Update app.py
Browse files
app.py
CHANGED
|
@@ -4,97 +4,114 @@ from sentence_transformers import SentenceTransformer, util
|
|
| 4 |
import torch
|
| 5 |
import os
|
| 6 |
import sys
|
| 7 |
-
import gc
|
|
|
|
| 8 |
|
| 9 |
# --- 系統設定 ---
|
| 10 |
SYSTEM_TITLE = "花蓮慈濟醫院公文輔助判決系統"
|
| 11 |
FILE_PATH = 'data.csv'
|
|
|
|
|
|
|
| 12 |
|
| 13 |
-
# --- 1. 讀取資料
|
| 14 |
-
print("🚀
|
| 15 |
|
| 16 |
if not os.path.exists(FILE_PATH):
|
| 17 |
print(f"❌ 錯誤:找不到 {FILE_PATH}")
|
| 18 |
sys.exit(1)
|
| 19 |
|
| 20 |
try:
|
| 21 |
-
#
|
| 22 |
df = pd.read_csv(FILE_PATH, encoding='cp950')
|
| 23 |
-
print("✅ 資料讀取成功 (cp950)")
|
| 24 |
except UnicodeDecodeError:
|
| 25 |
try:
|
| 26 |
df = pd.read_csv(FILE_PATH, encoding='big5')
|
| 27 |
-
|
| 28 |
-
except Exception as e:
|
| 29 |
-
print(f"❌ 讀取失敗: {e}")
|
| 30 |
df = pd.DataFrame()
|
| 31 |
-
except Exception
|
| 32 |
-
print(f"❌ 未知錯誤: {e}")
|
| 33 |
df = pd.DataFrame()
|
| 34 |
|
| 35 |
# --- 2. 資料清洗 ---
|
| 36 |
if not df.empty:
|
| 37 |
-
# 欄位名稱標準化
|
| 38 |
df.columns = [str(c).strip().replace('\ufeff', '') for c in df.columns]
|
| 39 |
-
|
| 40 |
-
# 自動對應欄位
|
| 41 |
for col in df.columns:
|
| 42 |
if '主旨' in col or '內容' in col: df.rename(columns={col: '主旨'}, inplace=True)
|
| 43 |
if '窗口' in col or '單位' in col: df.rename(columns={col: '收文窗口'}, inplace=True)
|
| 44 |
|
| 45 |
-
|
| 46 |
-
|
| 47 |
df = df.dropna(subset=['主旨', '收文窗口'])
|
| 48 |
-
|
| 49 |
-
|
|
|
|
|
|
|
| 50 |
else:
|
| 51 |
print("❌ 資料表是空的!")
|
|
|
|
|
|
|
| 52 |
|
| 53 |
-
# --- 3.
|
| 54 |
-
print("🧠 正在載入輕量版模型 (BAAI/bge-small-zh-v1.5)...")
|
| 55 |
-
# 改用 Small 版本,速度快 3 倍,記憶體佔用極低
|
| 56 |
-
model_name = 'BAAI/bge-small-zh-v1.5'
|
| 57 |
-
model = SentenceTransformer(model_name)
|
| 58 |
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
-
|
| 64 |
-
#
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
convert_to_tensor=True,
|
| 70 |
-
normalize_embeddings=True # 正規化,提升比對準度
|
| 71 |
-
)
|
| 72 |
-
print("✅ 索引建立完成!系統已就緒。")
|
| 73 |
-
|
| 74 |
-
# 強制清理記憶體
|
| 75 |
-
gc.collect()
|
| 76 |
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
|
| 85 |
-
# --- 4.
|
| 86 |
def search_department(query):
|
|
|
|
| 87 |
if corpus_embeddings is None:
|
| 88 |
return "⚠️ 系統初始化失敗,請檢查 Logs。"
|
| 89 |
|
| 90 |
if not query.strip():
|
| 91 |
return "請輸入公文主旨..."
|
| 92 |
|
| 93 |
-
# 搜尋
|
| 94 |
query_embedding = model.encode(query, convert_to_tensor=True)
|
| 95 |
cos_scores = util.cos_sim(query_embedding, corpus_embeddings)[0]
|
| 96 |
|
| 97 |
-
# 取前 3 名
|
| 98 |
top_k = min(3, len(corpus))
|
| 99 |
top_results = torch.topk(cos_scores, k=top_k)
|
| 100 |
|
|
@@ -106,13 +123,9 @@ def search_department(query):
|
|
| 106 |
row = df.iloc[idx]
|
| 107 |
score_val = score.item()
|
| 108 |
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
elif score_val > 0.55:
|
| 113 |
-
confidence = "⭐⭐ 高"
|
| 114 |
-
else:
|
| 115 |
-
confidence = "⭐ 參考"
|
| 116 |
|
| 117 |
output_text += f"【推薦單位】:{row['收文窗口']}\n"
|
| 118 |
output_text += f" - 歷史案例:{row['主旨']}\n"
|
|
@@ -121,13 +134,13 @@ def search_department(query):
|
|
| 121 |
|
| 122 |
return output_text
|
| 123 |
|
| 124 |
-
# --- 5.
|
| 125 |
iface = gr.Interface(
|
| 126 |
fn=search_department,
|
| 127 |
inputs=gr.Textbox(lines=3, placeholder="請輸入公文主旨..."),
|
| 128 |
outputs=gr.Textbox(lines=12, label="AI 判決建議"),
|
| 129 |
title=SYSTEM_TITLE,
|
| 130 |
-
description=f"系統狀態:{'🟢
|
| 131 |
examples=[["檢送本署彙整人工生殖機構之捐贈生殖細胞使用情形"], ["函轉衛生局關於流感疫苗接種計畫"]]
|
| 132 |
)
|
| 133 |
|
|
|
|
| 4 |
import torch
|
| 5 |
import os
|
| 6 |
import sys
|
| 7 |
+
import gc
|
| 8 |
+
import time
|
| 9 |
|
| 10 |
# --- 系統設定 ---
|
| 11 |
SYSTEM_TITLE = "花蓮慈濟醫院公文輔助判決系統"
|
| 12 |
FILE_PATH = 'data.csv'
|
| 13 |
+
# ▼▼▼ 關鍵:定義索引檔案儲存路徑 ▼▼▼
|
| 14 |
+
INDEX_FILE = 'corpus_embeddings.pt'
|
| 15 |
|
| 16 |
+
# --- 1. 讀取資料 ---
|
| 17 |
+
print("🚀 正在啟動快取模式...")
|
| 18 |
|
| 19 |
if not os.path.exists(FILE_PATH):
|
| 20 |
print(f"❌ 錯誤:找不到 {FILE_PATH}")
|
| 21 |
sys.exit(1)
|
| 22 |
|
| 23 |
try:
|
| 24 |
+
# 讀取檔案 (維持 CP950 容錯)
|
| 25 |
df = pd.read_csv(FILE_PATH, encoding='cp950')
|
|
|
|
| 26 |
except UnicodeDecodeError:
|
| 27 |
try:
|
| 28 |
df = pd.read_csv(FILE_PATH, encoding='big5')
|
| 29 |
+
except Exception:
|
|
|
|
|
|
|
| 30 |
df = pd.DataFrame()
|
| 31 |
+
except Exception:
|
|
|
|
| 32 |
df = pd.DataFrame()
|
| 33 |
|
| 34 |
# --- 2. 資料清洗 ---
|
| 35 |
if not df.empty:
|
|
|
|
| 36 |
df.columns = [str(c).strip().replace('\ufeff', '') for c in df.columns]
|
|
|
|
|
|
|
| 37 |
for col in df.columns:
|
| 38 |
if '主旨' in col or '內容' in col: df.rename(columns={col: '主旨'}, inplace=True)
|
| 39 |
if '窗口' in col or '單位' in col: df.rename(columns={col: '收文窗口'}, inplace=True)
|
| 40 |
|
| 41 |
+
df['主旨'] = df['主旨'].astype(str)
|
| 42 |
+
df['收文窗口'] = df['收文窗口'].astype(str)
|
| 43 |
df = df.dropna(subset=['主旨', '收文窗口'])
|
| 44 |
+
|
| 45 |
+
corpus = df['主旨'].tolist()
|
| 46 |
+
total_records = len(corpus)
|
| 47 |
+
print(f"📊 載入全量資料: {total_records} 筆")
|
| 48 |
else:
|
| 49 |
print("❌ 資料表是空的!")
|
| 50 |
+
corpus = []
|
| 51 |
+
total_records = 0
|
| 52 |
|
| 53 |
+
# --- 3. 載入模型與建立索引 (關鍵:檢查快取) ---
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
+
# 檢查模型是否已經載入
|
| 56 |
+
model = None
|
| 57 |
+
try:
|
| 58 |
+
print("🧠 正在載入模型 (BAAI/bge-small-zh-v1.5)...")
|
| 59 |
+
model = SentenceTransformer('BAAI/bge-small-zh-v1.5')
|
| 60 |
+
except Exception as e:
|
| 61 |
+
print(f"❌ 模型載入失敗: {e}")
|
| 62 |
+
|
| 63 |
+
corpus_embeddings = None
|
| 64 |
+
|
| 65 |
+
if total_records > 0 and model is not None:
|
| 66 |
+
if os.path.exists(INDEX_FILE):
|
| 67 |
+
# 快取存在,直接載入,快速啟動!
|
| 68 |
+
print(f"⚡ 偵測到快取檔案 ({INDEX_FILE}),正在秒速載入...")
|
| 69 |
+
try:
|
| 70 |
+
corpus_embeddings = torch.load(INDEX_FILE)
|
| 71 |
+
print("✅ 索引載入完成,系統秒速啟動!")
|
| 72 |
+
except Exception as e:
|
| 73 |
+
print(f"❌ 快取檔案損壞,將重新計算索引。錯誤: {e}")
|
| 74 |
+
corpus_embeddings = None # 設為 None 重新計算
|
| 75 |
|
| 76 |
+
if corpus_embeddings is None:
|
| 77 |
+
# 第一次啟動或快取損壞,進行耗時的計算
|
| 78 |
+
print(f"🔥 第一次啟動或快取失效,開始分批計算索引 (這需要約 2-4 分鐘)...")
|
| 79 |
+
chunk_size = 500
|
| 80 |
+
embeddings_chunks = []
|
| 81 |
+
start_time = time.time()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
|
| 83 |
+
try:
|
| 84 |
+
for i in range(0, total_records, chunk_size):
|
| 85 |
+
batch = corpus[i : i + chunk_size]
|
| 86 |
+
batch_emb = model.encode(batch, convert_to_tensor=True, show_progress_bar=False)
|
| 87 |
+
embeddings_chunks.append(batch_emb)
|
| 88 |
+
print(f" -> 已處理 {min(i + chunk_size, total_records)} / {total_records} 筆...")
|
| 89 |
+
gc.collect()
|
| 90 |
+
|
| 91 |
+
# 合併與儲存
|
| 92 |
+
print("🔗 正在合併並儲存索引...")
|
| 93 |
+
corpus_embeddings = torch.cat(embeddings_chunks)
|
| 94 |
+
torch.save(corpus_embeddings, INDEX_FILE) # ▼▼▼ 儲存索引到硬碟 ▼▼▼
|
| 95 |
+
|
| 96 |
+
end_time = time.time()
|
| 97 |
+
print(f"✅ 全量索引計算並儲存完成!耗時 {int(end_time - start_time)} 秒。")
|
| 98 |
+
|
| 99 |
+
except Exception as e:
|
| 100 |
+
print(f"❌ 索引計算失敗 (可能記憶體不足): {e}")
|
| 101 |
+
corpus_embeddings = None
|
| 102 |
|
| 103 |
+
# --- 4. 定義搜尋 ---
|
| 104 |
def search_department(query):
|
| 105 |
+
# 這裡的邏輯與之前相同,不需要修改
|
| 106 |
if corpus_embeddings is None:
|
| 107 |
return "⚠️ 系統初始化失敗,請檢查 Logs。"
|
| 108 |
|
| 109 |
if not query.strip():
|
| 110 |
return "請輸入公文主旨..."
|
| 111 |
|
|
|
|
| 112 |
query_embedding = model.encode(query, convert_to_tensor=True)
|
| 113 |
cos_scores = util.cos_sim(query_embedding, corpus_embeddings)[0]
|
| 114 |
|
|
|
|
| 115 |
top_k = min(3, len(corpus))
|
| 116 |
top_results = torch.topk(cos_scores, k=top_k)
|
| 117 |
|
|
|
|
| 123 |
row = df.iloc[idx]
|
| 124 |
score_val = score.item()
|
| 125 |
|
| 126 |
+
if score_val > 0.7: confidence = "⭐⭐⭐ 極高"
|
| 127 |
+
elif score_val > 0.55: confidence = "⭐⭐ 高"
|
| 128 |
+
else: confidence = "⭐ 參考"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
|
| 130 |
output_text += f"【推薦單位】:{row['收文窗口']}\n"
|
| 131 |
output_text += f" - 歷史案例:{row['主旨']}\n"
|
|
|
|
| 134 |
|
| 135 |
return output_text
|
| 136 |
|
| 137 |
+
# --- 5. 介面 ---
|
| 138 |
iface = gr.Interface(
|
| 139 |
fn=search_department,
|
| 140 |
inputs=gr.Textbox(lines=3, placeholder="請輸入公文主旨..."),
|
| 141 |
outputs=gr.Textbox(lines=12, label="AI 判決建議"),
|
| 142 |
title=SYSTEM_TITLE,
|
| 143 |
+
description=f"系統狀態:{'🟢 快取就緒' if corpus_embeddings is not None else '🔴 索引失敗'}\n資料庫完整收錄:{total_records} 筆歷史資料 (無刪減)",
|
| 144 |
examples=[["檢送本署彙整人工生殖機構之捐贈生殖細胞使用情形"], ["函轉衛生局關於流感疫苗接種計畫"]]
|
| 145 |
)
|
| 146 |
|