Spaces:
Running
Running
Upload 2 files
Browse files- app.py +54 -0
- requirements.txt +4 -0
app.py
ADDED
|
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import BertTokenizer, BertForSequenceClassification
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
# Load the tokenizer and model
|
| 6 |
+
model_name = "AventIQ-AI/bert-spam-detection"
|
| 7 |
+
tokenizer = BertTokenizer.from_pretrained(model_name)
|
| 8 |
+
model = BertForSequenceClassification.from_pretrained(model_name)
|
| 9 |
+
|
| 10 |
+
# Set the model to evaluation mode and move it to the appropriate device
|
| 11 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 12 |
+
model.to(device)
|
| 13 |
+
model.eval()
|
| 14 |
+
|
| 15 |
+
# Define the prediction function
|
| 16 |
+
def predict_spam(text):
|
| 17 |
+
"""Predicts whether a given text is spam or not."""
|
| 18 |
+
# Tokenize input text
|
| 19 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
| 20 |
+
inputs = {key: value.to(device) for key, value in inputs.items()}
|
| 21 |
+
|
| 22 |
+
# Perform inference
|
| 23 |
+
with torch.no_grad():
|
| 24 |
+
outputs = model(**inputs)
|
| 25 |
+
logits = outputs.logits
|
| 26 |
+
probabilities = torch.softmax(logits, dim=1)
|
| 27 |
+
prediction = torch.argmax(probabilities, dim=1).item()
|
| 28 |
+
confidence = probabilities[0][prediction].item()
|
| 29 |
+
|
| 30 |
+
# Map prediction to label
|
| 31 |
+
label_map = {0: "Not Spam", 1: "Spam"}
|
| 32 |
+
result = f"Prediction: {label_map[prediction]}\nConfidence: {confidence:.2f}"
|
| 33 |
+
return result
|
| 34 |
+
|
| 35 |
+
# Create the Gradio interface
|
| 36 |
+
iface = gr.Interface(
|
| 37 |
+
fn=predict_spam,
|
| 38 |
+
inputs=gr.Textbox(label="📧 Input Text", placeholder="Enter the email or message content here...", lines=5),
|
| 39 |
+
outputs=gr.Textbox(label="🔍 Spam Detection Result"),
|
| 40 |
+
title="🛡️ BERT-Based Spam Detector",
|
| 41 |
+
description="Enter the content of an email or message to determine whether it's Spam or Not Spam.",
|
| 42 |
+
examples=[
|
| 43 |
+
["Congratulations! You've won a $1,000,000 lottery. Click here to claim your prize."],
|
| 44 |
+
["Hey, are we still meeting for lunch tomorrow?"],
|
| 45 |
+
["URGENT: Your account has been compromised. Reset your password immediately by clicking this link."],
|
| 46 |
+
["Don't miss out on our exclusive offer! Buy one, get one free on all items."],
|
| 47 |
+
["Can you send me the report by end of the day? Thanks!"]
|
| 48 |
+
],
|
| 49 |
+
theme="compact",
|
| 50 |
+
allow_flagging="never"
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
if __name__ == "__main__":
|
| 54 |
+
iface.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
transformers
|
| 3 |
+
gradio
|
| 4 |
+
sentencepiece
|