Spaces:
Running
Running
File size: 6,154 Bytes
2455231 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
"""
AmaniQuery VibeVoice Service - FastAPI wrapper for TTS
Standalone HuggingFace Space for voice synthesis
"""
import os
import io
import wave
import logging
from typing import Optional
from fastapi import FastAPI, HTTPException, Header, Request
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import StreamingResponse, JSONResponse
from pydantic import BaseModel, Field
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# FastAPI app
app = FastAPI(
title="AmaniQuery VibeVoice",
description="Text-to-Speech service for AmaniQuery using Microsoft VibeVoice",
version="1.0.0",
)
# CORS configuration
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # In production, restrict to specific origins
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Global model instance (lazy loaded)
_tts_model = None
_processor = None
class SpeakRequest(BaseModel):
"""Request model for text-to-speech"""
text: str = Field(..., description="Text to convert to speech", max_length=5000)
voice: str = Field(default="Wayne", description="Voice preset to use")
cfg_scale: float = Field(default=1.5, ge=1.0, le=3.0, description="Classifier-free guidance scale")
class VoiceInfo(BaseModel):
"""Voice preset information"""
name: str
description: str
# Available voice presets
VOICE_PRESETS = [
VoiceInfo(name="Wayne", description="Male, American English, Calm"),
VoiceInfo(name="Angela", description="Female, American English, Professional"),
VoiceInfo(name="Aria", description="Female, American English, Warm"),
VoiceInfo(name="Davis", description="Male, American English, Confident"),
]
def get_tts_model():
"""Lazy load the TTS model"""
global _tts_model, _processor
if _tts_model is None:
logger.info("Loading VibeVoice model...")
try:
import torch
from vibevoice.modular import (
VibeVoiceStreamingForConditionalGenerationInference,
VibeVoiceStreamingConfig,
)
from vibevoice.processor import VibeVoiceStreamingProcessor
device = os.getenv("VIBEVOICE_DEVICE", "cpu")
if device == "auto":
device = "cuda" if torch.cuda.is_available() else "cpu"
config = VibeVoiceStreamingConfig(
model_path="microsoft/VibeVoice-Realtime-0.5B",
device=device,
)
_tts_model = VibeVoiceStreamingForConditionalGenerationInference(config)
_processor = VibeVoiceStreamingProcessor()
logger.info(f"VibeVoice model loaded on {device}")
except Exception as e:
logger.error(f"Failed to load VibeVoice model: {e}")
raise
return _tts_model, _processor
def validate_jwt(authorization: Optional[str] = None) -> bool:
"""Validate JWT token for cross-service auth (optional)"""
jwt_secret = os.getenv("JWT_SECRET")
if not jwt_secret:
# No JWT configured, allow all requests
return True
if not authorization or not authorization.startswith("Bearer "):
return False
try:
import jwt
token = authorization.replace("Bearer ", "")
jwt.decode(token, jwt_secret, algorithms=["HS256"])
return True
except Exception:
return False
@app.get("/health")
async def health_check():
"""Health check endpoint"""
return {"status": "healthy", "service": "vibevoice"}
@app.get("/api/v1/voice/voices")
async def list_voices():
"""List available voice presets"""
return {"voices": [v.dict() for v in VOICE_PRESETS]}
@app.post("/api/v1/voice/speak")
async def speak(
request: SpeakRequest,
authorization: Optional[str] = Header(None),
):
"""Convert text to speech"""
# Optional JWT validation
if os.getenv("JWT_SECRET") and not validate_jwt(authorization):
raise HTTPException(status_code=401, detail="Invalid or missing authentication")
try:
model, processor = get_tts_model()
# Generate audio
logger.info(f"Generating speech for: {request.text[:50]}...")
# Process text and generate audio
audio_data = model.generate(
text=request.text,
voice=request.voice,
cfg_scale=request.cfg_scale,
)
# Convert to WAV format
audio_buffer = io.BytesIO()
with wave.open(audio_buffer, 'wb') as wav_file:
wav_file.setnchannels(1)
wav_file.setsampwidth(2) # 16-bit
wav_file.setframerate(24000) # Sample rate
wav_file.writeframes(audio_data.tobytes())
audio_buffer.seek(0)
return StreamingResponse(
audio_buffer,
media_type="audio/wav",
headers={"Content-Disposition": "attachment; filename=speech.wav"}
)
except Exception as e:
logger.error(f"TTS generation failed: {e}")
raise HTTPException(status_code=500, detail=f"Speech generation failed: {str(e)}")
@app.post("/api/v1/voice/chat")
async def voice_chat(
request: SpeakRequest,
authorization: Optional[str] = Header(None),
):
"""Generate conversational voice response (same as speak for now)"""
return await speak(request, authorization)
@app.get("/")
async def root():
"""Root endpoint with service info"""
return {
"service": "AmaniQuery VibeVoice",
"version": "1.0.0",
"endpoints": {
"health": "/health",
"speak": "/api/v1/voice/speak",
"voices": "/api/v1/voice/voices",
}
}
if __name__ == "__main__":
import uvicorn
port = int(os.getenv("PORT", 7860))
uvicorn.run(app, host="0.0.0.0", port=port)
|