Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,274 Bytes
eb07486 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
# Copyright (c) 2020 Mobvoi Inc (Binbin Zhang)
# 2024 Alibaba Inc (authors: Xiang Lyu)
# 2025 Alibaba Inc (authors: Xiang Lyu, Bofan Zhou)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Modified from ESPnet(https://github.com/espnet/espnet)
"""Unility functions for Transformer."""
import queue
import random
from typing import List
import numpy as np
import torch
IGNORE_ID = -1
instruct_list = ["You are a helpful assistant. 请用广东话表达。<|endofprompt|>",
"You are a helpful assistant. 请用东北话表达。<|endofprompt|>",
"You are a helpful assistant. 请用甘肃话表达。<|endofprompt|>",
"You are a helpful assistant. 请用贵州话表达。<|endofprompt|>",
"You are a helpful assistant. 请用河南话表达。<|endofprompt|>",
"You are a helpful assistant. 请用湖北话表达。<|endofprompt|>",
"You are a helpful assistant. 请用湖南话表达。<|endofprompt|>",
"You are a helpful assistant. 请用江西话表达。<|endofprompt|>",
"You are a helpful assistant. 请用闽南话表达。<|endofprompt|>",
"You are a helpful assistant. 请用宁夏话表达。<|endofprompt|>",
"You are a helpful assistant. 请用山西话表达。<|endofprompt|>",
"You are a helpful assistant. 请用陕西话表达。<|endofprompt|>",
"You are a helpful assistant. 请用山东话表达。<|endofprompt|>",
"You are a helpful assistant. 请用上海话表达。<|endofprompt|>",
"You are a helpful assistant. 请用四川话表达。<|endofprompt|>",
"You are a helpful assistant. 请用天津话表达。<|endofprompt|>",
"You are a helpful assistant. 请用云南话表达。<|endofprompt|>",
"You are a helpful assistant. Please say a sentence as loudly as possible.<|endofprompt|>",
"You are a helpful assistant. Please say a sentence in a very soft voice.<|endofprompt|>",
"You are a helpful assistant. 请用尽可能慢地语速说一句话。<|endofprompt|>",
"You are a helpful assistant. 请用尽可能快地语速说一句话。<|endofprompt|>",
"You are a helpful assistant. 请非常开心地说一句话。<|endofprompt|>",
"You are a helpful assistant. 请非常伤心地说一句话。<|endofprompt|>",
"You are a helpful assistant. 请非常生气地说一句话。<|endofprompt|>",
"You are a helpful assistant. 我想体验一下小猪佩奇风格,可以吗?<|endofprompt|>",
"You are a helpful assistant. 你可以尝试用机器人的方式解答吗?<|endofprompt|>"]
def pad_list(xs: List[torch.Tensor], pad_value: int):
"""Perform padding for the list of tensors.
Args:
xs (List): List of Tensors [(T_1, `*`), (T_2, `*`), ..., (T_B, `*`)].
pad_value (float): Value for padding.
Returns:
Tensor: Padded tensor (B, Tmax, `*`).
Examples:
>>> x = [torch.ones(4), torch.ones(2), torch.ones(1)]
>>> x
[tensor([1., 1., 1., 1.]), tensor([1., 1.]), tensor([1.])]
>>> pad_list(x, 0)
tensor([[1., 1., 1., 1.],
[1., 1., 0., 0.],
[1., 0., 0., 0.]])
"""
max_len = max([len(item) for item in xs])
batchs = len(xs)
ndim = xs[0].ndim
if ndim == 1:
pad_res = torch.zeros(batchs,
max_len,
dtype=xs[0].dtype,
device=xs[0].device)
elif ndim == 2:
pad_res = torch.zeros(batchs,
max_len,
xs[0].shape[1],
dtype=xs[0].dtype,
device=xs[0].device)
elif ndim == 3:
pad_res = torch.zeros(batchs,
max_len,
xs[0].shape[1],
xs[0].shape[2],
dtype=xs[0].dtype,
device=xs[0].device)
else:
raise ValueError(f"Unsupported ndim: {ndim}")
pad_res.fill_(pad_value)
for i in range(batchs):
pad_res[i, :len(xs[i])] = xs[i]
return pad_res
def th_accuracy(pad_outputs: torch.Tensor, pad_targets: torch.Tensor,
ignore_label: int) -> torch.Tensor:
"""Calculate accuracy.
Args:
pad_outputs (Tensor): Prediction tensors (B * Lmax, D).
pad_targets (LongTensor): Target label tensors (B, Lmax).
ignore_label (int): Ignore label id.
Returns:
torch.Tensor: Accuracy value (0.0 - 1.0).
"""
pad_pred = pad_outputs.view(pad_targets.size(0), pad_targets.size(1),
pad_outputs.size(1)).argmax(2)
mask = pad_targets != ignore_label
numerator = torch.sum(
pad_pred.masked_select(mask) == pad_targets.masked_select(mask))
denominator = torch.sum(mask)
return (numerator / denominator).detach()
def get_padding(kernel_size, dilation=1):
return int((kernel_size * dilation - dilation) / 2)
def init_weights(m, mean=0.0, std=0.01):
classname = m.__class__.__name__
if classname.find("Conv") != -1:
m.weight.data.normal_(mean, std)
# Repetition Aware Sampling in VALL-E 2
def ras_sampling(weighted_scores, decoded_tokens, sampling, top_p=0.8, top_k=25, win_size=10, tau_r=0.1):
top_ids = nucleus_sampling(weighted_scores, top_p=top_p, top_k=top_k)
rep_num = (torch.tensor(decoded_tokens[-win_size:]).to(weighted_scores.device) == top_ids).sum().item()
if rep_num >= win_size * tau_r:
top_ids = random_sampling(weighted_scores, decoded_tokens, sampling)
return top_ids
def nucleus_sampling(weighted_scores, top_p=0.8, top_k=25):
prob, indices = [], []
cum_prob = 0.0
sorted_value, sorted_idx = weighted_scores.softmax(dim=0).sort(descending=True, stable=True)
for i in range(len(sorted_idx)):
# sampling both top-p and numbers.
if cum_prob < top_p and len(prob) < top_k:
cum_prob += sorted_value[i]
prob.append(sorted_value[i])
indices.append(sorted_idx[i])
else:
break
prob = torch.tensor(prob).to(weighted_scores)
indices = torch.tensor(indices, dtype=torch.long).to(weighted_scores.device)
top_ids = indices[prob.multinomial(1, replacement=True)].item()
return top_ids
def random_sampling(weighted_scores, decoded_tokens, sampling):
top_ids = weighted_scores.softmax(dim=0).multinomial(1, replacement=True).item()
return top_ids
def fade_in_out(fade_in_mel, fade_out_mel, window):
device = fade_in_mel.device
fade_in_mel, fade_out_mel = fade_in_mel.cpu(), fade_out_mel.cpu()
mel_overlap_len = int(window.shape[0] / 2)
if fade_in_mel.device == torch.device('cpu'):
fade_in_mel = fade_in_mel.clone()
fade_in_mel[..., :mel_overlap_len] = fade_in_mel[..., :mel_overlap_len] * window[:mel_overlap_len] + \
fade_out_mel[..., -mel_overlap_len:] * window[mel_overlap_len:]
return fade_in_mel.to(device)
def set_all_random_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def mask_to_bias(mask: torch.Tensor, dtype: torch.dtype) -> torch.Tensor:
assert mask.dtype == torch.bool
assert dtype in [torch.float32, torch.bfloat16, torch.float16]
mask = mask.to(dtype)
# attention mask bias
# NOTE(Mddct): torch.finfo jit issues
# chunk_masks = (1.0 - chunk_masks) * torch.finfo(dtype).min
mask = (1.0 - mask) * -1.0e+10
return mask
class TrtContextWrapper:
def __init__(self, trt_engine, trt_concurrent=1, device='cuda:0'):
self.trt_context_pool = queue.Queue(maxsize=trt_concurrent)
self.trt_engine = trt_engine
for _ in range(trt_concurrent):
trt_context = trt_engine.create_execution_context()
trt_stream = torch.cuda.stream(torch.cuda.Stream(device))
assert trt_context is not None, 'failed to create trt context, maybe not enough CUDA memory, try reduce current trt concurrent {}'.format(trt_concurrent)
self.trt_context_pool.put([trt_context, trt_stream])
assert self.trt_context_pool.empty() is False, 'no avaialbe estimator context'
def acquire_estimator(self):
return self.trt_context_pool.get(), self.trt_engine
def release_estimator(self, context, stream):
self.trt_context_pool.put([context, stream])
|