Update app.py
Browse files
app.py
CHANGED
|
@@ -1,24 +1,23 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
-
from modeling import BERTMultiLabel
|
| 4 |
from transformers import AutoTokenizer
|
| 5 |
-
|
| 6 |
|
| 7 |
LABELS = ["anger", "fear", "joy", "sadness", "surprise"]
|
| 8 |
|
| 9 |
-
#
|
| 10 |
tokenizer = AutoTokenizer.from_pretrained("./")
|
|
|
|
| 11 |
|
| 12 |
-
|
| 13 |
-
model = BERTMultiLabel(model_name="microsoft/deberta-v3-base", num_labels=len(LABELS))
|
| 14 |
state = torch.load("pytorch_model.bin", map_location="cpu")
|
| 15 |
model.load_state_dict(state)
|
| 16 |
model.eval()
|
| 17 |
|
| 18 |
|
|
|
|
| 19 |
def predict(text):
|
| 20 |
-
if text.strip()
|
| 21 |
-
return {"error": "Please enter text"}
|
| 22 |
|
| 23 |
enc = tokenizer(
|
| 24 |
text,
|
|
@@ -30,39 +29,124 @@ def predict(text):
|
|
| 30 |
|
| 31 |
with torch.no_grad():
|
| 32 |
logits = model(enc["input_ids"], enc["attention_mask"])
|
| 33 |
-
probs = torch.sigmoid(logits).
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
-
|
| 36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
return {
|
| 39 |
-
"Predicted Mood":
|
| 40 |
-
"Scores":
|
| 41 |
}
|
| 42 |
|
| 43 |
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
with gr.Row():
|
| 49 |
-
|
|
|
|
| 50 |
with gr.Column(scale=1):
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
with gr.Column(scale=2):
|
| 62 |
-
user_input = gr.Textbox(label="Enter text here", placeholder="Type something like: 'I feel so happy today!'")
|
| 63 |
-
analyze_button = gr.Button("Analyze Mood")
|
| 64 |
-
output = gr.JSON(label="Result")
|
| 65 |
|
| 66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
-
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
|
|
|
| 3 |
from transformers import AutoTokenizer
|
| 4 |
+
from modeling import BERTMultiLabel
|
| 5 |
|
| 6 |
LABELS = ["anger", "fear", "joy", "sadness", "surprise"]
|
| 7 |
|
| 8 |
+
# Load tokenizer and model
|
| 9 |
tokenizer = AutoTokenizer.from_pretrained("./")
|
| 10 |
+
model = BERTMultiLabel("microsoft/deberta-v3-base", num_labels=len(LABELS))
|
| 11 |
|
|
|
|
|
|
|
| 12 |
state = torch.load("pytorch_model.bin", map_location="cpu")
|
| 13 |
model.load_state_dict(state)
|
| 14 |
model.eval()
|
| 15 |
|
| 16 |
|
| 17 |
+
# ---------- PREDICTION FUNCTION ----------
|
| 18 |
def predict(text):
|
| 19 |
+
if not text.strip():
|
| 20 |
+
return {"error": "Please enter text."}
|
| 21 |
|
| 22 |
enc = tokenizer(
|
| 23 |
text,
|
|
|
|
| 29 |
|
| 30 |
with torch.no_grad():
|
| 31 |
logits = model(enc["input_ids"], enc["attention_mask"])
|
| 32 |
+
probs = torch.sigmoid(logits)[0].tolist()
|
| 33 |
+
|
| 34 |
+
scores = {label: round(p, 4) for label, p in zip(LABELS, probs)}
|
| 35 |
+
main_emotion = LABELS[int(torch.tensor(probs).argmax())]
|
| 36 |
|
| 37 |
+
emoji_map = {
|
| 38 |
+
"anger": "๐ก",
|
| 39 |
+
"fear": "๐จ",
|
| 40 |
+
"joy": "๐",
|
| 41 |
+
"sadness": "๐ข",
|
| 42 |
+
"surprise": "๐ฎ",
|
| 43 |
+
}
|
| 44 |
|
| 45 |
return {
|
| 46 |
+
"Predicted Mood": f"{emoji_map[main_emotion]} {main_emotion.capitalize()}",
|
| 47 |
+
"Scores": scores
|
| 48 |
}
|
| 49 |
|
| 50 |
|
| 51 |
+
# ---------- UI LAYOUT ----------
|
| 52 |
+
with gr.Blocks(
|
| 53 |
+
title="Sentiment & Emotion Analyzer",
|
| 54 |
+
theme=gr.themes.Soft(
|
| 55 |
+
primary_hue="indigo",
|
| 56 |
+
secondary_hue="blue",
|
| 57 |
+
radius="lg",
|
| 58 |
+
text_size="lg"
|
| 59 |
+
)
|
| 60 |
+
) as demo:
|
| 61 |
+
|
| 62 |
+
# ---- HEADER ----
|
| 63 |
+
gr.Markdown(
|
| 64 |
+
"""
|
| 65 |
+
<div style="text-align:center; padding: 20px;">
|
| 66 |
+
<h1 style="font-size: 3rem; margin-bottom: 0;">๐ญ Multi-Label Emotion Detection</h1>
|
| 67 |
+
<p style="font-size:1.2rem; color:#666;">
|
| 68 |
+
Powered by DeBERTa-v3 โข Fine-tuned on IIT Madras Deep Learning Competition Dataset
|
| 69 |
+
</p>
|
| 70 |
+
</div>
|
| 71 |
+
"""
|
| 72 |
+
)
|
| 73 |
|
| 74 |
with gr.Row():
|
| 75 |
+
|
| 76 |
+
# ---------- LEFT PANEL (FULL INFO) ----------
|
| 77 |
with gr.Column(scale=1):
|
| 78 |
+
|
| 79 |
+
gr.Markdown(
|
| 80 |
+
"""
|
| 81 |
+
<div style="
|
| 82 |
+
background:white; border-radius:16px; padding:20px;
|
| 83 |
+
box-shadow:0 4px 20px rgba(0,0,0,0.08); margin-bottom:20px;
|
| 84 |
+
">
|
| 85 |
+
<h2>๐ Model Overview</h2>
|
| 86 |
+
<ul style="line-height:1.6;">
|
| 87 |
+
<li><b>Architecture:</b> DeBERTa-v3 Base</li>
|
| 88 |
+
<li><b>Task:</b> Multi-Label Emotion Classification</li>
|
| 89 |
+
<li><b>Labels:</b> anger, fear, joy, sadness, surprise</li>
|
| 90 |
+
<li><b>Training Framework:</b> PyTorch + HuggingFace</li>
|
| 91 |
+
<li><b>Loss:</b> BCEWithLogitsLoss</li>
|
| 92 |
+
<li><b>Optimizer:</b> AdamW (LR = 1e-5)</li>
|
| 93 |
+
</ul>
|
| 94 |
+
</div>
|
| 95 |
+
|
| 96 |
+
<div style="
|
| 97 |
+
background:white; border-radius:16px; padding:20px;
|
| 98 |
+
box-shadow:0 4px 20px rgba(0,0,0,0.08); margin-bottom:20px;
|
| 99 |
+
">
|
| 100 |
+
<h2>๐ Dataset Details</h2>
|
| 101 |
+
<p style="line-height:1.6;">
|
| 102 |
+
Dataset used in IIT Madras Deep Learning & GenAI (Sep 2025).
|
| 103 |
+
Multi-label emotion classification with 5 emotions:
|
| 104 |
+
</p>
|
| 105 |
+
<ul>
|
| 106 |
+
<li>๐ Anger</li>
|
| 107 |
+
<li>๐จ Fear</li>
|
| 108 |
+
<li>๐ Joy</li>
|
| 109 |
+
<li>๐ข Sadness</li>
|
| 110 |
+
<li>๐ฒ Surprise</li>
|
| 111 |
+
</ul>
|
| 112 |
+
<p><b>Evaluation Metric:</b> Macro F1-Score</p>
|
| 113 |
+
</div>
|
| 114 |
+
|
| 115 |
+
<div style="
|
| 116 |
+
background:white; border-radius:16px; padding:20px;
|
| 117 |
+
box-shadow:0 4px 20px rgba(0,0,0,0.08);
|
| 118 |
+
">
|
| 119 |
+
<h2>๐ Project Highlights</h2>
|
| 120 |
+
<ul style="line-height:1.6;">
|
| 121 |
+
<li>Competition Rank: <b>27 / 200</b></li>
|
| 122 |
+
<li>Public F1 Score: <b>87.80%</b></li>
|
| 123 |
+
<li>Private F1 Score: <b>87.00%</b></li>
|
| 124 |
+
<li>Experimented with CNN, GRU, BiLSTM, DistilBERT & DeBERTa</li>
|
| 125 |
+
</ul>
|
| 126 |
+
</div>
|
| 127 |
+
"""
|
| 128 |
+
)
|
| 129 |
+
|
| 130 |
+
# ---------- RIGHT PANEL (ANALYZER) ----------
|
| 131 |
with gr.Column(scale=2):
|
|
|
|
|
|
|
|
|
|
| 132 |
|
| 133 |
+
with gr.Group():
|
| 134 |
+
user_input = gr.Textbox(
|
| 135 |
+
label="Enter your text",
|
| 136 |
+
placeholder="Example: I feel amazing today! ๐",
|
| 137 |
+
lines=4
|
| 138 |
+
)
|
| 139 |
+
analyze_btn = gr.Button("๐ฏ Analyze Emotion", size="lg")
|
| 140 |
+
output = gr.JSON(label="Model Output")
|
| 141 |
+
|
| 142 |
+
analyze_btn.click(predict, inputs=user_input, outputs=output)
|
| 143 |
+
|
| 144 |
+
gr.Markdown(
|
| 145 |
+
"""
|
| 146 |
+
<br><p style="text-align:center; color:#888;">
|
| 147 |
+
Built by <b>Ayusman Samasi</b> โข IIT Madras Deep Learning & GenAI
|
| 148 |
+
</p>
|
| 149 |
+
"""
|
| 150 |
+
)
|
| 151 |
|
| 152 |
+
demo.launch()
|