""" AmaniQuery VibeVoice Service - FastAPI wrapper for TTS Standalone HuggingFace Space for voice synthesis """ import os import io import wave import logging from typing import Optional from fastapi import FastAPI, HTTPException, Header, Request from fastapi.middleware.cors import CORSMiddleware from fastapi.responses import StreamingResponse, JSONResponse from pydantic import BaseModel, Field # Configure logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # FastAPI app app = FastAPI( title="AmaniQuery VibeVoice", description="Text-to-Speech service for AmaniQuery using Microsoft VibeVoice", version="1.0.0", ) # CORS configuration app.add_middleware( CORSMiddleware, allow_origins=["*"], # In production, restrict to specific origins allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) # Global model instance (lazy loaded) _tts_model = None _processor = None class SpeakRequest(BaseModel): """Request model for text-to-speech""" text: str = Field(..., description="Text to convert to speech", max_length=5000) voice: str = Field(default="Wayne", description="Voice preset to use") cfg_scale: float = Field(default=1.5, ge=1.0, le=3.0, description="Classifier-free guidance scale") class VoiceInfo(BaseModel): """Voice preset information""" name: str description: str # Available voice presets VOICE_PRESETS = [ VoiceInfo(name="Wayne", description="Male, American English, Calm"), VoiceInfo(name="Angela", description="Female, American English, Professional"), VoiceInfo(name="Aria", description="Female, American English, Warm"), VoiceInfo(name="Davis", description="Male, American English, Confident"), ] def get_tts_model(): """Lazy load the TTS model""" global _tts_model, _processor if _tts_model is None: logger.info("Loading VibeVoice model...") try: import torch from vibevoice.modular import ( VibeVoiceStreamingForConditionalGenerationInference, VibeVoiceStreamingConfig, ) from vibevoice.processor import VibeVoiceStreamingProcessor device = os.getenv("VIBEVOICE_DEVICE", "cpu") if device == "auto": device = "cuda" if torch.cuda.is_available() else "cpu" config = VibeVoiceStreamingConfig( model_path="microsoft/VibeVoice-Realtime-0.5B", device=device, ) _tts_model = VibeVoiceStreamingForConditionalGenerationInference(config) _processor = VibeVoiceStreamingProcessor() logger.info(f"VibeVoice model loaded on {device}") except Exception as e: logger.error(f"Failed to load VibeVoice model: {e}") raise return _tts_model, _processor def validate_jwt(authorization: Optional[str] = None) -> bool: """Validate JWT token for cross-service auth (optional)""" jwt_secret = os.getenv("JWT_SECRET") if not jwt_secret: # No JWT configured, allow all requests return True if not authorization or not authorization.startswith("Bearer "): return False try: import jwt token = authorization.replace("Bearer ", "") jwt.decode(token, jwt_secret, algorithms=["HS256"]) return True except Exception: return False @app.get("/health") async def health_check(): """Health check endpoint""" return {"status": "healthy", "service": "vibevoice"} @app.get("/api/v1/voice/voices") async def list_voices(): """List available voice presets""" return {"voices": [v.dict() for v in VOICE_PRESETS]} @app.post("/api/v1/voice/speak") async def speak( request: SpeakRequest, authorization: Optional[str] = Header(None), ): """Convert text to speech""" # Optional JWT validation if os.getenv("JWT_SECRET") and not validate_jwt(authorization): raise HTTPException(status_code=401, detail="Invalid or missing authentication") try: model, processor = get_tts_model() # Generate audio logger.info(f"Generating speech for: {request.text[:50]}...") # Process text and generate audio audio_data = model.generate( text=request.text, voice=request.voice, cfg_scale=request.cfg_scale, ) # Convert to WAV format audio_buffer = io.BytesIO() with wave.open(audio_buffer, 'wb') as wav_file: wav_file.setnchannels(1) wav_file.setsampwidth(2) # 16-bit wav_file.setframerate(24000) # Sample rate wav_file.writeframes(audio_data.tobytes()) audio_buffer.seek(0) return StreamingResponse( audio_buffer, media_type="audio/wav", headers={"Content-Disposition": "attachment; filename=speech.wav"} ) except Exception as e: logger.error(f"TTS generation failed: {e}") raise HTTPException(status_code=500, detail=f"Speech generation failed: {str(e)}") @app.post("/api/v1/voice/chat") async def voice_chat( request: SpeakRequest, authorization: Optional[str] = Header(None), ): """Generate conversational voice response (same as speak for now)""" return await speak(request, authorization) @app.get("/") async def root(): """Root endpoint with service info""" return { "service": "AmaniQuery VibeVoice", "version": "1.0.0", "endpoints": { "health": "/health", "speak": "/api/v1/voice/speak", "voices": "/api/v1/voice/voices", } } if __name__ == "__main__": import uvicorn port = int(os.getenv("PORT", 7860)) uvicorn.run(app, host="0.0.0.0", port=port)