clothes setting
|
| 239 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 240 |
+
EVA-attribure: top1:100.0% top5:100.0% top10:100.0% top20:100.0% mAP:100.0%
|
| 241 |
+
EVA-attribure: -----------------------------------------------------------
|
| 242 |
+
EVA-attribure: Computing CMC and mAP only for clothes-changing
|
| 243 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 244 |
+
EVA-attribure: top1:84.3% top5:89.7% top10:92.0% top20:93.4% mAP:85.7%
|
| 245 |
+
EVA-attribure: -----------------------------------------------------------
|
| 246 |
+
EVA-attribure.train: ==> Best Rank-1 84.3%, Best Map 85.7% achieved at epoch 4
|
| 247 |
+
EVA-attribure.train: Saving the model Now ....., 0.8429, 0.8567
|
| 248 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 249 |
+
EVA-attribure.train: ==> Student Training ....
|
| 250 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 251 |
+
EVA-attribure.train: ==> Student Training ....
|
| 252 |
+
EVA-attribure: Extracted features for query set, obtained torch.Size([834, 1024]) matrix
|
| 253 |
+
EVA-attribure: Extracted features for gallery set, obtained torch.Size([1074, 1024]) matrix
|
| 254 |
+
EVA-attribure: Extracting features complete in 12m 26s
|
| 255 |
+
EVA-attribure: Distance computing in 0m 0s
|
| 256 |
+
EVA-attribure: Mean Distance : (834, 1074), [-0.19961916 -0.21816762 -0.21082126 -0.20270222 -0.21739985 -0.21678731
|
| 257 |
+
-0.19717737 -0.21821561 -0.21664658 -0.21950983] , Mean Query : tensor([0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002,
|
| 258 |
+
0.0001], device='cuda:0') Mean Gallery: tensor([0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002,
|
| 259 |
+
0.0001], device='cuda:0')
|
| 260 |
+
EVA-attribure: Computing CMC and mAP
|
| 261 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 262 |
+
EVA-attribure: top1:85.9% top5:90.8% top10:92.1% top20:93.8% mAP:86.7%
|
| 263 |
+
EVA-attribure: -----------------------------------------------------------
|
| 264 |
+
EVA-attribure: Using 0m 0s
|
| 265 |
+
EVA-attribure: Computing CMC and mAP only for the same clothes setting
|
| 266 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 267 |
+
EVA-attribure: top1:100.0% top5:100.0% top10:100.0% top20:100.0% mAP:100.0%
|
| 268 |
+
EVA-attribure: -----------------------------------------------------------
|
| 269 |
+
EVA-attribure: Computing CMC and mAP only for clothes-changing
|
| 270 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 271 |
+
EVA-attribure: top1:84.1% top5:89.3% top10:91.7% top20:93.4% mAP:85.3%
|
| 272 |
+
EVA-attribure: -----------------------------------------------------------
|
| 273 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 274 |
+
EVA-attribure.train: ==> Student Training ....
|
| 275 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 276 |
+
EVA-attribure.train: ==> Student Training ....
|
| 277 |
+
EVA-attribure: Extracted features for query set, obtained torch.Size([834, 1024]) matrix
|
| 278 |
+
EVA-attribure: Extracted features for gallery set, obtained torch.Size([1074, 1024]) matrix
|
| 279 |
+
EVA-attribure: Extracting features complete in 12m 25s
|
| 280 |
+
EVA-attribure: Distance computing in 0m 0s
|
| 281 |
+
EVA-attribure: Mean Distance : (834, 1074), [-0.20179103 -0.22236693 -0.21449722 -0.2068867 -0.22198264 -0.22087382
|
| 282 |
+
-0.20244981 -0.22367166 -0.22243965 -0.22283244] , Mean Query : tensor([0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002,
|
| 283 |
+
0.0001], device='cuda:0') Mean Gallery: tensor([0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002,
|
| 284 |
+
0.0001], device='cuda:0')
|
| 285 |
+
EVA-attribure: Computing CMC and mAP
|
| 286 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 287 |
+
EVA-attribure: top1:86.9% top5:91.4% top10:92.3% top20:93.8% mAP:88.0%
|
| 288 |
+
EVA-attribure: -----------------------------------------------------------
|
| 289 |
+
EVA-attribure: Using 0m 0s
|
| 290 |
+
EVA-attribure: Computing CMC and mAP only for the same clothes setting
|
| 291 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 292 |
+
EVA-attribure: top1:100.0% top5:100.0% top10:100.0% top20:100.0% mAP:100.0%
|
| 293 |
+
EVA-attribure: -----------------------------------------------------------
|
| 294 |
+
EVA-attribure: Computing CMC and mAP only for clothes-changing
|
| 295 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 296 |
+
EVA-attribure: top1:85.3% top5:89.9% top10:92.0% top20:93.4% mAP:86.7%
|
| 297 |
+
EVA-attribure: -----------------------------------------------------------
|
| 298 |
+
EVA-attribure.train: ==> Best Rank-1 85.3%, Best Map 86.7% achieved at epoch 8
|
| 299 |
+
EVA-attribure.train: Saving the model Now ....., 0.8525, 0.8673
|
| 300 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 301 |
+
EVA-attribure.train: ==> Student Training ....
|
| 302 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 303 |
+
EVA-attribure.train: ==> Student Training ....
|
| 304 |
+
EVA-attribure: Extracted features for query set, obtained torch.Size([834, 1024]) matrix
|
| 305 |
+
EVA-attribure: Extracted features for gallery set, obtained torch.Size([1074, 1024]) matrix
|
| 306 |
+
EVA-attribure: Extracting features complete in 12m 24s
|
| 307 |
+
EVA-attribure: Distance computing in 0m 0s
|
| 308 |
+
EVA-attribure: Mean Distance : (834, 1074), [-0.19333716 -0.21258062 -0.20448503 -0.19715479 -0.21089673 -0.21127355
|
| 309 |
+
-0.1949473 -0.21338663 -0.21309488 -0.21168542] , Mean Query : tensor([0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002,
|
| 310 |
+
0.0001], device='cuda:0') Mean Gallery: tensor([0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002,
|
| 311 |
+
0.0001], device='cuda:0')
|
| 312 |
+
EVA-attribure: Computing CMC and mAP
|
| 313 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 314 |
+
EVA-attribure: top1:88.0% top5:91.4% top10:92.3% top20:93.9% mAP:88.6%
|
| 315 |
+
EVA-attribure: -----------------------------------------------------------
|
| 316 |
+
EVA-attribure: Using 0m 0s
|
| 317 |
+
EVA-attribure: Computing CMC and mAP only for the same clothes setting
|
| 318 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 319 |
+
EVA-attribure: top1:100.0% top5:100.0% top10:100.0% top20:100.0% mAP:100.0%
|
| 320 |
+
EVA-attribure: -----------------------------------------------------------
|
| 321 |
+
EVA-attribure: Computing CMC and mAP only for clothes-changing
|
| 322 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 323 |
+
EVA-attribure: top1:86.5% top5:90.0% top10:92.0% top20:93.5% mAP:87.4%
|
| 324 |
+
EVA-attribure: -----------------------------------------------------------
|
| 325 |
+
EVA-attribure.train: ==> Best Rank-1 86.5%, Best Map 87.4% achieved at epoch 10
|
| 326 |
+
EVA-attribure.train: Saving the model Now ....., 0.8645, 0.8739
|
| 327 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 328 |
+
EVA-attribure.train: ==> Student Training ....
|
| 329 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 330 |
+
EVA-attribure.train: ==> Student Training ....
|
| 331 |
+
EVA-attribure: Extracted features for query set, obtained torch.Size([834, 1024]) matrix
|
| 332 |
+
EVA-attribure: Extracted features for gallery set, obtained torch.Size([1074, 1024]) matrix
|
| 333 |
+
EVA-attribure: Extracting features complete in 12m 25s
|
| 334 |
+
EVA-attribure: Distance computing in 0m 0s
|
| 335 |
+
EVA-attribure: Mean Distance : (834, 1074), [-0.19982438 -0.21536987 -0.20189282 -0.20114404 -0.2131594 -0.20483005
|
| 336 |
+
-0.19934252 -0.21293268 -0.20912991 -0.2121066 ] , Mean Query : tensor([0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002,
|
| 337 |
+
0.0002], device='cuda:0') Mean Gallery: tensor([0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002,
|
| 338 |
+
0.0002], device='cuda:0')
|
| 339 |
+
EVA-attribure: Computing CMC and mAP
|
| 340 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 341 |
+
EVA-attribure: top1:89.0% top5:91.2% top10:92.6% top20:93.8% mAP:88.5%
|
| 342 |
+
EVA-attribure: -----------------------------------------------------------
|
| 343 |
+
EVA-attribure: Using 0m 0s
|
| 344 |
+
EVA-attribure: Computing CMC and mAP only for the same clothes setting
|
| 345 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 346 |
+
EVA-attribure: top1:100.0% top5:100.0% top10:100.0% top20:100.0% mAP:100.0%
|
| 347 |
+
EVA-attribure: -----------------------------------------------------------
|
| 348 |
+
EVA-attribure: Computing CMC and mAP only for clothes-changing
|
| 349 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 350 |
+
EVA-attribure: top1:87.3% top5:89.9% top10:92.2% top20:93.5% mAP:87.2%
|
| 351 |
+
EVA-attribure: -----------------------------------------------------------
|
| 352 |
+
EVA-attribure.train: ==> Best Rank-1 87.3%, Best Map 87.4% achieved at epoch 12
|
| 353 |
+
EVA-attribure.train: Saving the model Now ....., 0.8729, 0.8724
|
| 354 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 355 |
+
EVA-attribure.train: ==> Student Training ....
|
| 356 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 357 |
+
EVA-attribure.train: ==> Student Training ....
|
| 358 |
+
EVA-attribure: Extracted features for query set, obtained torch.Size([834, 1024]) matrix
|
| 359 |
+
EVA-attribure: Extracted features for gallery set, obtained torch.Size([1074, 1024]) matrix
|
| 360 |
+
EVA-attribure: Extracting features complete in 12m 26s
|
| 361 |
+
EVA-attribure: Distance computing in 0m 0s
|
| 362 |
+
EVA-attribure: Mean Distance : (834, 1074), [-0.19286442 -0.20939858 -0.19766313 -0.1939049 -0.20669448 -0.20229875
|
| 363 |
+
-0.19246359 -0.2082923 -0.20357865 -0.20353854] , Mean Query : tensor([0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002,
|
| 364 |
+
0.0001], device='cuda:0') Mean Gallery: tensor([0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002,
|
| 365 |
+
0.0001], device='cuda:0')
|
| 366 |
+
EVA-attribure: Computing CMC and mAP
|
| 367 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 368 |
+
EVA-attribure: top1:88.2% top5:91.1% top10:92.1% top20:93.8% mAP:88.5%
|
| 369 |
+
EVA-attribure: -----------------------------------------------------------
|
| 370 |
+
EVA-attribure: Using 0m 0s
|
| 371 |
+
EVA-attribure: Computing CMC and mAP only for the same clothes setting
|
| 372 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 373 |
+
EVA-attribure: top1:100.0% top5:100.0% top10:100.0% top20:100.0% mAP:100.0%
|
| 374 |
+
EVA-attribure: -----------------------------------------------------------
|
| 375 |
+
EVA-attribure: Computing CMC and mAP only for clothes-changing
|
| 376 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 377 |
+
EVA-attribure: top1:86.6% top5:89.7% top10:91.7% top20:93.5% mAP:87.2%
|
| 378 |
+
EVA-attribure: -----------------------------------------------------------
|
| 379 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 380 |
+
EVA-attribure.train: ==> Student Training ....
|
| 381 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 382 |
+
EVA-attribure.train: ==> Student Training ....
|
| 383 |
+
EVA-attribure: Extracted features for query set, obtained torch.Size([834, 1024]) matrix
|
| 384 |
+
EVA-attribure: Extracted features for gallery set, obtained torch.Size([1074, 1024]) matrix
|
| 385 |
+
EVA-attribure: Extracting features complete in 12m 25s
|
| 386 |
+
EVA-attribure: Distance computing in 0m 0s
|
| 387 |
+
EVA-attribure: Mean Distance : (834, 1074), [-0.19627945 -0.21161307 -0.19864732 -0.19884369 -0.2117708 -0.20147507
|
| 388 |
+
-0.19633155 -0.2120001 -0.20524237 -0.20525794] , Mean Query : tensor([0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002,
|
| 389 |
+
0.0001], device='cuda:0') Mean Gallery: tensor([0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002,
|
| 390 |
+
0.0001], device='cuda:0')
|
| 391 |
+
EVA-attribure: Computing CMC and mAP
|
| 392 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 393 |
+
EVA-attribure: top1:89.3% top5:91.1% top10:92.3% top20:93.9% mAP:89.3%
|
| 394 |
+
EVA-attribure: -----------------------------------------------------------
|
| 395 |
+
EVA-attribure: Using 0m 0s
|
| 396 |
+
EVA-attribure: Computing CMC and mAP only for the same clothes setting
|
| 397 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 398 |
+
EVA-attribure: top1:100.0% top5:100.0% top10:100.0% top20:100.0% mAP:100.0%
|
| 399 |
+
EVA-attribure: -----------------------------------------------------------
|
| 400 |
+
EVA-attribure: Computing CMC and mAP only for clothes-changing
|
| 401 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 402 |
+
EVA-attribure: top1:87.9% top5:89.9% top10:91.8% top20:93.8% mAP:88.1%
|
| 403 |
+
EVA-attribure: -----------------------------------------------------------
|
| 404 |
+
EVA-attribure.train: ==> Best Rank-1 87.9%, Best Map 88.1% achieved at epoch 16
|
| 405 |
+
EVA-attribure.train: Saving the model Now ....., 0.8789, 0.8813
|
| 406 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 407 |
+
EVA-attribure.train: ==> Student Training ....
|
| 408 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 409 |
+
EVA-attribure.train: ==> Student Training ....
|
| 410 |
+
EVA-attribure: Extracted features for query set, obtained torch.Size([834, 1024]) matrix
|
| 411 |
+
EVA-attribure: Extracted features for gallery set, obtained torch.Size([1074, 1024]) matrix
|
| 412 |
+
EVA-attribure: Extracting features complete in 12m 13s
|
| 413 |
+
EVA-attribure: Distance computing in 0m 0s
|
| 414 |
+
EVA-attribure: Mean Distance : (834, 1074), [-0.19355991 -0.21260658 -0.20227864 -0.19590545 -0.21110472 -0.20793486
|
| 415 |
+
-0.1935647 -0.21252955 -0.2071554 -0.20187746] , Mean Query : tensor([0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002,
|
| 416 |
+
0.0001], device='cuda:0') Mean Gallery: tensor([0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002,
|
| 417 |
+
0.0001], device='cuda:0')
|
| 418 |
+
EVA-attribure: Computing CMC and mAP
|
| 419 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 420 |
+
EVA-attribure: top1:88.6% top5:91.4% top10:92.4% top20:93.8% mAP:88.5%
|
| 421 |
+
EVA-attribure: -----------------------------------------------------------
|
| 422 |
+
EVA-attribure: Using 0m 0s
|
| 423 |
+
EVA-attribure: Computing CMC and mAP only for the same clothes setting
|
| 424 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 425 |
+
EVA-attribure: top1:100.0% top5:100.0% top10:100.0% top20:100.0% mAP:100.0%
|
| 426 |
+
EVA-attribure: -----------------------------------------------------------
|
| 427 |
+
EVA-attribure: Computing CMC and mAP only for clothes-changing
|
| 428 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 429 |
+
EVA-attribure: top1:86.9% top5:89.9% top10:91.7% top20:93.5% mAP:87.1%
|
| 430 |
+
EVA-attribure: -----------------------------------------------------------
|
| 431 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 432 |
+
EVA-attribure.train: ==> Student Training ....
|
| 433 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 434 |
+
EVA-attribure.train: ==> Student Training ....
|
| 435 |
+
EVA-attribure: Extracted features for query set, obtained torch.Size([834, 1024]) matrix
|
| 436 |
+
EVA-attribure: Extracted features for gallery set, obtained torch.Size([1074, 1024]) matrix
|
| 437 |
+
EVA-attribure: Extracting features complete in 12m 30s
|
| 438 |
+
EVA-attribure: Distance computing in 0m 0s
|
| 439 |
+
EVA-attribure: Mean Distance : (834, 1074), [-0.19600302 -0.21498318 -0.2040906 -0.19738233 -0.21350768 -0.20958823
|
| 440 |
+
-0.19640255 -0.2141574 -0.20801838 -0.20274547] , Mean Query : tensor([0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002,
|
| 441 |
+
0.0001], device='cuda:0') Mean Gallery: tensor([0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002,
|
| 442 |
+
0.0001], device='cuda:0')
|
| 443 |
+
EVA-attribure: Computing CMC and mAP
|
| 444 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 445 |
+
EVA-attribure: top1:89.6% top5:91.5% top10:92.9% top20:94.1% mAP:90.0%
|
| 446 |
+
EVA-attribure: -----------------------------------------------------------
|
| 447 |
+
EVA-attribure: Using 0m 0s
|
| 448 |
+
EVA-attribure: Computing CMC and mAP only for the same clothes setting
|
| 449 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 450 |
+
EVA-attribure: top1:100.0% top5:100.0% top10:100.0% top20:100.0% mAP:100.0%
|
| 451 |
+
EVA-attribure: -----------------------------------------------------------
|
| 452 |
+
EVA-attribure: Computing CMC and mAP only for clothes-changing
|
| 453 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 454 |
+
EVA-attribure: top1:88.0% top5:90.2% top10:92.7% top20:94.1% mAP:88.8%
|
| 455 |
+
EVA-attribure: -----------------------------------------------------------
|
| 456 |
+
EVA-attribure.train: ==> Best Rank-1 88.0%, Best Map 88.8% achieved at epoch 20
|
| 457 |
+
EVA-attribure.train: Saving the model Now ....., 0.8801, 0.8881
|
| 458 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 459 |
+
EVA-attribure.train: ==> Student Training ....
|
| 460 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 461 |
+
EVA-attribure.train: ==> Student Training ....
|
| 462 |
+
EVA-attribure: Extracted features for query set, obtained torch.Size([834, 1024]) matrix
|
| 463 |
+
EVA-attribure: Extracted features for gallery set, obtained torch.Size([1074, 1024]) matrix
|
| 464 |
+
EVA-attribure: Extracting features complete in 12m 24s
|
| 465 |
+
EVA-attribure: Distance computing in 0m 0s
|
| 466 |
+
EVA-attribure: Mean Distance : (834, 1074), [-0.19215086 -0.21109633 -0.19980139 -0.19598445 -0.20945704 -0.20509842
|
| 467 |
+
-0.19378528 -0.20958017 -0.20393753 -0.20356773] , Mean Query : tensor([0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002,
|
| 468 |
+
0.0001], device='cuda:0') Mean Gallery: tensor([0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002,
|
| 469 |
+
0.0001], device='cuda:0')
|
| 470 |
+
EVA-attribure: Computing CMC and mAP
|
| 471 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 472 |
+
EVA-attribure: top1:89.6% top5:91.2% top10:92.6% top20:94.0% mAP:89.9%
|
| 473 |
+
EVA-attribure: -----------------------------------------------------------
|
| 474 |
+
EVA-attribure: Using 0m 0s
|
| 475 |
+
EVA-attribure: Computing CMC and mAP only for the same clothes setting
|
| 476 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 477 |
+
EVA-attribure: top1:100.0% top5:100.0% top10:100.0% top20:100.0% mAP:100.0%
|
| 478 |
+
EVA-attribure: -----------------------------------------------------------
|
| 479 |
+
EVA-attribure: Computing CMC and mAP only for clothes-changing
|
| 480 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 481 |
+
EVA-attribure: top1:88.1% top5:90.0% top10:92.4% top20:94.0% mAP:88.7%
|
| 482 |
+
EVA-attribure: -----------------------------------------------------------
|
| 483 |
+
EVA-attribure.train: ==> Best Rank-1 88.1%, Best Map 88.8% achieved at epoch 22
|
| 484 |
+
EVA-attribure.train: Saving the model Now ....., 0.8813, 0.8870
|
| 485 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 486 |
+
EVA-attribure.train: ==> Student Training ....
|
| 487 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 488 |
+
EVA-attribure.train: ==> Student Training ....
|
| 489 |
+
EVA-attribure: Extracted features for query set, obtained torch.Size([834, 1024]) matrix
|
| 490 |
+
EVA-attribure: Extracted features for gallery set, obtained torch.Size([1074, 1024]) matrix
|
| 491 |
+
EVA-attribure: Extracting features complete in 12m 26s
|
| 492 |
+
EVA-attribure: Distance computing in 0m 0s
|
| 493 |
+
EVA-attribure: Mean Distance : (834, 1074), [-0.19838497 -0.21624474 -0.2050694 -0.20181057 -0.2149725 -0.2098718
|
| 494 |
+
-0.20001005 -0.21549447 -0.20949845 -0.20715332] , Mean Query : tensor([0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002,
|
| 495 |
+
0.0001], device='cuda:0') Mean Gallery: tensor([0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002,
|
| 496 |
+
0.0001], device='cuda:0')
|
| 497 |
+
EVA-attribure: Computing CMC and mAP
|
| 498 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 499 |
+
EVA-attribure: top1:88.7% top5:90.9% top10:92.4% top20:93.9% mAP:89.1%
|
| 500 |
+
EVA-attribure: -----------------------------------------------------------
|
| 501 |
+
EVA-attribure: Using 0m 0s
|
| 502 |
+
EVA-attribure: Computing CMC and mAP only for the same clothes setting
|
| 503 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 504 |
+
EVA-attribure: top1:100.0% top5:100.0% top10:100.0% top20:100.0% mAP:100.0%
|
| 505 |
+
EVA-attribure: -----------------------------------------------------------
|
| 506 |
+
EVA-attribure: Computing CMC and mAP only for clothes-changing
|
| 507 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 508 |
+
EVA-attribure: top1:87.5% top5:90.2% top10:92.4% top20:93.9% mAP:88.1%
|
| 509 |
+
EVA-attribure: -----------------------------------------------------------
|
| 510 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 511 |
+
EVA-attribure.train: ==> Student Training ....
|
| 512 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 513 |
+
EVA-attribure.train: ==> Student Training ....
|
| 514 |
+
EVA-attribure: Extracted features for query set, obtained torch.Size([834, 1024]) matrix
|
| 515 |
+
EVA-attribure: Extracted features for gallery set, obtained torch.Size([1074, 1024]) matrix
|
| 516 |
+
EVA-attribure: Extracting features complete in 12m 26s
|
| 517 |
+
EVA-attribure: Distance computing in 0m 0s
|
| 518 |
+
EVA-attribure: Mean Distance : (834, 1074), [-0.19233902 -0.21333824 -0.20094402 -0.19722241 -0.21123368 -0.2038171
|
| 519 |
+
-0.19421671 -0.2111488 -0.20538591 -0.20303032] , Mean Query : tensor([0.0001, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002,
|
| 520 |
+
0.0001], device='cuda:0') Mean Gallery: tensor([0.0001, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002,
|
| 521 |
+
0.0001], device='cuda:0')
|
| 522 |
+
EVA-attribure: Computing CMC and mAP
|
| 523 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 524 |
+
EVA-attribure: top1:89.8% top5:91.4% top10:93.0% top20:94.0% mAP:90.5%
|
| 525 |
+
EVA-attribure: -----------------------------------------------------------
|
| 526 |
+
EVA-attribure: Using 0m 0s
|
| 527 |
+
EVA-attribure: Computing CMC and mAP only for the same clothes setting
|
| 528 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 529 |
+
EVA-attribure: top1:100.0% top5:100.0% top10:100.0% top20:100.0% mAP:100.0%
|
| 530 |
+
EVA-attribure: -----------------------------------------------------------
|
| 531 |
+
EVA-attribure: Computing CMC and mAP only for clothes-changing
|
| 532 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 533 |
+
EVA-attribure: top1:88.6% top5:90.6% top10:92.9% top20:94.0% mAP:89.4%
|
| 534 |
+
EVA-attribure: -----------------------------------------------------------
|
| 535 |
+
EVA-attribure.train: ==> Best Rank-1 88.6%, Best Map 89.4% achieved at epoch 26
|
| 536 |
+
EVA-attribure.train: Saving the model Now ....., 0.8861, 0.8943
|
| 537 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 538 |
+
EVA-attribure.train: ==> Student Training ....
|
| 539 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 540 |
+
EVA-attribure.train: ==> Student Training ....
|
| 541 |
+
EVA-attribure: Extracted features for query set, obtained torch.Size([834, 1024]) matrix
|
| 542 |
+
EVA-attribure: Extracted features for gallery set, obtained torch.Size([1074, 1024]) matrix
|
| 543 |
+
EVA-attribure: Extracting features complete in 12m 25s
|
| 544 |
+
EVA-attribure: Distance computing in 0m 0s
|
| 545 |
+
EVA-attribure: Mean Distance : (834, 1074), [-0.20289192 -0.22350441 -0.21396028 -0.20664486 -0.22010793 -0.21550402
|
| 546 |
+
-0.20569092 -0.2217946 -0.21677792 -0.20888641] , Mean Query : tensor([0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002,
|
| 547 |
+
0.0001], device='cuda:0') Mean Gallery: tensor([0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002,
|
| 548 |
+
0.0001], device='cuda:0')
|
| 549 |
+
EVA-attribure: Computing CMC and mAP
|
| 550 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 551 |
+
EVA-attribure: top1:89.8% top5:91.4% top10:92.9% top20:94.0% mAP:90.4%
|
| 552 |
+
EVA-attribure: -----------------------------------------------------------
|
| 553 |
+
EVA-attribure: Using 0m 0s
|
| 554 |
+
EVA-attribure: Computing CMC and mAP only for the same clothes setting
|
| 555 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 556 |
+
EVA-attribure: top1:100.0% top5:100.0% top10:100.0% top20:100.0% mAP:100.0%
|
| 557 |
+
EVA-attribure: -----------------------------------------------------------
|
| 558 |
+
EVA-attribure: Computing CMC and mAP only for clothes-changing
|
| 559 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 560 |
+
EVA-attribure: top1:88.6% top5:90.6% top10:92.9% top20:94.0% mAP:89.4%
|
| 561 |
+
EVA-attribure: -----------------------------------------------------------
|
| 562 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 563 |
+
EVA-attribure.train: ==> Student Training ....
|
| 564 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 565 |
+
EVA-attribure.train: ==> Student Training ....
|
| 566 |
+
EVA-attribure: Extracted features for query set, obtained torch.Size([834, 1024]) matrix
|
| 567 |
+
EVA-attribure: Extracted features for gallery set, obtained torch.Size([1074, 1024]) matrix
|
| 568 |
+
EVA-attribure: Extracting features complete in 12m 25s
|
| 569 |
+
EVA-attribure: Distance computing in 0m 0s
|
| 570 |
+
EVA-attribure: Mean Distance : (834, 1074), [-0.19655281 -0.21759759 -0.20796433 -0.19899338 -0.21425858 -0.21015573
|
| 571 |
+
-0.1995696 -0.21575394 -0.21175976 -0.20245436] , Mean Query : tensor([0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002,
|
| 572 |
+
0.0001], device='cuda:0') Mean Gallery: tensor([0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002,
|
| 573 |
+
0.0001], device='cuda:0')
|
| 574 |
+
EVA-attribure: Computing CMC and mAP
|
| 575 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 576 |
+
EVA-attribure: top1:89.9% top5:91.5% top10:92.9% top20:94.0% mAP:90.7%
|
| 577 |
+
EVA-attribure: -----------------------------------------------------------
|
| 578 |
+
EVA-attribure: Using 0m 0s
|
| 579 |
+
EVA-attribure: Computing CMC and mAP only for the same clothes setting
|
| 580 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 581 |
+
EVA-attribure: top1:100.0% top5:100.0% top10:100.0% top20:100.0% mAP:100.0%
|
| 582 |
+
EVA-attribure: -----------------------------------------------------------
|
| 583 |
+
EVA-attribure: Computing CMC and mAP only for clothes-changing
|
| 584 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 585 |
+
EVA-attribure: top1:88.6% top5:90.9% top10:92.8% top20:94.0% mAP:89.7%
|
| 586 |
+
EVA-attribure: -----------------------------------------------------------
|
| 587 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 588 |
+
EVA-attribure.train: ==> Student Training ....
|
| 589 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 590 |
+
EVA-attribure.train: ==> Student Training ....
|
| 591 |
+
EVA-attribure: Extracted features for query set, obtained torch.Size([834, 1024]) matrix
|
| 592 |
+
EVA-attribure: Extracted features for gallery set, obtained torch.Size([1074, 1024]) matrix
|
| 593 |
+
EVA-attribure: Extracting features complete in 12m 27s
|
| 594 |
+
EVA-attribure: Distance computing in 0m 0s
|
| 595 |
+
EVA-attribure: Mean Distance : (834, 1074), [-0.19762269 -0.22000533 -0.21003297 -0.20183666 -0.21651858 -0.21076883
|
| 596 |
+
-0.20099273 -0.21803768 -0.21248558 -0.20277175] , Mean Query : tensor([0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002,
|
| 597 |
+
0.0001], device='cuda:0') Mean Gallery: tensor([0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002,
|
| 598 |
+
0.0001], device='cuda:0')
|
| 599 |
+
EVA-attribure: Computing CMC and mAP
|
| 600 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 601 |
+
EVA-attribure: top1:90.3% top5:91.5% top10:93.0% top20:94.0% mAP:90.7%
|
| 602 |
+
EVA-attribure: -----------------------------------------------------------
|
| 603 |
+
EVA-attribure: Using 0m 0s
|
| 604 |
+
EVA-attribure: Computing CMC and mAP only for the same clothes setting
|
| 605 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 606 |
+
EVA-attribure: top1:100.0% top5:100.0% top10:100.0% top20:100.0% mAP:100.0%
|
| 607 |
+
EVA-attribure: -----------------------------------------------------------
|
| 608 |
+
EVA-attribure: Computing CMC and mAP only for clothes-changing
|
| 609 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 610 |
+
EVA-attribure: top1:89.0% top5:90.9% top10:92.8% top20:94.0% mAP:89.7%
|
| 611 |
+
EVA-attribure: -----------------------------------------------------------
|
| 612 |
+
EVA-attribure.train: ==> Best Rank-1 89.0%, Best Map 89.7% achieved at epoch 32
|
| 613 |
+
EVA-attribure.train: Saving the model Now ....., 0.8897, 0.8969
|
| 614 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 615 |
+
EVA-attribure.train: ==> Student Training ....
|
| 616 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 617 |
+
EVA-attribure.train: ==> Student Training ....
|
| 618 |
+
EVA-attribure: Extracted features for query set, obtained torch.Size([834, 1024]) matrix
|
| 619 |
+
EVA-attribure: Extracted features for gallery set, obtained torch.Size([1074, 1024]) matrix
|
| 620 |
+
EVA-attribure: Extracting features complete in 12m 30s
|
| 621 |
+
EVA-attribure: Distance computing in 0m 0s
|
| 622 |
+
EVA-attribure: Mean Distance : (834, 1074), [-0.19917184 -0.22038499 -0.20986092 -0.20218371 -0.21573983 -0.21129692
|
| 623 |
+
-0.20173831 -0.21729952 -0.21326122 -0.20346648] , Mean Query : tensor([0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002,
|
| 624 |
+
0.0001], device='cuda:0') Mean Gallery: tensor([0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002,
|
| 625 |
+
0.0001], device='cuda:0')
|
| 626 |
+
EVA-attribure: Computing CMC and mAP
|
| 627 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 628 |
+
EVA-attribure: top1:90.6% top5:91.5% top10:93.2% top20:94.0% mAP:91.2%
|
| 629 |
+
EVA-attribure: -----------------------------------------------------------
|
| 630 |
+
EVA-attribure: Using 0m 0s
|
| 631 |
+
EVA-attribure: Computing CMC and mAP only for the same clothes setting
|
| 632 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 633 |
+
EVA-attribure: top1:100.0% top5:100.0% top10:100.0% top20:100.0% mAP:100.0%
|
| 634 |
+
EVA-attribure: -----------------------------------------------------------
|
| 635 |
+
EVA-attribure: Computing CMC and mAP only for clothes-changing
|
| 636 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 637 |
+
EVA-attribure: top1:89.3% top5:90.8% top10:92.9% top20:94.0% mAP:90.2%
|
| 638 |
+
EVA-attribure: -----------------------------------------------------------
|
| 639 |
+
EVA-attribure.train: ==> Best Rank-1 89.3%, Best Map 90.2% achieved at epoch 34
|
| 640 |
+
EVA-attribure.train: Saving the model Now ....., 0.8933, 0.9016
|
| 641 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 642 |
+
EVA-attribure.train: ==> Student Training ....
|
| 643 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 644 |
+
EVA-attribure.train: ==> Student Training ....
|
| 645 |
+
EVA-attribure: Extracted features for query set, obtained torch.Size([834, 1024]) matrix
|
| 646 |
+
EVA-attribure: Extracted features for gallery set, obtained torch.Size([1074, 1024]) matrix
|
| 647 |
+
EVA-attribure: Extracting features complete in 12m 13s
|
| 648 |
+
EVA-attribure: Distance computing in 0m 0s
|
| 649 |
+
EVA-attribure: Mean Distance : (834, 1074), [-0.19988889 -0.22072141 -0.21040423 -0.20169441 -0.2156358 -0.21071933
|
| 650 |
+
-0.20238568 -0.21833114 -0.21507655 -0.20284075] , Mean Query : tensor([0.0001, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002,
|
| 651 |
+
0.0001], device='cuda:0') Mean Gallery: tensor([0.0001, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002,
|
| 652 |
+
0.0001], device='cuda:0')
|
| 653 |
+
EVA-attribure: Computing CMC and mAP
|
| 654 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 655 |
+
EVA-attribure: top1:90.8% top5:91.5% top10:93.0% top20:94.0% mAP:91.3%
|
| 656 |
+
EVA-attribure: -----------------------------------------------------------
|
| 657 |
+
EVA-attribure: Using 0m 0s
|
| 658 |
+
EVA-attribure: Computing CMC and mAP only for the same clothes setting
|
| 659 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 660 |
+
EVA-attribure: top1:100.0% top5:100.0% top10:100.0% top20:100.0% mAP:100.0%
|
| 661 |
+
EVA-attribure: -----------------------------------------------------------
|
| 662 |
+
EVA-attribure: Computing CMC and mAP only for clothes-changing
|
| 663 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 664 |
+
EVA-attribure: top1:89.4% top5:90.9% top10:92.9% top20:94.0% mAP:90.3%
|
| 665 |
+
EVA-attribure: -----------------------------------------------------------
|
| 666 |
+
EVA-attribure.train: ==> Best Rank-1 89.4%, Best Map 90.3% achieved at epoch 36
|
| 667 |
+
EVA-attribure.train: Saving the model Now ....., 0.8945, 0.9027
|
| 668 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 669 |
+
EVA-attribure.train: ==> Student Training ....
|
| 670 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 671 |
+
EVA-attribure.train: ==> Student Training ....
|
| 672 |
+
EVA-attribure: Extracted features for query set, obtained torch.Size([834, 1024]) matrix
|
| 673 |
+
EVA-attribure: Extracted features for gallery set, obtained torch.Size([1074, 1024]) matrix
|
| 674 |
+
EVA-attribure: Extracting features complete in 12m 26s
|
| 675 |
+
EVA-attribure: Distance computing in 0m 0s
|
| 676 |
+
EVA-attribure: Mean Distance : (834, 1074), [-0.2007648 -0.22090866 -0.21026638 -0.20235877 -0.21601638 -0.21022667
|
| 677 |
+
-0.20371717 -0.21828362 -0.21468791 -0.20205396] , Mean Query : tensor([0.0001, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002,
|
| 678 |
+
0.0001], device='cuda:0') Mean Gallery: tensor([0.0001, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002,
|
| 679 |
+
0.0001], device='cuda:0')
|
| 680 |
+
EVA-attribure: Computing CMC and mAP
|
| 681 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 682 |
+
EVA-attribure: top1:91.1% top5:91.5% top10:93.2% top20:94.0% mAP:91.7%
|
| 683 |
+
EVA-attribure: -----------------------------------------------------------
|
| 684 |
+
EVA-attribure: Using 0m 0s
|
| 685 |
+
EVA-attribure: Computing CMC and mAP only for the same clothes setting
|
| 686 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 687 |
+
EVA-attribure: top1:100.0% top5:100.0% top10:100.0% top20:100.0% mAP:100.0%
|
| 688 |
+
EVA-attribure: -----------------------------------------------------------
|
| 689 |
+
EVA-attribure: Computing CMC and mAP only for clothes-changing
|
| 690 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 691 |
+
EVA-attribure: top1:89.8% top5:91.0% top10:92.9% top20:94.0% mAP:90.6%
|
| 692 |
+
EVA-attribure: -----------------------------------------------------------
|
| 693 |
+
EVA-attribure.train: ==> Best Rank-1 89.8%, Best Map 90.6% achieved at epoch 38
|
| 694 |
+
EVA-attribure.train: Saving the model Now ....., 0.8981, 0.9061
|
| 695 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 696 |
+
EVA-attribure.train: ==> Student Training ....
|
| 697 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 698 |
+
EVA-attribure.train: ==> Student Training ....
|
| 699 |
+
EVA-attribure: Extracted features for query set, obtained torch.Size([834, 1024]) matrix
|
| 700 |
+
EVA-attribure: Extracted features for gallery set, obtained torch.Size([1074, 1024]) matrix
|
| 701 |
+
EVA-attribure: Extracting features complete in 12m 26s
|
| 702 |
+
EVA-attribure: Distance computing in 0m 0s
|
| 703 |
+
EVA-attribure: Mean Distance : (834, 1074), [-0.1991053 -0.21884097 -0.20844916 -0.20183793 -0.21453165 -0.20972642
|
| 704 |
+
-0.20337991 -0.21718732 -0.21245489 -0.20170923] , Mean Query : tensor([0.0001, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002,
|
| 705 |
+
0.0001], device='cuda:0') Mean Gallery: tensor([0.0001, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002,
|
| 706 |
+
0.0001], device='cuda:0')
|
| 707 |
+
EVA-attribure: Computing CMC and mAP
|
| 708 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 709 |
+
EVA-attribure: top1:91.1% top5:91.5% top10:93.6% top20:93.9% mAP:91.8%
|
| 710 |
+
EVA-attribure: -----------------------------------------------------------
|
| 711 |
+
EVA-attribure: Using 0m 0s
|
| 712 |
+
EVA-attribure: Computing CMC and mAP only for the same clothes setting
|
| 713 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 714 |
+
EVA-attribure: top1:100.0% top5:100.0% top10:100.0% top20:100.0% mAP:100.0%
|
| 715 |
+
EVA-attribure: -----------------------------------------------------------
|
| 716 |
+
EVA-attribure: Computing CMC and mAP only for clothes-changing
|
| 717 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 718 |
+
EVA-attribure: top1:89.8% top5:90.8% top10:93.4% top20:93.9% mAP:90.7%
|
| 719 |
+
EVA-attribure: -----------------------------------------------------------
|
| 720 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 721 |
+
EVA-attribure.train: ==> Student Training ....
|
| 722 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 723 |
+
EVA-attribure.train: ==> Student Training ....
|
| 724 |
+
EVA-attribure: Extracted features for query set, obtained torch.Size([834, 1024]) matrix
|
| 725 |
+
EVA-attribure: Extracted features for gallery set, obtained torch.Size([1074, 1024]) matrix
|
| 726 |
+
EVA-attribure: Extracting features complete in 12m 26s
|
| 727 |
+
EVA-attribure: Distance computing in 0m 0s
|
| 728 |
+
EVA-attribure: Mean Distance : (834, 1074), [-0.19867983 -0.2212026 -0.21106015 -0.20055479 -0.2153733 -0.21053597
|
| 729 |
+
-0.20293616 -0.21961471 -0.21414019 -0.202192 ] , Mean Query : tensor([0.0001, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002,
|
| 730 |
+
0.0001], device='cuda:0') Mean Gallery: tensor([0.0001, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002,
|
| 731 |
+
0.0001], device='cuda:0')
|
| 732 |
+
EVA-attribure: Computing CMC and mAP
|
| 733 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 734 |
+
EVA-attribure: top1:91.4% top5:92.0% top10:93.6% top20:93.9% mAP:91.7%
|
| 735 |
+
EVA-attribure: -----------------------------------------------------------
|
| 736 |
+
EVA-attribure: Using 0m 0s
|
| 737 |
+
EVA-attribure: Computing CMC and mAP only for the same clothes setting
|
| 738 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 739 |
+
EVA-attribure: top1:100.0% top5:100.0% top10:100.0% top20:100.0% mAP:100.0%
|
| 740 |
+
EVA-attribure: -----------------------------------------------------------
|
| 741 |
+
EVA-attribure: Computing CMC and mAP only for clothes-changing
|
| 742 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 743 |
+
EVA-attribure: top1:90.3% top5:91.4% top10:93.5% top20:93.9% mAP:90.7%
|
| 744 |
+
EVA-attribure: -----------------------------------------------------------
|
| 745 |
+
EVA-attribure.train: ==> Best Rank-1 90.3%, Best Map 90.7% achieved at epoch 42
|
| 746 |
+
EVA-attribure.train: Saving the model Now ....., 0.9029, 0.9074
|
| 747 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 748 |
+
EVA-attribure.train: ==> Student Training ....
|
| 749 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 750 |
+
EVA-attribure.train: ==> Student Training ....
|
| 751 |
+
EVA-attribure: Extracted features for query set, obtained torch.Size([834, 1024]) matrix
|
| 752 |
+
EVA-attribure: Extracted features for gallery set, obtained torch.Size([1074, 1024]) matrix
|
| 753 |
+
EVA-attribure: Extracting features complete in 12m 25s
|
| 754 |
+
EVA-attribure: Distance computing in 0m 0s
|
| 755 |
+
EVA-attribure: Mean Distance : (834, 1074), [-0.20258223 -0.22301075 -0.21122538 -0.20378838 -0.21744205 -0.21160859
|
| 756 |
+
-0.20683615 -0.22129561 -0.21502475 -0.20208798] , Mean Query : tensor([0.0001, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002,
|
| 757 |
+
0.0001], device='cuda:0') Mean Gallery: tensor([0.0001, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002,
|
| 758 |
+
0.0001], device='cuda:0')
|
| 759 |
+
EVA-attribure: Computing CMC and mAP
|
| 760 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 761 |
+
EVA-attribure: top1:91.1% top5:91.5% top10:93.0% top20:93.9% mAP:91.8%
|
| 762 |
+
EVA-attribure: -----------------------------------------------------------
|
| 763 |
+
EVA-attribure: Using 0m 0s
|
| 764 |
+
EVA-attribure: Computing CMC and mAP only for the same clothes setting
|
| 765 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 766 |
+
EVA-attribure: top1:100.0% top5:100.0% top10:100.0% top20:100.0% mAP:100.0%
|
| 767 |
+
EVA-attribure: -----------------------------------------------------------
|
| 768 |
+
EVA-attribure: Computing CMC and mAP only for clothes-changing
|
| 769 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 770 |
+
EVA-attribure: top1:90.3% top5:91.0% top10:92.9% top20:93.9% mAP:90.9%
|
| 771 |
+
EVA-attribure: -----------------------------------------------------------
|
| 772 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 773 |
+
EVA-attribure.train: ==> Student Training ....
|
| 774 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 775 |
+
EVA-attribure.train: ==> Student Training ....
|
| 776 |
+
EVA-attribure: Extracted features for query set, obtained torch.Size([834, 1024]) matrix
|
| 777 |
+
EVA-attribure: Extracted features for gallery set, obtained torch.Size([1074, 1024]) matrix
|
| 778 |
+
EVA-attribure: Extracting features complete in 12m 26s
|
| 779 |
+
EVA-attribure: Distance computing in 0m 0s
|
| 780 |
+
EVA-attribure: Mean Distance : (834, 1074), [-0.20427069 -0.22599487 -0.21405391 -0.20579067 -0.22111861 -0.21213984
|
| 781 |
+
-0.20856202 -0.22375625 -0.21731643 -0.20318936] , Mean Query : tensor([0.0001, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002,
|
| 782 |
+
0.0001], device='cuda:0') Mean Gallery: tensor([0.0001, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002,
|
| 783 |
+
0.0001], device='cuda:0')
|
| 784 |
+
EVA-attribure: Computing CMC and mAP
|
| 785 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 786 |
+
EVA-attribure: top1:91.0% top5:92.0% top10:93.4% top20:93.9% mAP:91.8%
|
| 787 |
+
EVA-attribure: -----------------------------------------------------------
|
| 788 |
+
EVA-attribure: Using 0m 0s
|
| 789 |
+
EVA-attribure: Computing CMC and mAP only for the same clothes setting
|
| 790 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 791 |
+
EVA-attribure: top1:100.0% top5:100.0% top10:100.0% top20:100.0% mAP:100.0%
|
| 792 |
+
EVA-attribure: -----------------------------------------------------------
|
| 793 |
+
EVA-attribure: Computing CMC and mAP only for clothes-changing
|
| 794 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 795 |
+
EVA-attribure: top1:89.8% top5:91.4% top10:93.3% top20:93.9% mAP:90.8%
|
| 796 |
+
EVA-attribure: -----------------------------------------------------------
|
| 797 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 798 |
+
EVA-attribure.train: ==> Student Training ....
|
| 799 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 800 |
+
EVA-attribure.train: ==> Student Training ....
|
| 801 |
+
EVA-attribure: Extracted features for query set, obtained torch.Size([834, 1024]) matrix
|
| 802 |
+
EVA-attribure: Extracted features for gallery set, obtained torch.Size([1074, 1024]) matrix
|
| 803 |
+
EVA-attribure: Extracting features complete in 12m 26s
|
| 804 |
+
EVA-attribure: Distance computing in 0m 0s
|
| 805 |
+
EVA-attribure: Mean Distance : (834, 1074), [-0.20003039 -0.22018051 -0.20772567 -0.20193002 -0.21584944 -0.2053007
|
| 806 |
+
-0.2051253 -0.2184594 -0.21093611 -0.20070086] , Mean Query : tensor([0.0001, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002,
|
| 807 |
+
0.0001], device='cuda:0') Mean Gallery: tensor([0.0001, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002,
|
| 808 |
+
0.0001], device='cuda:0')
|
| 809 |
+
EVA-attribure: Computing CMC and mAP
|
| 810 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 811 |
+
EVA-attribure: top1:91.1% top5:92.0% top10:93.0% top20:93.9% mAP:91.5%
|
| 812 |
+
EVA-attribure: -----------------------------------------------------------
|
| 813 |
+
EVA-attribure: Using 0m 0s
|
| 814 |
+
EVA-attribure: Computing CMC and mAP only for the same clothes setting
|
| 815 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 816 |
+
EVA-attribure: top1:100.0% top5:100.0% top10:100.0% top20:100.0% mAP:100.0%
|
| 817 |
+
EVA-attribure: -----------------------------------------------------------
|
| 818 |
+
EVA-attribure: Computing CMC and mAP only for clothes-changing
|
| 819 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 820 |
+
EVA-attribure: top1:90.2% top5:91.5% top10:92.9% top20:93.9% mAP:90.6%
|
| 821 |
+
EVA-attribure: -----------------------------------------------------------
|
| 822 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 823 |
+
EVA-attribure.train: ==> Student Training ....
|
| 824 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 825 |
+
EVA-attribure.train: ==> Student Training ....
|
| 826 |
+
EVA-attribure: Extracted features for query set, obtained torch.Size([834, 1024]) matrix
|
| 827 |
+
EVA-attribure: Extracted features for gallery set, obtained torch.Size([1074, 1024]) matrix
|
| 828 |
+
EVA-attribure: Extracting features complete in 12m 26s
|
| 829 |
+
EVA-attribure: Distance computing in 0m 0s
|
| 830 |
+
EVA-attribure: Mean Distance : (834, 1074), [-0.2071178 -0.22493245 -0.21208054 -0.20860605 -0.2206089 -0.21014346
|
| 831 |
+
-0.21173076 -0.22269449 -0.21604745 -0.20719759] , Mean Query : tensor([0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002,
|
| 832 |
+
0.0001], device='cuda:0') Mean Gallery: tensor([0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002,
|
| 833 |
+
0.0001], device='cuda:0')
|
| 834 |
+
EVA-attribure: Computing CMC and mAP
|
| 835 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 836 |
+
EVA-attribure: top1:91.0% top5:92.0% top10:93.6% top20:94.0% mAP:91.3%
|
| 837 |
+
EVA-attribure: -----------------------------------------------------------
|
| 838 |
+
EVA-attribure: Using 0m 0s
|
| 839 |
+
EVA-attribure: Computing CMC and mAP only for the same clothes setting
|
| 840 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 841 |
+
EVA-attribure: top1:100.0% top5:100.0% top10:100.0% top20:100.0% mAP:100.0%
|
| 842 |
+
EVA-attribure: -----------------------------------------------------------
|
| 843 |
+
EVA-attribure: Computing CMC and mAP only for clothes-changing
|
| 844 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 845 |
+
EVA-attribure: top1:89.9% top5:91.4% top10:93.5% top20:94.0% mAP:90.4%
|
| 846 |
+
EVA-attribure: -----------------------------------------------------------
|
| 847 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 848 |
+
EVA-attribure.train: ==> Student Training ....
|
| 849 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 850 |
+
EVA-attribure.train: ==> Student Training ....
|
| 851 |
+
EVA-attribure: Extracted features for query set, obtained torch.Size([834, 1024]) matrix
|
| 852 |
+
EVA-attribure: Extracted features for gallery set, obtained torch.Size([1074, 1024]) matrix
|
| 853 |
+
EVA-attribure: Extracting features complete in 12m 25s
|
| 854 |
+
EVA-attribure: Distance computing in 0m 0s
|
| 855 |
+
EVA-attribure: Mean Distance : (834, 1074), [-0.21078369 -0.23149595 -0.21767756 -0.2127909 -0.22736692 -0.21571292
|
| 856 |
+
-0.21581937 -0.23031485 -0.22148167 -0.21195483] , Mean Query : tensor([0.0001, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002,
|
| 857 |
+
0.0001], device='cuda:0') Mean Gallery: tensor([0.0001, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002,
|
| 858 |
+
0.0001], device='cuda:0')
|
| 859 |
+
EVA-attribure: Computing CMC and mAP
|
| 860 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 861 |
+
EVA-attribure: top1:90.3% top5:92.0% top10:93.6% top20:93.9% mAP:91.5%
|
| 862 |
+
EVA-attribure: -----------------------------------------------------------
|
| 863 |
+
EVA-attribure: Using 0m 0s
|
| 864 |
+
EVA-attribure: Computing CMC and mAP only for the same clothes setting
|
| 865 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 866 |
+
EVA-attribure: top1:100.0% top5:100.0% top10:100.0% top20:100.0% mAP:100.0%
|
| 867 |
+
EVA-attribure: -----------------------------------------------------------
|
| 868 |
+
EVA-attribure: Computing CMC and mAP only for clothes-changing
|
| 869 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 870 |
+
EVA-attribure: top1:89.2% top5:91.4% top10:93.5% top20:93.9% mAP:90.5%
|
| 871 |
+
EVA-attribure: -----------------------------------------------------------
|
| 872 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 873 |
+
EVA-attribure.train: ==> Student Training ....
|
| 874 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 875 |
+
EVA-attribure.train: ==> Student Training ....
|
| 876 |
+
EVA-attribure: Extracted features for query set, obtained torch.Size([834, 1024]) matrix
|
| 877 |
+
EVA-attribure: Extracted features for gallery set, obtained torch.Size([1074, 1024]) matrix
|
| 878 |
+
EVA-attribure: Extracting features complete in 12m 25s
|
| 879 |
+
EVA-attribure: Distance computing in 0m 0s
|
| 880 |
+
EVA-attribure: Mean Distance : (834, 1074), [-0.20944323 -0.23074512 -0.21660303 -0.21139698 -0.22588632 -0.21373416
|
| 881 |
+
-0.2139053 -0.22900234 -0.22124623 -0.21061112] , Mean Query : tensor([0.0001, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002,
|
| 882 |
+
0.0001], device='cuda:0') Mean Gallery: tensor([0.0001, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002,
|
| 883 |
+
0.0001], device='cuda:0')
|
| 884 |
+
EVA-attribure: Computing CMC and mAP
|
| 885 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 886 |
+
EVA-attribure: top1:90.2% top5:92.1% top10:93.8% top20:93.9% mAP:91.4%
|
| 887 |
+
EVA-attribure: -----------------------------------------------------------
|
| 888 |
+
EVA-attribure: Using 0m 0s
|
| 889 |
+
EVA-attribure: Computing CMC and mAP only for the same clothes setting
|
| 890 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 891 |
+
EVA-attribure: top1:100.0% top5:100.0% top10:100.0% top20:100.0% mAP:100.0%
|
| 892 |
+
EVA-attribure: -----------------------------------------------------------
|
| 893 |
+
EVA-attribure: Computing CMC and mAP only for clothes-changing
|
| 894 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 895 |
+
EVA-attribure: top1:89.1% top5:91.6% top10:93.6% top20:93.9% mAP:90.4%
|
| 896 |
+
EVA-attribure: -----------------------------------------------------------
|
| 897 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 898 |
+
EVA-attribure.train: ==> Student Training ....
|
| 899 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 900 |
+
EVA-attribure.train: ==> Student Training ....
|
| 901 |
+
EVA-attribure: Extracted features for query set, obtained torch.Size([834, 1024]) matrix
|
| 902 |
+
EVA-attribure: Extracted features for gallery set, obtained torch.Size([1074, 1024]) matrix
|
| 903 |
+
EVA-attribure: Extracting features complete in 12m 25s
|
| 904 |
+
EVA-attribure: Distance computing in 0m 0s
|
| 905 |
+
EVA-attribure: Mean Distance : (834, 1074), [-0.2046912 -0.22591269 -0.21127653 -0.20628245 -0.22144523 -0.21064247
|
| 906 |
+
-0.20895186 -0.2241107 -0.21602699 -0.2071529 ] , Mean Query : tensor([0.0001, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002,
|
| 907 |
+
0.0001], device='cuda:0') Mean Gallery: tensor([0.0001, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002,
|
| 908 |
+
0.0001], device='cuda:0')
|
| 909 |
+
EVA-attribure: Computing CMC and mAP
|
| 910 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 911 |
+
EVA-attribure: top1:90.9% top5:91.8% top10:93.8% top20:93.9% mAP:91.4%
|
| 912 |
+
EVA-attribure: -----------------------------------------------------------
|
| 913 |
+
EVA-attribure: Using 0m 0s
|
| 914 |
+
EVA-attribure: Computing CMC and mAP only for the same clothes setting
|
| 915 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 916 |
+
EVA-attribure: top1:100.0% top5:100.0% top10:100.0% top20:100.0% mAP:100.0%
|
| 917 |
+
EVA-attribure: -----------------------------------------------------------
|
| 918 |
+
EVA-attribure: Computing CMC and mAP only for clothes-changing
|
| 919 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 920 |
+
EVA-attribure: top1:90.0% top5:91.4% top10:93.6% top20:93.9% mAP:90.6%
|
| 921 |
+
EVA-attribure: -----------------------------------------------------------
|
| 922 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 923 |
+
EVA-attribure.train: ==> Student Training ....
|
| 924 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 925 |
+
EVA-attribure.train: ==> Student Training ....
|
| 926 |
+
EVA-attribure: Extracted features for query set, obtained torch.Size([834, 1024]) matrix
|
| 927 |
+
EVA-attribure: Extracted features for gallery set, obtained torch.Size([1074, 1024]) matrix
|
| 928 |
+
EVA-attribure: Extracting features complete in 12m 27s
|
| 929 |
+
EVA-attribure: Distance computing in 0m 0s
|
| 930 |
+
EVA-attribure: Mean Distance : (834, 1074), [-0.2141051 -0.2363185 -0.2223109 -0.21658073 -0.23195533 -0.22128704
|
| 931 |
+
-0.21918157 -0.23607329 -0.22682977 -0.21587715] , Mean Query : tensor([0.0001, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002,
|
| 932 |
+
0.0001], device='cuda:0') Mean Gallery: tensor([0.0001, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002,
|
| 933 |
+
0.0001], device='cuda:0')
|
| 934 |
+
EVA-attribure: Computing CMC and mAP
|
| 935 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 936 |
+
EVA-attribure: top1:90.8% top5:92.0% top10:93.8% top20:94.0% mAP:91.5%
|
| 937 |
+
EVA-attribure: -----------------------------------------------------------
|
| 938 |
+
EVA-attribure: Using 0m 0s
|
| 939 |
+
EVA-attribure: Computing CMC and mAP only for the same clothes setting
|
| 940 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 941 |
+
EVA-attribure: top1:100.0% top5:100.0% top10:100.0% top20:100.0% mAP:100.0%
|
| 942 |
+
EVA-attribure: -----------------------------------------------------------
|
| 943 |
+
EVA-attribure: Computing CMC and mAP only for clothes-changing
|
| 944 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 945 |
+
EVA-attribure: top1:89.9% top5:91.5% top10:93.6% top20:94.0% mAP:90.6%
|
| 946 |
+
EVA-attribure: -----------------------------------------------------------
|
| 947 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 948 |
+
EVA-attribure.train: ==> Student Training ....
|
| 949 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 950 |
+
EVA-attribure.train: ==> Student Training ....
|
| 951 |
+
EVA-attribure: Extracted features for query set, obtained torch.Size([834, 1024]) matrix
|
| 952 |
+
EVA-attribure: Extracted features for gallery set, obtained torch.Size([1074, 1024]) matrix
|
| 953 |
+
EVA-attribure: Extracting features complete in 12m 27s
|
| 954 |
+
EVA-attribure: Distance computing in 0m 0s
|
| 955 |
+
EVA-attribure: Mean Distance : (834, 1074), [-0.20744948 -0.22740301 -0.21397954 -0.20913096 -0.22360489 -0.21176414
|
| 956 |
+
-0.21196672 -0.22697778 -0.2185743 -0.2083378 ] , Mean Query : tensor([0.0001, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002,
|
| 957 |
+
0.0001], device='cuda:0') Mean Gallery: tensor([0.0001, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002,
|
| 958 |
+
0.0001], device='cuda:0')
|
| 959 |
+
EVA-attribure: Computing CMC and mAP
|
| 960 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 961 |
+
EVA-attribure: top1:91.1% top5:92.0% top10:93.8% top20:94.0% mAP:91.5%
|
| 962 |
+
EVA-attribure: -----------------------------------------------------------
|
| 963 |
+
EVA-attribure: Using 0m 0s
|
| 964 |
+
EVA-attribure: Computing CMC and mAP only for the same clothes setting
|
| 965 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 966 |
+
EVA-attribure: top1:100.0% top5:100.0% top10:100.0% top20:100.0% mAP:100.0%
|
| 967 |
+
EVA-attribure: -----------------------------------------------------------
|
| 968 |
+
EVA-attribure: Computing CMC and mAP only for clothes-changing
|
| 969 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 970 |
+
EVA-attribure: top1:90.3% top5:91.5% top10:93.6% top20:94.0% mAP:90.6%
|
| 971 |
+
EVA-attribure: -----------------------------------------------------------
|
| 972 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 973 |
+
EVA-attribure.train: ==> Student Training ....
|
| 974 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 975 |
+
EVA-attribure.train: ==> Student Training ....
|
| 976 |
+
EVA-attribure: Extracted features for query set, obtained torch.Size([834, 1024]) matrix
|
| 977 |
+
EVA-attribure: Extracted features for gallery set, obtained torch.Size([1074, 1024]) matrix
|
| 978 |
+
EVA-attribure: Extracting features complete in 12m 26s
|
| 979 |
+
EVA-attribure: Distance computing in 0m 0s
|
| 980 |
+
EVA-attribure: Mean Distance : (834, 1074), [-0.21010579 -0.23006411 -0.21551466 -0.21144603 -0.22609787 -0.21209757
|
| 981 |
+
-0.2137248 -0.22884774 -0.21981306 -0.21033832] , Mean Query : tensor([0.0001, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002,
|
| 982 |
+
0.0001], device='cuda:0') Mean Gallery: tensor([0.0001, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002,
|
| 983 |
+
0.0001], device='cuda:0')
|
| 984 |
+
EVA-attribure: Computing CMC and mAP
|
| 985 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 986 |
+
EVA-attribure: top1:90.5% top5:92.0% top10:93.8% top20:93.9% mAP:91.0%
|
| 987 |
+
EVA-attribure: -----------------------------------------------------------
|
| 988 |
+
EVA-attribure: Using 0m 0s
|
| 989 |
+
EVA-attribure: Computing CMC and mAP only for the same clothes setting
|
| 990 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 991 |
+
EVA-attribure: top1:100.0% top5:100.0% top10:100.0% top20:100.0% mAP:100.0%
|
| 992 |
+
EVA-attribure: -----------------------------------------------------------
|
| 993 |
+
EVA-attribure: Computing CMC and mAP only for clothes-changing
|
| 994 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 995 |
+
EVA-attribure: top1:89.7% top5:91.5% top10:93.6% top20:93.9% mAP:90.2%
|
| 996 |
+
EVA-attribure: -----------------------------------------------------------
|
| 997 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 998 |
+
EVA-attribure.train: ==> Student Training ....
|
| 999 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 1000 |
+
EVA-attribure.train: ==> Student Training ....
|
| 1001 |
+
EVA-attribure: Extracted features for query set, obtained torch.Size([834, 1024]) matrix
|
| 1002 |
+
EVA-attribure: Extracted features for gallery set, obtained torch.Size([1074, 1024]) matrix
|
| 1003 |
+
EVA-attribure: Extracting features complete in 12m 26s
|
| 1004 |
+
EVA-attribure: Distance computing in 0m 0s
|
| 1005 |
+
EVA-attribure: Mean Distance : (834, 1074), [-0.21132931 -0.23147546 -0.21606588 -0.21318837 -0.22740005 -0.2147094
|
| 1006 |
+
-0.21508133 -0.2301819 -0.22096486 -0.21176468] , Mean Query : tensor([0.0001, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002,
|
| 1007 |
+
0.0001], device='cuda:0') Mean Gallery: tensor([0.0001, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002,
|
| 1008 |
+
0.0001], device='cuda:0')
|
| 1009 |
+
EVA-attribure: Computing CMC and mAP
|
| 1010 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 1011 |
+
EVA-attribure: top1:90.5% top5:92.0% top10:93.8% top20:93.9% mAP:90.8%
|
| 1012 |
+
EVA-attribure: -----------------------------------------------------------
|
| 1013 |
+
EVA-attribure: Using 0m 0s
|
| 1014 |
+
EVA-attribure: Computing CMC and mAP only for the same clothes setting
|
| 1015 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 1016 |
+
EVA-attribure: top1:100.0% top5:100.0% top10:100.0% top20:100.0% mAP:100.0%
|
| 1017 |
+
EVA-attribure: -----------------------------------------------------------
|
| 1018 |
+
EVA-attribure: Computing CMC and mAP only for clothes-changing
|
| 1019 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 1020 |
+
EVA-attribure: top1:89.8% top5:91.5% top10:93.6% top20:93.9% mAP:90.0%
|
| 1021 |
+
EVA-attribure: -----------------------------------------------------------
|
| 1022 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 1023 |
+
EVA-attribure.train: ==> Student Training ....
|
| 1024 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 1025 |
+
EVA-attribure.train: ==> Student Training ....
|
| 1026 |
+
EVA-attribure: Extracted features for query set, obtained torch.Size([834, 1024]) matrix
|
| 1027 |
+
EVA-attribure: Extracted features for gallery set, obtained torch.Size([1074, 1024]) matrix
|
| 1028 |
+
EVA-attribure: Extracting features complete in 12m 26s
|
| 1029 |
+
EVA-attribure: Distance computing in 0m 0s
|
| 1030 |
+
EVA-attribure: Mean Distance : (834, 1074), [-0.20947438 -0.2314307 -0.21530941 -0.2111264 -0.22629781 -0.21199468
|
| 1031 |
+
-0.21365239 -0.22995219 -0.21955213 -0.21001677] , Mean Query : tensor([0.0001, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002,
|
| 1032 |
+
0.0001], device='cuda:0') Mean Gallery: tensor([0.0001, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002,
|
| 1033 |
+
0.0001], device='cuda:0')
|
| 1034 |
+
EVA-attribure: Computing CMC and mAP
|
| 1035 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 1036 |
+
EVA-attribure: top1:90.3% top5:92.1% top10:93.9% top20:94.0% mAP:90.8%
|
| 1037 |
+
EVA-attribure: -----------------------------------------------------------
|
| 1038 |
+
EVA-attribure: Using 0m 0s
|
| 1039 |
+
EVA-attribure: Computing CMC and mAP only for the same clothes setting
|
| 1040 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 1041 |
+
EVA-attribure: top1:100.0% top5:100.0% top10:100.0% top20:100.0% mAP:100.0%
|
| 1042 |
+
EVA-attribure: -----------------------------------------------------------
|
| 1043 |
+
EVA-attribure: Computing CMC and mAP only for clothes-changing
|
| 1044 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 1045 |
+
EVA-attribure: top1:89.6% top5:91.6% top10:93.8% top20:94.0% mAP:90.1%
|
| 1046 |
+
EVA-attribure: -----------------------------------------------------------
|
| 1047 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 1048 |
+
EVA-attribure.train: ==> Student Training ....
|
| 1049 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 1050 |
+
EVA-attribure.train: ==> Student Training ....
|
| 1051 |
+
EVA-attribure: Extracted features for query set, obtained torch.Size([834, 1024]) matrix
|
| 1052 |
+
EVA-attribure: Extracted features for gallery set, obtained torch.Size([1074, 1024]) matrix
|
| 1053 |
+
EVA-attribure: Extracting features complete in 12m 26s
|
| 1054 |
+
EVA-attribure: Distance computing in 0m 0s
|
| 1055 |
+
EVA-attribure: Mean Distance : (834, 1074), [-0.20917112 -0.22893745 -0.21343894 -0.2110756 -0.22453667 -0.21080992
|
| 1056 |
+
-0.21373034 -0.22786516 -0.21855876 -0.20977062] , Mean Query : tensor([0.0001, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002,
|
| 1057 |
+
0.0001], device='cuda:0') Mean Gallery: tensor([0.0001, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002,
|
| 1058 |
+
0.0001], device='cuda:0')
|
| 1059 |
+
EVA-attribure: Computing CMC and mAP
|
| 1060 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 1061 |
+
EVA-attribure: top1:89.7% top5:91.8% top10:93.9% top20:94.0% mAP:90.3%
|
| 1062 |
+
EVA-attribure: -----------------------------------------------------------
|
| 1063 |
+
EVA-attribure: Using 0m 0s
|
| 1064 |
+
EVA-attribure: Computing CMC and mAP only for the same clothes setting
|
| 1065 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 1066 |
+
EVA-attribure: top1:100.0% top5:100.0% top10:100.0% top20:100.0% mAP:100.0%
|
| 1067 |
+
EVA-attribure: -----------------------------------------------------------
|
| 1068 |
+
EVA-attribure: Computing CMC and mAP only for clothes-changing
|
| 1069 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 1070 |
+
EVA-attribure: top1:88.8% top5:91.4% top10:93.8% top20:94.0% mAP:89.5%
|
| 1071 |
+
EVA-attribure: -----------------------------------------------------------
|
| 1072 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 1073 |
+
EVA-attribure.train: ==> Student Training ....
|
| 1074 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 1075 |
+
EVA-attribure.train: ==> Student Training ....
|
| 1076 |
+
EVA-attribure: Extracted features for query set, obtained torch.Size([834, 1024]) matrix
|
| 1077 |
+
EVA-attribure: Extracted features for gallery set, obtained torch.Size([1074, 1024]) matrix
|
| 1078 |
+
EVA-attribure: Extracting features complete in 12m 26s
|
| 1079 |
+
EVA-attribure: Distance computing in 0m 0s
|
| 1080 |
+
EVA-attribure: Mean Distance : (834, 1074), [-0.21074429 -0.23137325 -0.21573906 -0.21263233 -0.22727495 -0.21380158
|
| 1081 |
+
-0.21490979 -0.23053336 -0.22033644 -0.2118777 ] , Mean Query : tensor([0.0001, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002,
|
| 1082 |
+
0.0001], device='cuda:0') Mean Gallery: tensor([0.0001, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002,
|
| 1083 |
+
0.0001], device='cuda:0')
|
| 1084 |
+
EVA-attribure: Computing CMC and mAP
|
| 1085 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 1086 |
+
EVA-attribure: top1:90.9% top5:92.1% top10:93.8% top20:93.9% mAP:91.5%
|
| 1087 |
+
EVA-attribure: -----------------------------------------------------------
|
| 1088 |
+
EVA-attribure: Using 0m 0s
|
| 1089 |
+
EVA-attribure: Computing CMC and mAP only for the same clothes setting
|
| 1090 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 1091 |
+
EVA-attribure: top1:100.0% top5:100.0% top10:100.0% top20:100.0% mAP:100.0%
|
| 1092 |
+
EVA-attribure: -----------------------------------------------------------
|
| 1093 |
+
EVA-attribure: Computing CMC and mAP only for clothes-changing
|
| 1094 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 1095 |
+
EVA-attribure: top1:90.2% top5:91.6% top10:93.6% top20:93.9% mAP:90.8%
|
| 1096 |
+
EVA-attribure: -----------------------------------------------------------
|
| 1097 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 1098 |
+
EVA-attribure.train: ==> Student Training ....
|
| 1099 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 1100 |
+
EVA-attribure.train: ==> Student Training ....
|
| 1101 |
+
EVA-attribure: Extracted features for query set, obtained torch.Size([834, 1024]) matrix
|
| 1102 |
+
EVA-attribure: Extracted features for gallery set, obtained torch.Size([1074, 1024]) matrix
|
| 1103 |
+
EVA-attribure: Extracting features complete in 12m 31s
|
| 1104 |
+
EVA-attribure: Distance computing in 0m 0s
|
| 1105 |
+
EVA-attribure: Mean Distance : (834, 1074), [-0.21315248 -0.23214054 -0.21794829 -0.21532787 -0.2284778 -0.21513326
|
| 1106 |
+
-0.21718617 -0.23122525 -0.2228269 -0.21332757] , Mean Query : tensor([0.0001, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002,
|
| 1107 |
+
0.0001], device='cuda:0') Mean Gallery: tensor([0.0001, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002,
|
| 1108 |
+
0.0001], device='cuda:0')
|
| 1109 |
+
EVA-attribure: Computing CMC and mAP
|
| 1110 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 1111 |
+
EVA-attribure: top1:91.0% top5:92.1% top10:93.8% top20:93.9% mAP:91.2%
|
| 1112 |
+
EVA-attribure: -----------------------------------------------------------
|
| 1113 |
+
EVA-attribure: Using 0m 0s
|
| 1114 |
+
EVA-attribure: Computing CMC and mAP only for the same clothes setting
|
| 1115 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 1116 |
+
EVA-attribure: top1:100.0% top5:100.0% top10:100.0% top20:100.0% mAP:100.0%
|
| 1117 |
+
EVA-attribure: -----------------------------------------------------------
|
| 1118 |
+
EVA-attribure: Computing CMC and mAP only for clothes-changing
|
| 1119 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 1120 |
+
EVA-attribure: top1:90.2% top5:91.6% top10:93.6% top20:93.9% mAP:90.4%
|
| 1121 |
+
EVA-attribure: -----------------------------------------------------------
|
| 1122 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 1123 |
+
EVA-attribure.train: ==> Student Training ....
|
| 1124 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 1125 |
+
EVA-attribure.train: ==> Student Training ....
|
| 1126 |
+
EVA-attribure: Extracted features for query set, obtained torch.Size([834, 1024]) matrix
|
| 1127 |
+
EVA-attribure: Extracted features for gallery set, obtained torch.Size([1074, 1024]) matrix
|
| 1128 |
+
EVA-attribure: Extracting features complete in 12m 28s
|
| 1129 |
+
EVA-attribure: Distance computing in 0m 0s
|
| 1130 |
+
EVA-attribure: Mean Distance : (834, 1074), [-0.2115355 -0.2308264 -0.2163416 -0.21375622 -0.22679903 -0.21408999
|
| 1131 |
+
-0.21559504 -0.2303026 -0.22116365 -0.2126784 ] , Mean Query : tensor([0.0001, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002,
|
| 1132 |
+
0.0001], device='cuda:0') Mean Gallery: tensor([0.0001, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002,
|
| 1133 |
+
0.0001], device='cuda:0')
|
| 1134 |
+
EVA-attribure: Computing CMC and mAP
|
| 1135 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 1136 |
+
EVA-attribure: top1:91.1% top5:92.1% top10:93.8% top20:93.9% mAP:91.5%
|
| 1137 |
+
EVA-attribure: -----------------------------------------------------------
|
| 1138 |
+
EVA-attribure: Using 0m 0s
|
| 1139 |
+
EVA-attribure: Computing CMC and mAP only for the same clothes setting
|
| 1140 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 1141 |
+
EVA-attribure: top1:100.0% top5:100.0% top10:100.0% top20:100.0% mAP:100.0%
|
| 1142 |
+
EVA-attribure: -----------------------------------------------------------
|
| 1143 |
+
EVA-attribure: Computing CMC and mAP only for clothes-changing
|
| 1144 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 1145 |
+
EVA-attribure: top1:90.4% top5:91.6% top10:93.6% top20:93.9% mAP:90.7%
|
| 1146 |
+
EVA-attribure: -----------------------------------------------------------
|
| 1147 |
+
EVA-attribure.train: ==> Best Rank-1 90.4%, Best Map 90.9% achieved at epoch 74
|
| 1148 |
+
EVA-attribure.train: Saving the model Now ....., 0.9041, 0.9069
|
| 1149 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 1150 |
+
EVA-attribure.train: ==> Student Training ....
|
| 1151 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 1152 |
+
EVA-attribure.train: ==> Student Training ....
|
| 1153 |
+
EVA-attribure: Extracted features for query set, obtained torch.Size([834, 1024]) matrix
|
| 1154 |
+
EVA-attribure: Extracted features for gallery set, obtained torch.Size([1074, 1024]) matrix
|
| 1155 |
+
EVA-attribure: Extracting features complete in 12m 28s
|
| 1156 |
+
EVA-attribure: Distance computing in 0m 0s
|
| 1157 |
+
EVA-attribure: Mean Distance : (834, 1074), [-0.2147566 -0.23463756 -0.22020487 -0.21780506 -0.23037697 -0.21784124
|
| 1158 |
+
-0.21935055 -0.23452243 -0.22496746 -0.21604049] , Mean Query : tensor([0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002,
|
| 1159 |
+
0.0001], device='cuda:0') Mean Gallery: tensor([0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002,
|
| 1160 |
+
0.0001], device='cuda:0')
|
| 1161 |
+
EVA-attribure: Computing CMC and mAP
|
| 1162 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 1163 |
+
EVA-attribure: top1:91.1% top5:92.1% top10:93.8% top20:93.9% mAP:91.8%
|
| 1164 |
+
EVA-attribure: -----------------------------------------------------------
|
| 1165 |
+
EVA-attribure: Using 0m 0s
|
| 1166 |
+
EVA-attribure: Computing CMC and mAP only for the same clothes setting
|
| 1167 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 1168 |
+
EVA-attribure: top1:100.0% top5:100.0% top10:100.0% top20:100.0% mAP:100.0%
|
| 1169 |
+
EVA-attribure: -----------------------------------------------------------
|
| 1170 |
+
EVA-attribure: Computing CMC and mAP only for clothes-changing
|
| 1171 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 1172 |
+
EVA-attribure: top1:90.4% top5:91.7% top10:93.6% top20:93.9% mAP:91.0%
|
| 1173 |
+
EVA-attribure: -----------------------------------------------------------
|
| 1174 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 1175 |
+
EVA-attribure.train: ==> Student Training ....
|
| 1176 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 1177 |
+
EVA-attribure.train: ==> Student Training ....
|
| 1178 |
+
EVA-attribure: Extracted features for query set, obtained torch.Size([834, 1024]) matrix
|
| 1179 |
+
EVA-attribure: Extracted features for gallery set, obtained torch.Size([1074, 1024]) matrix
|
| 1180 |
+
EVA-attribure: Extracting features complete in 12m 25s
|
| 1181 |
+
EVA-attribure: Distance computing in 0m 0s
|
| 1182 |
+
EVA-attribure: Mean Distance : (834, 1074), [-0.2141483 -0.23439108 -0.21916826 -0.21638437 -0.22984637 -0.21719843
|
| 1183 |
+
-0.21840937 -0.23319286 -0.22443655 -0.21379735] , Mean Query : tensor([0.0001, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002,
|
| 1184 |
+
0.0001], device='cuda:0') Mean Gallery: tensor([0.0001, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002,
|
| 1185 |
+
0.0001], device='cuda:0')
|
| 1186 |
+
EVA-attribure: Computing CMC and mAP
|
| 1187 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 1188 |
+
EVA-attribure: top1:90.8% top5:92.1% top10:93.8% top20:94.0% mAP:91.5%
|
| 1189 |
+
EVA-attribure: -----------------------------------------------------------
|
| 1190 |
+
EVA-attribure: Using 0m 0s
|
| 1191 |
+
EVA-attribure: Computing CMC and mAP only for the same clothes setting
|
| 1192 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 1193 |
+
EVA-attribure: top1:100.0% top5:100.0% top10:100.0% top20:100.0% mAP:100.0%
|
| 1194 |
+
EVA-attribure: -----------------------------------------------------------
|
| 1195 |
+
EVA-attribure: Computing CMC and mAP only for clothes-changing
|
| 1196 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 1197 |
+
EVA-attribure: top1:90.0% top5:91.6% top10:93.6% top20:94.0% mAP:90.7%
|
| 1198 |
+
EVA-attribure: -----------------------------------------------------------
|
| 1199 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 1200 |
+
EVA-attribure.train: ==> Student Training ....
|
| 1201 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 1202 |
+
EVA-attribure.train: ==> Student Training ....
|
| 1203 |
+
EVA-attribure: Extracted features for query set, obtained torch.Size([834, 1024]) matrix
|
| 1204 |
+
EVA-attribure: Extracted features for gallery set, obtained torch.Size([1074, 1024]) matrix
|
| 1205 |
+
EVA-attribure: Extracting features complete in 12m 27s
|
| 1206 |
+
EVA-attribure: Distance computing in 0m 0s
|
| 1207 |
+
EVA-attribure: Mean Distance : (834, 1074), [-0.21101823 -0.23224232 -0.21760605 -0.2132943 -0.2275472 -0.21568808
|
| 1208 |
+
-0.21514174 -0.23130286 -0.22212155 -0.21181212] , Mean Query : tensor([0.0001, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002,
|
| 1209 |
+
0.0001], device='cuda:0') Mean Gallery: tensor([0.0001, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002,
|
| 1210 |
+
0.0001], device='cuda:0')
|
| 1211 |
+
EVA-attribure: Computing CMC and mAP
|
| 1212 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 1213 |
+
EVA-attribure: top1:90.9% top5:92.1% top10:93.8% top20:94.0% mAP:91.5%
|
| 1214 |
+
EVA-attribure: -----------------------------------------------------------
|
| 1215 |
+
EVA-attribure: Using 0m 0s
|
| 1216 |
+
EVA-attribure: Computing CMC and mAP only for the same clothes setting
|
| 1217 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 1218 |
+
EVA-attribure: top1:100.0% top5:100.0% top10:100.0% top20:100.0% mAP:100.0%
|
| 1219 |
+
EVA-attribure: -----------------------------------------------------------
|
| 1220 |
+
EVA-attribure: Computing CMC and mAP only for clothes-changing
|
| 1221 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 1222 |
+
EVA-attribure: top1:90.2% top5:91.7% top10:93.6% top20:94.0% mAP:90.8%
|
| 1223 |
+
EVA-attribure: -----------------------------------------------------------
|
| 1224 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 1225 |
+
EVA-attribure.train: ==> Student Training ....
|
| 1226 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 1227 |
+
EVA-attribure.train: ==> Student Training ....
|
| 1228 |
+
EVA-attribure: Extracted features for query set, obtained torch.Size([834, 1024]) matrix
|
| 1229 |
+
EVA-attribure: Extracted features for gallery set, obtained torch.Size([1074, 1024]) matrix
|
| 1230 |
+
EVA-attribure: Extracting features complete in 12m 27s
|
| 1231 |
+
EVA-attribure: Distance computing in 0m 0s
|
| 1232 |
+
EVA-attribure: Mean Distance : (834, 1074), [-0.21280545 -0.2331697 -0.21911798 -0.21471713 -0.22867844 -0.21731086
|
| 1233 |
+
-0.21594621 -0.23236732 -0.22388323 -0.21247986] , Mean Query : tensor([0.0001, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002,
|
| 1234 |
+
0.0001], device='cuda:0') Mean Gallery: tensor([0.0001, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002,
|
| 1235 |
+
0.0001], device='cuda:0')
|
| 1236 |
+
EVA-attribure: Computing CMC and mAP
|
| 1237 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 1238 |
+
EVA-attribure: top1:90.9% top5:92.1% top10:93.8% top20:94.0% mAP:91.8%
|
| 1239 |
+
EVA-attribure: -----------------------------------------------------------
|
| 1240 |
+
EVA-attribure: Using 0m 0s
|
| 1241 |
+
EVA-attribure: Computing CMC and mAP only for the same clothes setting
|
| 1242 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 1243 |
+
EVA-attribure: top1:100.0% top5:100.0% top10:100.0% top20:100.0% mAP:100.0%
|
| 1244 |
+
EVA-attribure: -----------------------------------------------------------
|
| 1245 |
+
EVA-attribure: Computing CMC and mAP only for clothes-changing
|
| 1246 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 1247 |
+
EVA-attribure: top1:90.2% top5:91.6% top10:93.6% top20:94.0% mAP:91.0%
|
| 1248 |
+
EVA-attribure: -----------------------------------------------------------
|
| 1249 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 1250 |
+
EVA-attribure.train: ==> Student Training ....
|
| 1251 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 1252 |
+
EVA-attribure.train: ==> Student Training ....
|
| 1253 |
+
EVA-attribure: Extracted features for query set, obtained torch.Size([834, 1024]) matrix
|
| 1254 |
+
EVA-attribure: Extracted features for gallery set, obtained torch.Size([1074, 1024]) matrix
|
| 1255 |
+
EVA-attribure: Extracting features complete in 12m 27s
|
| 1256 |
+
EVA-attribure: Distance computing in 0m 0s
|
| 1257 |
+
EVA-attribure: Mean Distance : (834, 1074), [-0.20765163 -0.23189156 -0.21707892 -0.21176305 -0.22738832 -0.21494499
|
| 1258 |
+
-0.21272634 -0.23173973 -0.2212931 -0.21157524] , Mean Query : tensor([0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002,
|
| 1259 |
+
0.0001], device='cuda:0') Mean Gallery: tensor([0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002,
|
| 1260 |
+
0.0001], device='cuda:0')
|
| 1261 |
+
EVA-attribure: Computing CMC and mAP
|
| 1262 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 1263 |
+
EVA-attribure: top1:91.1% top5:92.1% top10:93.8% top20:94.0% mAP:91.8%
|
| 1264 |
+
EVA-attribure: -----------------------------------------------------------
|
| 1265 |
+
EVA-attribure: Using 0m 0s
|
| 1266 |
+
EVA-attribure: Computing CMC and mAP only for the same clothes setting
|
| 1267 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 1268 |
+
EVA-attribure: top1:100.0% top5:100.0% top10:100.0% top20:100.0% mAP:100.0%
|
| 1269 |
+
EVA-attribure: -----------------------------------------------------------
|
| 1270 |
+
EVA-attribure: Computing CMC and mAP only for clothes-changing
|
| 1271 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 1272 |
+
EVA-attribure: top1:90.6% top5:91.6% top10:93.6% top20:94.0% mAP:91.1%
|
| 1273 |
+
EVA-attribure: -----------------------------------------------------------
|
| 1274 |
+
EVA-attribure.train: ==> Best Rank-1 90.6%, Best Map 91.1% achieved at epoch 84
|
| 1275 |
+
EVA-attribure.train: Saving the model Now ....., 0.9065, 0.9109
|
| 1276 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 1277 |
+
EVA-attribure.train: ==> Student Training ....
|
| 1278 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 1279 |
+
EVA-attribure.train: ==> Student Training ....
|
| 1280 |
+
EVA-attribure: Extracted features for query set, obtained torch.Size([834, 1024]) matrix
|
| 1281 |
+
EVA-attribure: Extracted features for gallery set, obtained torch.Size([1074, 1024]) matrix
|
| 1282 |
+
EVA-attribure: Extracting features complete in 12m 26s
|
| 1283 |
+
EVA-attribure: Distance computing in 0m 0s
|
| 1284 |
+
EVA-attribure: Mean Distance : (834, 1074), [-0.20871276 -0.23122072 -0.21646637 -0.21211465 -0.22760239 -0.21453595
|
| 1285 |
+
-0.21322015 -0.23008838 -0.22122735 -0.2104189 ] , Mean Query : tensor([0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002,
|
| 1286 |
+
0.0001], device='cuda:0') Mean Gallery: tensor([0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002,
|
| 1287 |
+
0.0001], device='cuda:0')
|
| 1288 |
+
EVA-attribure: Computing CMC and mAP
|
| 1289 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 1290 |
+
EVA-attribure: top1:91.1% top5:92.1% top10:93.8% top20:94.0% mAP:91.6%
|
| 1291 |
+
EVA-attribure: -----------------------------------------------------------
|
| 1292 |
+
EVA-attribure: Using 0m 0s
|
| 1293 |
+
EVA-attribure: Computing CMC and mAP only for the same clothes setting
|
| 1294 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 1295 |
+
EVA-attribure: top1:100.0% top5:100.0% top10:100.0% top20:100.0% mAP:100.0%
|
| 1296 |
+
EVA-attribure: -----------------------------------------------------------
|
| 1297 |
+
EVA-attribure: Computing CMC and mAP only for clothes-changing
|
| 1298 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 1299 |
+
EVA-attribure: top1:90.5% top5:91.6% top10:93.6% top20:94.0% mAP:90.9%
|
| 1300 |
+
EVA-attribure: -----------------------------------------------------------
|
| 1301 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 1302 |
+
EVA-attribure.train: ==> Student Training ....
|
| 1303 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 1304 |
+
EVA-attribure.train: ==> Student Training ....
|
| 1305 |
+
EVA-attribure: Extracted features for query set, obtained torch.Size([834, 1024]) matrix
|
| 1306 |
+
EVA-attribure: Extracted features for gallery set, obtained torch.Size([1074, 1024]) matrix
|
| 1307 |
+
EVA-attribure: Extracting features complete in 12m 33s
|
| 1308 |
+
EVA-attribure: Distance computing in 0m 0s
|
| 1309 |
+
EVA-attribure: Mean Distance : (834, 1074), [-0.21206005 -0.2340149 -0.21801369 -0.21654427 -0.22922502 -0.2152433
|
| 1310 |
+
-0.21575643 -0.23191503 -0.22151464 -0.2141129 ] , Mean Query : tensor([0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002,
|
| 1311 |
+
0.0001], device='cuda:0') Mean Gallery: tensor([0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002,
|
| 1312 |
+
0.0001], device='cuda:0')
|
| 1313 |
+
EVA-attribure: Computing CMC and mAP
|
| 1314 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 1315 |
+
EVA-attribure: top1:91.4% top5:92.2% top10:93.8% top20:94.0% mAP:91.3%
|
| 1316 |
+
EVA-attribure: -----------------------------------------------------------
|
| 1317 |
+
EVA-attribure: Using 0m 0s
|
| 1318 |
+
EVA-attribure: Computing CMC and mAP only for the same clothes setting
|
| 1319 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 1320 |
+
EVA-attribure: top1:100.0% top5:100.0% top10:100.0% top20:100.0% mAP:100.0%
|
| 1321 |
+
EVA-attribure: -----------------------------------------------------------
|
| 1322 |
+
EVA-attribure: Computing CMC and mAP only for clothes-changing
|
| 1323 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 1324 |
+
EVA-attribure: top1:90.8% top5:91.8% top10:93.6% top20:94.0% mAP:90.6%
|
| 1325 |
+
EVA-attribure: -----------------------------------------------------------
|
| 1326 |
+
EVA-attribure.train: ==> Best Rank-1 90.8%, Best Map 91.1% achieved at epoch 88
|
| 1327 |
+
EVA-attribure.train: Saving the model Now ....., 0.9077, 0.9058
|
| 1328 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 1329 |
+
EVA-attribure.train: ==> Student Training ....
|
| 1330 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 1331 |
+
EVA-attribure.train: ==> Student Training ....
|
| 1332 |
+
EVA-attribure: Extracted features for query set, obtained torch.Size([834, 1024]) matrix
|
| 1333 |
+
EVA-attribure: Extracted features for gallery set, obtained torch.Size([1074, 1024]) matrix
|
| 1334 |
+
EVA-attribure: Extracting features complete in 12m 16s
|
| 1335 |
+
EVA-attribure: Distance computing in 0m 0s
|
| 1336 |
+
EVA-attribure: Mean Distance : (834, 1074), [-0.21463989 -0.23406848 -0.21852815 -0.21809904 -0.22983834 -0.21456386
|
| 1337 |
+
-0.21651968 -0.23113817 -0.2204485 -0.21294434] , Mean Query : tensor([0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002,
|
| 1338 |
+
0.0001], device='cuda:0') Mean Gallery: tensor([0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002,
|
| 1339 |
+
0.0001], device='cuda:0')
|
| 1340 |
+
EVA-attribure: Computing CMC and mAP
|
| 1341 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 1342 |
+
EVA-attribure: top1:91.8% top5:92.2% top10:93.6% top20:94.0% mAP:91.6%
|
| 1343 |
+
EVA-attribure: -----------------------------------------------------------
|
| 1344 |
+
EVA-attribure: Using 0m 0s
|
| 1345 |
+
EVA-attribure: Computing CMC and mAP only for the same clothes setting
|
| 1346 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 1347 |
+
EVA-attribure: top1:100.0% top5:100.0% top10:100.0% top20:100.0% mAP:100.0%
|
| 1348 |
+
EVA-attribure: -----------------------------------------------------------
|
| 1349 |
+
EVA-attribure: Computing CMC and mAP only for clothes-changing
|
| 1350 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 1351 |
+
EVA-attribure: top1:91.2% top5:91.8% top10:93.5% top20:94.0% mAP:90.8%
|
| 1352 |
+
EVA-attribure: -----------------------------------------------------------
|
| 1353 |
+
EVA-attribure.train: ==> Best Rank-1 91.2%, Best Map 91.1% achieved at epoch 90
|
| 1354 |
+
EVA-attribure.train: Saving the model Now ....., 0.9125, 0.9082
|
| 1355 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 1356 |
+
EVA-attribure.train: ==> Student Training ....
|
| 1357 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 1358 |
+
EVA-attribure.train: ==> Student Training ....
|
| 1359 |
+
EVA-attribure: Extracted features for query set, obtained torch.Size([834, 1024]) matrix
|
| 1360 |
+
EVA-attribure: Extracted features for gallery set, obtained torch.Size([1074, 1024]) matrix
|
| 1361 |
+
EVA-attribure: Extracting features complete in 12m 27s
|
| 1362 |
+
EVA-attribure: Distance computing in 0m 0s
|
| 1363 |
+
EVA-attribure: Mean Distance : (834, 1074), [-0.21363999 -0.23516048 -0.21698713 -0.21662797 -0.22949347 -0.21558842
|
| 1364 |
+
-0.21720865 -0.23076694 -0.22225036 -0.2149075 ] , Mean Query : tensor([0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002,
|
| 1365 |
+
0.0001], device='cuda:0') Mean Gallery: tensor([0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002,
|
| 1366 |
+
0.0001], device='cuda:0')
|
| 1367 |
+
EVA-attribure: Computing CMC and mAP
|
| 1368 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 1369 |
+
EVA-attribure: top1:91.2% top5:92.6% top10:93.6% top20:94.0% mAP:91.0%
|
| 1370 |
+
EVA-attribure: -----------------------------------------------------------
|
| 1371 |
+
EVA-attribure: Using 0m 0s
|
| 1372 |
+
EVA-attribure: Computing CMC and mAP only for the same clothes setting
|
| 1373 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 1374 |
+
EVA-attribure: top1:100.0% top5:100.0% top10:100.0% top20:100.0% mAP:100.0%
|
| 1375 |
+
EVA-attribure: -----------------------------------------------------------
|
| 1376 |
+
EVA-attribure: Computing CMC and mAP only for clothes-changing
|
| 1377 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 1378 |
+
EVA-attribure: top1:90.9% top5:92.2% top10:93.5% top20:94.0% mAP:90.3%
|
| 1379 |
+
EVA-attribure: -----------------------------------------------------------
|
| 1380 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 1381 |
+
EVA-attribure.train: ==> Student Training ....
|
| 1382 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 1383 |
+
EVA-attribure.train: ==> Student Training ....
|
| 1384 |
+
EVA-attribure: Extracted features for query set, obtained torch.Size([834, 1024]) matrix
|
| 1385 |
+
EVA-attribure: Extracted features for gallery set, obtained torch.Size([1074, 1024]) matrix
|
| 1386 |
+
EVA-attribure: Extracting features complete in 12m 27s
|
| 1387 |
+
EVA-attribure: Distance computing in 0m 0s
|
| 1388 |
+
EVA-attribure: Mean Distance : (834, 1074), [-0.21092741 -0.23491454 -0.21771935 -0.21668677 -0.22978817 -0.21541935
|
| 1389 |
+
-0.2156132 -0.23216116 -0.22115982 -0.21116486] , Mean Query : tensor([0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002,
|
| 1390 |
+
0.0001], device='cuda:0') Mean Gallery: tensor([0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002,
|
| 1391 |
+
0.0001], device='cuda:0')
|
| 1392 |
+
EVA-attribure: Computing CMC and mAP
|
| 1393 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 1394 |
+
EVA-attribure: top1:91.2% top5:92.3% top10:93.6% top20:94.0% mAP:91.1%
|
| 1395 |
+
EVA-attribure: -----------------------------------------------------------
|
| 1396 |
+
EVA-attribure: Using 0m 0s
|
| 1397 |
+
EVA-attribure: Computing CMC and mAP only for the same clothes setting
|
| 1398 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 1399 |
+
EVA-attribure: top1:100.0% top5:100.0% top10:100.0% top20:100.0% mAP:100.0%
|
| 1400 |
+
EVA-attribure: -----------------------------------------------------------
|
| 1401 |
+
EVA-attribure: Computing CMC and mAP only for clothes-changing
|
| 1402 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 1403 |
+
EVA-attribure: top1:90.8% top5:92.0% top10:93.5% top20:94.0% mAP:90.4%
|
| 1404 |
+
EVA-attribure: -----------------------------------------------------------
|
| 1405 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 1406 |
+
EVA-attribure.train: ==> Student Training ....
|
| 1407 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 1408 |
+
EVA-attribure.train: ==> Student Training ....
|
| 1409 |
+
EVA-attribure: Extracted features for query set, obtained torch.Size([834, 1024]) matrix
|
| 1410 |
+
EVA-attribure: Extracted features for gallery set, obtained torch.Size([1074, 1024]) matrix
|
| 1411 |
+
EVA-attribure: Extracting features complete in 12m 26s
|
| 1412 |
+
EVA-attribure: Distance computing in 0m 0s
|
| 1413 |
+
EVA-attribure: Mean Distance : (834, 1074), [-0.21297581 -0.2365449 -0.21866372 -0.2155347 -0.22957788 -0.21461928
|
| 1414 |
+
-0.21455525 -0.23241125 -0.22258326 -0.21336825] , Mean Query : tensor([0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002,
|
| 1415 |
+
0.0001], device='cuda:0') Mean Gallery: tensor([0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002,
|
| 1416 |
+
0.0001], device='cuda:0')
|
| 1417 |
+
EVA-attribure: Computing CMC and mAP
|
| 1418 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 1419 |
+
EVA-attribure: top1:91.4% top5:92.2% top10:93.5% top20:94.0% mAP:91.2%
|
| 1420 |
+
EVA-attribure: -----------------------------------------------------------
|
| 1421 |
+
EVA-attribure: Using 0m 0s
|
| 1422 |
+
EVA-attribure: Computing CMC and mAP only for the same clothes setting
|
| 1423 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 1424 |
+
EVA-attribure: top1:100.0% top5:100.0% top10:100.0% top20:100.0% mAP:100.0%
|
| 1425 |
+
EVA-attribure: -----------------------------------------------------------
|
| 1426 |
+
EVA-attribure: Computing CMC and mAP only for clothes-changing
|
| 1427 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 1428 |
+
EVA-attribure: top1:90.8% top5:91.8% top10:93.4% top20:94.0% mAP:90.5%
|
| 1429 |
+
EVA-attribure: -----------------------------------------------------------
|
| 1430 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 1431 |
+
EVA-attribure.train: ==> Student Training ....
|
| 1432 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 1433 |
+
EVA-attribure.train: ==> Student Training ....
|
| 1434 |
+
EVA-attribure: Extracted features for query set, obtained torch.Size([834, 1024]) matrix
|
| 1435 |
+
EVA-attribure: Extracted features for gallery set, obtained torch.Size([1074, 1024]) matrix
|
| 1436 |
+
EVA-attribure: Extracting features complete in 12m 26s
|
| 1437 |
+
EVA-attribure: Distance computing in 0m 0s
|
| 1438 |
+
EVA-attribure: Mean Distance : (834, 1074), [-0.21381028 -0.23569532 -0.21910676 -0.21504684 -0.2313859 -0.2178408
|
| 1439 |
+
-0.21613993 -0.2334768 -0.22398372 -0.21140188] , Mean Query : tensor([0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002,
|
| 1440 |
+
0.0001], device='cuda:0') Mean Gallery: tensor([0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002,
|
| 1441 |
+
0.0001], device='cuda:0')
|
| 1442 |
+
EVA-attribure: Computing CMC and mAP
|
| 1443 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 1444 |
+
EVA-attribure: top1:90.3% top5:92.1% top10:93.8% top20:93.9% mAP:90.8%
|
| 1445 |
+
EVA-attribure: -----------------------------------------------------------
|
| 1446 |
+
EVA-attribure: Using 0m 0s
|
| 1447 |
+
EVA-attribure: Computing CMC and mAP only for the same clothes setting
|
| 1448 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 1449 |
+
EVA-attribure: top1:100.0% top5:100.0% top10:100.0% top20:100.0% mAP:100.0%
|
| 1450 |
+
EVA-attribure: -----------------------------------------------------------
|
| 1451 |
+
EVA-attribure: Computing CMC and mAP only for clothes-changing
|
| 1452 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 1453 |
+
EVA-attribure: top1:89.7% top5:91.6% top10:93.6% top20:93.9% mAP:90.0%
|
| 1454 |
+
EVA-attribure: -----------------------------------------------------------
|
| 1455 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 1456 |
+
EVA-attribure.train: ==> Student Training ....
|
| 1457 |
+
EVA-attribure.train: ==> Teacher Training ....
|
| 1458 |
+
EVA-attribure.train: ==> Student Training ....
|
| 1459 |
+
EVA-attribure: Extracted features for query set, obtained torch.Size([834, 1024]) matrix
|
| 1460 |
+
EVA-attribure: Extracted features for gallery set, obtained torch.Size([1074, 1024]) matrix
|
| 1461 |
+
EVA-attribure: Extracting features complete in 12m 26s
|
| 1462 |
+
EVA-attribure: Distance computing in 0m 0s
|
| 1463 |
+
EVA-attribure: Mean Distance : (834, 1074), [-0.21488309 -0.23592728 -0.219786 -0.22046727 -0.2320272 -0.21765688
|
| 1464 |
+
-0.21799433 -0.23396699 -0.22374003 -0.21535294] , Mean Query : tensor([0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002,
|
| 1465 |
+
0.0001], device='cuda:0') Mean Gallery: tensor([0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0002, 0.0001, 0.0002, 0.0002,
|
| 1466 |
+
0.0001], device='cuda:0')
|
| 1467 |
+
EVA-attribure: Computing CMC and mAP
|
| 1468 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 1469 |
+
EVA-attribure: top1:90.6% top5:92.2% top10:93.8% top20:94.0% mAP:90.5%
|
| 1470 |
+
EVA-attribure: -----------------------------------------------------------
|
| 1471 |
+
EVA-attribure: Using 0m 0s
|
| 1472 |
+
EVA-attribure: Computing CMC and mAP only for the same clothes setting
|
| 1473 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 1474 |
+
EVA-attribure: top1:100.0% top5:100.0% top10:100.0% top20:100.0% mAP:100.0%
|
| 1475 |
+
EVA-attribure: -----------------------------------------------------------
|
| 1476 |
+
EVA-attribure: Computing CMC and mAP only for clothes-changing
|
| 1477 |
+
EVA-attribure: Results ---------------------------------------------------
|
| 1478 |
+
EVA-attribure: top1:90.0% top5:91.8% top10:93.6% top20:94.0% mAP:89.8%
|
| 1479 |
+
EVA-attribure: -----------------------------------------------------------
|
| 1480 |
+
EVA-attribure.train: Training time 13:00:18
|
| 1481 |
+
EVA-attribure.train: ==> Best Rank-1 91.2%, Best Map 91.1% achieved at epoch 90
|