File size: 5,688 Bytes
eb07486
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177

"""
ein notation:
b - batch
n - sequence
nt - text sequence
nw - raw wave length
d - dimension
"""

from __future__ import annotations

import torch
from torch import nn
import torch.nn.functional as F
from einops import repeat
from x_transformers.x_transformers import RotaryEmbedding
from cosyvoice.utils.mask import add_optional_chunk_mask
from cosyvoice.flow.DiT.modules import (
    TimestepEmbedding,
    ConvNeXtV2Block,
    CausalConvPositionEmbedding,
    DiTBlock,
    AdaLayerNormZero_Final,
    precompute_freqs_cis,
    get_pos_embed_indices,
)


# Text embedding


class TextEmbedding(nn.Module):
    def __init__(self, text_num_embeds, text_dim, conv_layers=0, conv_mult=2):
        super().__init__()
        self.text_embed = nn.Embedding(text_num_embeds + 1, text_dim)  # use 0 as filler token

        if conv_layers > 0:
            self.extra_modeling = True
            self.precompute_max_pos = 4096  # ~44s of 24khz audio
            self.register_buffer("freqs_cis", precompute_freqs_cis(text_dim, self.precompute_max_pos), persistent=False)
            self.text_blocks = nn.Sequential(
                *[ConvNeXtV2Block(text_dim, text_dim * conv_mult) for _ in range(conv_layers)]
            )
        else:
            self.extra_modeling = False

    def forward(self, text: int["b nt"], seq_len, drop_text=False):  # noqa: F722
        batch, text_len = text.shape[0], text.shape[1]
        text = text + 1  # use 0 as filler token. preprocess of batch pad -1, see list_str_to_idx()
        text = text[:, :seq_len]  # curtail if character tokens are more than the mel spec tokens
        text = F.pad(text, (0, seq_len - text_len), value=0)

        if drop_text:  # cfg for text
            text = torch.zeros_like(text)

        text = self.text_embed(text)  # b n -> b n d

        # possible extra modeling
        if self.extra_modeling:
            # sinus pos emb
            batch_start = torch.zeros((batch,), dtype=torch.long)
            pos_idx = get_pos_embed_indices(batch_start, seq_len, max_pos=self.precompute_max_pos)
            text_pos_embed = self.freqs_cis[pos_idx]
            text = text + text_pos_embed

            # convnextv2 blocks
            text = self.text_blocks(text)

        return text


# noised input audio and context mixing embedding


class InputEmbedding(nn.Module):
    def __init__(self, mel_dim, text_dim, out_dim, spk_dim=None):
        super().__init__()
        spk_dim = 0 if spk_dim is None else spk_dim
        self.spk_dim = spk_dim
        self.proj = nn.Linear(mel_dim * 2 + text_dim + spk_dim, out_dim)
        self.conv_pos_embed = CausalConvPositionEmbedding(dim=out_dim)

    def forward(
            self,
            x: float["b n d"],
            cond: float["b n d"],
            text_embed: float["b n d"],
            spks: float["b d"],
    ):
        to_cat = [x, cond, text_embed]
        if self.spk_dim > 0:
            spks = repeat(spks, "b c -> b t c", t=x.shape[1])
            to_cat.append(spks)

        x = self.proj(torch.cat(to_cat, dim=-1))
        x = self.conv_pos_embed(x) + x
        return x


# Transformer backbone using DiT blocks


class DiT(nn.Module):
    def __init__(
        self,
        *,
        dim,
        depth=8,
        heads=8,
        dim_head=64,
        dropout=0.1,
        ff_mult=4,
        mel_dim=80,
        mu_dim=None,
        long_skip_connection=False,
        spk_dim=None,
        out_channels=None,
        static_chunk_size=50,
        num_decoding_left_chunks=2
    ):
        super().__init__()

        self.time_embed = TimestepEmbedding(dim)
        if mu_dim is None:
            mu_dim = mel_dim
        self.input_embed = InputEmbedding(mel_dim, mu_dim, dim, spk_dim)

        self.rotary_embed = RotaryEmbedding(dim_head)

        self.dim = dim
        self.depth = depth

        self.transformer_blocks = nn.ModuleList(
            [DiTBlock(dim=dim, heads=heads, dim_head=dim_head, ff_mult=ff_mult, dropout=dropout) for _ in range(depth)]
        )
        self.long_skip_connection = nn.Linear(dim * 2, dim, bias=False) if long_skip_connection else None

        self.norm_out = AdaLayerNormZero_Final(dim)  # final modulation
        self.proj_out = nn.Linear(dim, mel_dim)
        self.out_channels = out_channels
        self.static_chunk_size = static_chunk_size
        self.num_decoding_left_chunks = num_decoding_left_chunks

    def forward(self, x, mask, mu, t, spks=None, cond=None, streaming=False):
        x = x.transpose(1, 2)
        mu = mu.transpose(1, 2)
        cond = cond.transpose(1, 2)
        spks = spks.unsqueeze(dim=1)
        batch, seq_len = x.shape[0], x.shape[1]
        if t.ndim == 0:
            t = t.repeat(batch)

        # t: conditioning time, c: context (text + masked cond audio), x: noised input audio
        t = self.time_embed(t)
        x = self.input_embed(x, cond, mu, spks.squeeze(1))

        rope = self.rotary_embed.forward_from_seq_len(seq_len)

        if self.long_skip_connection is not None:
            residual = x

        if streaming is True:
            attn_mask = add_optional_chunk_mask(x, mask.bool(), False, False, 0, self.static_chunk_size, -1).unsqueeze(dim=1)
        else:
            attn_mask = add_optional_chunk_mask(x, mask.bool(), False, False, 0, 0, -1).repeat(1, x.size(1), 1).unsqueeze(dim=1)

        for block in self.transformer_blocks:
            x = block(x, t, mask=attn_mask.bool(), rope=rope)

        if self.long_skip_connection is not None:
            x = self.long_skip_connection(torch.cat((x, residual), dim=-1))

        x = self.norm_out(x, t)
        output = self.proj_out(x).transpose(1, 2)
        return output