Update README.md
Browse files
README.md
CHANGED
|
@@ -18,6 +18,10 @@ tags:
|
|
| 18 |
|
| 19 |

|
| 20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
```py
|
| 22 |
Classification Report:
|
| 23 |
precision recall f1-score support
|
|
@@ -45,4 +49,99 @@ Classification Report:
|
|
| 45 |
weighted avg 0.9972 0.9972 0.9972 13552
|
| 46 |
```
|
| 47 |
|
| 48 |
-

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |

|
| 20 |
|
| 21 |
+
# **Hand-Gesture-2-Robot**
|
| 22 |
+
|
| 23 |
+
> **Hand-Gesture-2-Robot** is an image classification vision-language encoder model fine-tuned from **google/siglip2-base-patch16-224** for a single-label classification task. It is designed to recognize hand gestures and map them to specific robot commands using the **SiglipForImageClassification** architecture.
|
| 24 |
+
|
| 25 |
```py
|
| 26 |
Classification Report:
|
| 27 |
precision recall f1-score support
|
|
|
|
| 49 |
weighted avg 0.9972 0.9972 0.9972 13552
|
| 50 |
```
|
| 51 |
|
| 52 |
+

|
| 53 |
+
|
| 54 |
+
The model categorizes hand gestures into 17 different robot commands:
|
| 55 |
+
- **Class 0:** "rotate anticlockwise"
|
| 56 |
+
- **Class 1:** "increase"
|
| 57 |
+
- **Class 2:** "release"
|
| 58 |
+
- **Class 3:** "switch"
|
| 59 |
+
- **Class 4:** "look up"
|
| 60 |
+
- **Class 5:** "Terminate"
|
| 61 |
+
- **Class 6:** "decrease"
|
| 62 |
+
- **Class 7:** "move backward"
|
| 63 |
+
- **Class 8:** "point"
|
| 64 |
+
- **Class 9:** "rotate clockwise"
|
| 65 |
+
- **Class 10:** "grasp"
|
| 66 |
+
- **Class 11:** "pause"
|
| 67 |
+
- **Class 12:** "move forward"
|
| 68 |
+
- **Class 13:** "Confirm"
|
| 69 |
+
- **Class 14:** "look down"
|
| 70 |
+
- **Class 15:** "move left"
|
| 71 |
+
- **Class 16:** "move right"
|
| 72 |
+
|
| 73 |
+
# **Run with Transformers🤗**
|
| 74 |
+
|
| 75 |
+
```python
|
| 76 |
+
!pip install -q transformers torch pillow gradio
|
| 77 |
+
```
|
| 78 |
+
|
| 79 |
+
```python
|
| 80 |
+
import gradio as gr
|
| 81 |
+
from transformers import AutoImageProcessor
|
| 82 |
+
from transformers import SiglipForImageClassification
|
| 83 |
+
from transformers.image_utils import load_image
|
| 84 |
+
from PIL import Image
|
| 85 |
+
import torch
|
| 86 |
+
|
| 87 |
+
# Load model and processor
|
| 88 |
+
model_name = "prithivMLmods/Hand-Gesture-2-Robot"
|
| 89 |
+
model = SiglipForImageClassification.from_pretrained(model_name)
|
| 90 |
+
processor = AutoImageProcessor.from_pretrained(model_name)
|
| 91 |
+
|
| 92 |
+
def gesture_classification(image):
|
| 93 |
+
"""Predicts the robot command from a hand gesture image."""
|
| 94 |
+
image = Image.fromarray(image).convert("RGB")
|
| 95 |
+
inputs = processor(images=image, return_tensors="pt")
|
| 96 |
+
|
| 97 |
+
with torch.no_grad():
|
| 98 |
+
outputs = model(**inputs)
|
| 99 |
+
logits = outputs.logits
|
| 100 |
+
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
|
| 101 |
+
|
| 102 |
+
labels = {
|
| 103 |
+
"0": "rotate anticlockwise",
|
| 104 |
+
"1": "increase",
|
| 105 |
+
"2": "release",
|
| 106 |
+
"3": "switch",
|
| 107 |
+
"4": "look up",
|
| 108 |
+
"5": "Terminate",
|
| 109 |
+
"6": "decrease",
|
| 110 |
+
"7": "move backward",
|
| 111 |
+
"8": "point",
|
| 112 |
+
"9": "rotate clockwise",
|
| 113 |
+
"10": "grasp",
|
| 114 |
+
"11": "pause",
|
| 115 |
+
"12": "move forward",
|
| 116 |
+
"13": "Confirm",
|
| 117 |
+
"14": "look down",
|
| 118 |
+
"15": "move left",
|
| 119 |
+
"16": "move right"
|
| 120 |
+
}
|
| 121 |
+
predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))}
|
| 122 |
+
|
| 123 |
+
return predictions
|
| 124 |
+
|
| 125 |
+
# Create Gradio interface
|
| 126 |
+
iface = gr.Interface(
|
| 127 |
+
fn=gesture_classification,
|
| 128 |
+
inputs=gr.Image(type="numpy"),
|
| 129 |
+
outputs=gr.Label(label="Prediction Scores"),
|
| 130 |
+
title="Hand Gesture to Robot Command",
|
| 131 |
+
description="Upload an image of a hand gesture to predict the corresponding robot command."
|
| 132 |
+
)
|
| 133 |
+
|
| 134 |
+
# Launch the app
|
| 135 |
+
if __name__ == "__main__":
|
| 136 |
+
iface.launch()
|
| 137 |
+
```
|
| 138 |
+
|
| 139 |
+
# **Intended Use:**
|
| 140 |
+
|
| 141 |
+
The **Hand-Gesture-2-Robot** model is designed to classify hand gestures into corresponding robot commands. Potential use cases include:
|
| 142 |
+
|
| 143 |
+
- **Human-Robot Interaction:** Enabling intuitive control of robots using hand gestures.
|
| 144 |
+
- **Assistive Technology:** Helping individuals with disabilities communicate commands.
|
| 145 |
+
- **Industrial Automation:** Enhancing robotic operations in manufacturing.
|
| 146 |
+
- **Gaming & VR:** Providing gesture-based controls for immersive experiences.
|
| 147 |
+
- **Security & Surveillance:** Implementing gesture-based access control.
|