Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,7 +3,25 @@ import os
|
|
| 3 |
from PIL import Image
|
| 4 |
from transformers import AutoModelForImageClassification, SiglipImageProcessor
|
| 5 |
import gradio as gr
|
| 6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
# Model path
|
| 9 |
MODEL_PATH = "./model"
|
|
@@ -12,30 +30,27 @@ try:
|
|
| 12 |
print(f"=== Loading model from: {MODEL_PATH} ===")
|
| 13 |
print(f"Available files: {os.listdir(MODEL_PATH)}")
|
| 14 |
|
| 15 |
-
# Load the model
|
| 16 |
print("Loading model...")
|
| 17 |
model = AutoModelForImageClassification.from_pretrained(MODEL_PATH, local_files_only=True)
|
| 18 |
print("β
Model loaded successfully!")
|
| 19 |
|
| 20 |
-
# Load
|
| 21 |
print("Loading image processor...")
|
| 22 |
try:
|
| 23 |
-
# Try to load the image processor from your local files
|
| 24 |
processor = SiglipImageProcessor.from_pretrained(MODEL_PATH, local_files_only=True)
|
| 25 |
print("β
Image processor loaded from local files!")
|
| 26 |
except Exception as e:
|
| 27 |
print(f"β οΈ Could not load local processor: {e}")
|
| 28 |
print("Loading image processor from base SigLIP model...")
|
| 29 |
-
# Fallback: load processor from base model online
|
| 30 |
processor = SiglipImageProcessor.from_pretrained("google/siglip-base-patch16-224")
|
| 31 |
print("β
Image processor loaded from base model!")
|
| 32 |
|
| 33 |
-
# Get labels
|
| 34 |
if hasattr(model.config, 'id2label') and model.config.id2label:
|
| 35 |
labels = model.config.id2label
|
| 36 |
print(f"β
Found {len(labels)} labels in model config")
|
| 37 |
else:
|
| 38 |
-
# Create generic labels if none exist
|
| 39 |
num_labels = model.config.num_labels if hasattr(model.config, 'num_labels') else 2
|
| 40 |
labels = {i: f"class_{i}" for i in range(num_labels)}
|
| 41 |
print(f"β
Created {len(labels)} generic labels")
|
|
@@ -44,19 +59,40 @@ try:
|
|
| 44 |
|
| 45 |
except Exception as e:
|
| 46 |
print(f"β Error loading model: {e}")
|
| 47 |
-
print("\n=== Debug Information ===")
|
| 48 |
print(f"Files in model directory: {os.listdir(MODEL_PATH)}")
|
| 49 |
raise
|
| 50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
def classify_meme(image: Image.Image):
|
| 52 |
"""
|
| 53 |
-
Classify meme and extract text
|
| 54 |
"""
|
| 55 |
try:
|
| 56 |
-
#
|
| 57 |
-
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
-
# Process image for
|
| 60 |
inputs = processor(images=image, return_tensors="pt")
|
| 61 |
|
| 62 |
# Run inference
|
|
@@ -95,13 +131,13 @@ demo = gr.Interface(
|
|
| 95 |
gr.Label(num_top_classes=5, label="Meme Classification"),
|
| 96 |
gr.Textbox(label="Extracted Text", lines=3)
|
| 97 |
],
|
| 98 |
-
title="π Meme Classifier with
|
| 99 |
-
description="""
|
| 100 |
-
Upload a meme image to
|
| 101 |
-
|
| 102 |
-
|
| 103 |
|
| 104 |
-
Your model
|
| 105 |
""",
|
| 106 |
examples=None,
|
| 107 |
allow_flagging="never"
|
|
@@ -113,4 +149,4 @@ if __name__ == "__main__":
|
|
| 113 |
server_name="0.0.0.0",
|
| 114 |
server_port=7860,
|
| 115 |
share=False
|
| 116 |
-
)
|
|
|
|
| 3 |
from PIL import Image
|
| 4 |
from transformers import AutoModelForImageClassification, SiglipImageProcessor
|
| 5 |
import gradio as gr
|
| 6 |
+
|
| 7 |
+
# Alternative OCR using transformers
|
| 8 |
+
def setup_alternative_ocr():
|
| 9 |
+
"""Setup alternative OCR using transformers models"""
|
| 10 |
+
try:
|
| 11 |
+
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
|
| 12 |
+
print("Setting up TrOCR for text extraction...")
|
| 13 |
+
|
| 14 |
+
ocr_processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-printed")
|
| 15 |
+
ocr_model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-printed")
|
| 16 |
+
|
| 17 |
+
print("β
TrOCR model loaded successfully!")
|
| 18 |
+
return ocr_processor, ocr_model, True
|
| 19 |
+
except Exception as e:
|
| 20 |
+
print(f"β οΈ Could not load TrOCR: {e}")
|
| 21 |
+
return None, None, False
|
| 22 |
+
|
| 23 |
+
# Try to setup OCR
|
| 24 |
+
OCR_PROCESSOR, OCR_MODEL, OCR_AVAILABLE = setup_alternative_ocr()
|
| 25 |
|
| 26 |
# Model path
|
| 27 |
MODEL_PATH = "./model"
|
|
|
|
| 30 |
print(f"=== Loading model from: {MODEL_PATH} ===")
|
| 31 |
print(f"Available files: {os.listdir(MODEL_PATH)}")
|
| 32 |
|
| 33 |
+
# Load the model
|
| 34 |
print("Loading model...")
|
| 35 |
model = AutoModelForImageClassification.from_pretrained(MODEL_PATH, local_files_only=True)
|
| 36 |
print("β
Model loaded successfully!")
|
| 37 |
|
| 38 |
+
# Load image processor
|
| 39 |
print("Loading image processor...")
|
| 40 |
try:
|
|
|
|
| 41 |
processor = SiglipImageProcessor.from_pretrained(MODEL_PATH, local_files_only=True)
|
| 42 |
print("β
Image processor loaded from local files!")
|
| 43 |
except Exception as e:
|
| 44 |
print(f"β οΈ Could not load local processor: {e}")
|
| 45 |
print("Loading image processor from base SigLIP model...")
|
|
|
|
| 46 |
processor = SiglipImageProcessor.from_pretrained("google/siglip-base-patch16-224")
|
| 47 |
print("β
Image processor loaded from base model!")
|
| 48 |
|
| 49 |
+
# Get labels
|
| 50 |
if hasattr(model.config, 'id2label') and model.config.id2label:
|
| 51 |
labels = model.config.id2label
|
| 52 |
print(f"β
Found {len(labels)} labels in model config")
|
| 53 |
else:
|
|
|
|
| 54 |
num_labels = model.config.num_labels if hasattr(model.config, 'num_labels') else 2
|
| 55 |
labels = {i: f"class_{i}" for i in range(num_labels)}
|
| 56 |
print(f"β
Created {len(labels)} generic labels")
|
|
|
|
| 59 |
|
| 60 |
except Exception as e:
|
| 61 |
print(f"β Error loading model: {e}")
|
|
|
|
| 62 |
print(f"Files in model directory: {os.listdir(MODEL_PATH)}")
|
| 63 |
raise
|
| 64 |
|
| 65 |
+
def extract_text_alternative(image):
|
| 66 |
+
"""Extract text using TrOCR model"""
|
| 67 |
+
if not OCR_AVAILABLE:
|
| 68 |
+
return "OCR not available"
|
| 69 |
+
|
| 70 |
+
try:
|
| 71 |
+
# Convert to RGB if needed
|
| 72 |
+
if image.mode != 'RGB':
|
| 73 |
+
image = image.convert('RGB')
|
| 74 |
+
|
| 75 |
+
# Process with TrOCR
|
| 76 |
+
pixel_values = OCR_PROCESSOR(image, return_tensors="pt").pixel_values
|
| 77 |
+
generated_ids = OCR_MODEL.generate(pixel_values)
|
| 78 |
+
generated_text = OCR_PROCESSOR.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
| 79 |
+
|
| 80 |
+
return generated_text
|
| 81 |
+
except Exception as e:
|
| 82 |
+
return f"OCR error: {str(e)}"
|
| 83 |
+
|
| 84 |
def classify_meme(image: Image.Image):
|
| 85 |
"""
|
| 86 |
+
Classify meme and extract text
|
| 87 |
"""
|
| 88 |
try:
|
| 89 |
+
# Extract text using alternative OCR
|
| 90 |
+
if OCR_AVAILABLE:
|
| 91 |
+
extracted_text = extract_text_alternative(image)
|
| 92 |
+
else:
|
| 93 |
+
extracted_text = "OCR not available in this environment"
|
| 94 |
|
| 95 |
+
# Process image for classification
|
| 96 |
inputs = processor(images=image, return_tensors="pt")
|
| 97 |
|
| 98 |
# Run inference
|
|
|
|
| 131 |
gr.Label(num_top_classes=5, label="Meme Classification"),
|
| 132 |
gr.Textbox(label="Extracted Text", lines=3)
|
| 133 |
],
|
| 134 |
+
title="π Meme Classifier" + (" with TrOCR" if OCR_AVAILABLE else ""),
|
| 135 |
+
description=f"""
|
| 136 |
+
Upload a meme image to **classify** its content using your trained SigLIP2_77 model.
|
| 137 |
+
|
| 138 |
+
{'β
**Text extraction** available via TrOCR (Microsoft Transformer OCR)' if OCR_AVAILABLE else 'β οΈ **Text extraction** not available'}
|
| 139 |
|
| 140 |
+
Your model will predict the category/sentiment of the uploaded meme.
|
| 141 |
""",
|
| 142 |
examples=None,
|
| 143 |
allow_flagging="never"
|
|
|
|
| 149 |
server_name="0.0.0.0",
|
| 150 |
server_port=7860,
|
| 151 |
share=False
|
| 152 |
+
)
|